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Abstract By a concrete quantum logic (in short, by a logic) we mean the orthomodular
poset that is set-representable. If L = (�,L) is a logic and L is closed under the formation
of symmetric difference, �, we call L a �-logic. In the first part we situate the known results
on logics and states to the context of �-logics and �-states (the �-states are the states that
are subadditive with respect to the symmetric difference). Moreover, we observe that the
rather prominent logic Eeven

� of all even-coeven subsets of the countable set � possesses
only �-states. Then we show when a state on the logics given by the divisibility relation
allows for an extension as a state. In the next paragraph we consider the so called density
logic and its �-closure. We find that the �-closure coincides with the power set. Then we
investigate other properties of the density logic and its factor.

Keywords Concrete quantum logic · Symmetric difference · �-logic · State · Density
logic · Banach limit

1 Notions and Results

The (concrete) logics and �-logics have been investigated by several authors [2–6, 8, 15,
16, 19, 21, 24, 25]. In this note, we extend on this investigation.

Let us review the basic notions as we shall use them in the sequel (by exp � we mean a
collection of all subsets of �).
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Definition 1 A concrete quantum logic (abbr., a logic) is a pair (�,L) where � is a set and
L, L ⊂ exp � is such a collection of sets that is subject to the following conditions:

1. � ∈ L,
2. if A, B ∈ L and A ∩ B = ∅, then A ∪ B ∈ L.

A logic is said to be a �-logic if it is closed under the formation of the symmetric difference:
If A, B ∈ L, then A�B = (A\B) ∪ (B\A) ∈ L.

Let us observe that if L = (�,L) is a logic then the �-logic generated in � by L consists
of all elements, D, of the type D = A1�A2� . . . �An, where Ai ∈ L. Let us denote by
(�, �L) the �-logic generated by L in �. Obviously, if a collection K is closed under the
formation of the symmetric difference and � ∈ K, then K is a logic.

The previous research revealed a large variety of concrete logics, including Boolean alge-
bras, of course. It is easily seen that (�,L) is a Boolean algebra exactly when A ∩ B ∈ L
for any pair A, B ∈ L. (It may be noted that some authors—including the inventor of
�-logics P. G. Ovchinnikov [19]—preferred the expression “symmetric logic” to �-logic,
we feel that �-logic is more suggestive and short.)

Definition 2 Let L = (�,L) be a logic. A mapping s : L → [0, 1] is said to be a state on
L (or, alternatively, s is said to be a state on L if we do not need to refer to �) if

1. s(�) = 1,
2. if A, B ∈ L and A ∩ B = ∅, then s(A ∪ B) = s(A) + s(B).

If (�,L) is a �-logic and s is a state on L, then s is called a �-state if s(A�B) ≤ s(A) +
s(B) for any A, B ∈ L.

In the first part of the paper we ask when a state on (�,L) can be extended over (�, �L)

as a �-state. This question is related to “discrete integration” as pursued e.g. in [12, 14,
17]—if a state on (�,L) allows for an extension over (�,�L) as a �-state, the corre-
sponding integral is �-subadditive. In the ideal case when the state s extends over exp �,
the corresponding integral is additive. The degree of additivity of the integral can be a
significant matter in e.g. coarse-grained measurement or in economic theories (see [5, 13]).

The first instance to be taken up is the situation when the logic (�,L) is already a
�-logic. A most natural question then reads as follows: When a state on (�,L) is auto-
matically a �-state? In [2] the authors asked this question. They showed that if (�,L) is a
non-Boolean logic and L is finite then there is always a state on (�,L) that is not a �-state.
In a certain contrast, they proved that if L = Eeven

� is a logic of all even-coeven subsets of �

and � is uncountable, then each state on (�, Eeven
� ) is automatically a �-state. The authors

of [2] omit the case of � countable. In the following theorem we take care of this case.

Theorem 1 Let � be an (infinite) countable set and let Eeven
� be the quantum logic of all

even-coeven subsets of �. Let s be a state on Eeven
� . Then s is a �-state.

Proof The proof makes use of the insight taken from [2] plus a few new observa-
tions. Let A,B ∈ Eeven

� . We have to show that s(A�B) ≤ s(A) + s(B). First, if
A ∩ B ∈ Eeven

� , then both A\B and B\A belong to Eeven
� and the inequality is obvious:

s(A�B) = s((A\B) ∪ (B\A)) = s(A\B) + s(B\A) ≤ s(A) + s(B). Suppose there-
fore that A ∩ B /∈ Eeven

� . Then neither of the sets A\B and B\A belong to Eeven
� . Let
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us discuss the situation by cases. Suppose first that both A and B are infinite. Thus, A =
�\{a1, a2, . . . , a2k} and B = �\{b1, b2, . . . , b2l}, where k, l are positive integers. Then
A\B = {b1, b2, . . . , b2l}\{a1, a2, . . . , a2k} and B\A = {a1, a2, . . . , a2k}\{b1, b2, . . . , b2l}.
By our assumption, both A\B and B\A are of odd cardinalities. Then there is an x ∈ A

and a y ∈ B such that both (A\B) ∪ {x} and (B\A) ∪ {y} belong to Eeven
� . If x 	= y,

which is easy to satisfy, then s(A�B) = s(((A\B) ∪ {x}) ∪ ((B\A) ∪ {y})) ≤ s((A\B) ∪
{x}) + s((B\A) ∪ {y}) ≤ s(A) + s(B). Secondly, suppose that A is infinite and B is
finite. Then A = �\{a1, a2, . . . , a2k} and B = {b1, b2, . . . , b2l}. It means that A\B =
�\({a1, a2, . . . , a2k} ∪ {b1, b2, . . . , b2l}) and B\A = {a1, a2, . . . , a2k} ∩ {b1, b2, . . . , b2l}.
Suppose that the cardinality of A ∩ B is greater than or equal to 3. Then we can easily find
two distinct points x, y ∈ A ∩ B such that ((A\B) ∪ {x}) ∈ Eeven

� and ((B\A) ∪ {y}) ∈
Eeven

� . Then s(A�B) = s((A\B) ∪ (B\A)) ≤ s(((A\B) ∪ {x}) ∪ ((B\A) ∪ {y})) =
s((A\B) ∪ {x}) + s((B\A) ∪ {y}) ≤ s(A) + s(B). Suppose therefore that A ∩ B is a
singleton. Write A ∩ B = {c}. We are going to show that for any ε, ε > 0, we have
the inequality s(A�B) ≤ s(A) + s(B) + ε. This implies that s(A�B) ≤ s(A) + s(B).
Since A\B is infinite, there is an infinite number of disjoint two-point sets in A\B. Among
these two-point sets there must be one, say {u, v}, such that s({u, v}) ≤ ε (otherwise we
have a contradiction with the additivity of s). Then we have the following inequalities:
s(A�B) = s((A\B)∪(B\A)) = s((A\{c})∪(B\{c})) = s((A\{c, u})∪((B\{c})∪{u})) =
s((A\{c, u})) + s((B\{c}) ∪ {u})) ≤ s(A) + s(B ∪ {u, v}) = s(A) + s(B) + s({u, v}) =
s(A) + s(B) + ε. Finally, suppose that both A and B are finite. So A = {a1, a2, . . . , a2k}
and B = {b1, b2, . . . , b2l}. If the cardinality of A ∩ B is greater than or equal to 3, we
can again find two distinct points x, y ∈ A ∩ B such that ((A\B) ∪ {x}) ∈ Eeven

� and
((B\A) ∪ {y}) ∈ Eeven

� . As before, s(A�B) = s((A\B) ∪ (B\A)) ≤ s(((A\B) ∪ {x}) ∪
((B\A) ∪ {y})) = s((A\B) ∪ {x}) + s((B\A) ∪ {y}) ≤ s(A) + s(B). The only case
that remains is when A ∩ B is a singleton. Then we will show that for any ε, ε > 0, we
have the inequality s(A�B) ≤ s(A) + s(B) + 2ε. Consider again infinitely many two-
point sets in �\(A ∪ B). If an ε, ε > 0 is given, there must be a two-point set {u, v},
{u, v} ⊂ �\(A ∪ B) with s({u, v}) ≤ ε. Consider the sets A ∪ {u, v} and B ∪ {u, v}. Then
(A∪{u, v})∩(B∪{u, v}) has 3 elements and, moreover, (A∪{u, v})�(B∪{u, v}) = A�B.
So we obtain s(A�B) = s((A ∪ {u, v})�(B ∪ {u, v})) ≤ s(A ∪ {u, v}) + s(B ∪ {u, v}) ≤
s(A) + ε + s(B) + ε ≤ s(A) + s(B) + 2ε. The proof is complete.

The result above supports the conjecture that a state on Eeven
� extends over the Boolean

algebra of finite-cofinite sets. This question seems to be open so far.
It should be noted that in [24] the author shows that there is a �-logic (�,L) on which

each state is subadditive (a state on (�,L) is said to be subadditive if for any A, B ∈ L there
is a C ∈ L such that A∪B ⊂ C and s(C) ≤ s(A)+ s(B)). Since each subadditive state is a
�-state, this example somewhat strengthens the uncountable example of [2] and, in addition,
it enjoys several other algebraic properties (for instance, it is pseudocomplemented). The
example of [24] does require the set � uncountable.

Another conceptually important example is the case of the divisibility logics. Suppose
that n = mk with numbers m, n, k ∈ N and k ≥ 2. Let � = {1, 2, . . . , n} and let us denote
by Divk the logic of all subsets of � whose number of elements is divisible by k. Thus,
the cardinality of Divk is

∑m
i=0

(
n
ik

)
. Consider the logic (�,Divk). If m = 2, then problem

trivializes—there is always a state on (�,Divk) that cannot be extended over (�,�Divk)

(see [4, 22]). A rather interesting situation occurs when k ≥ 3 and m ≥ 3. Since the case
of k even reduces to the situation covered by k = 2 (in this case �Divk = Div2), let us
assume that k is odd. In this case �Divk = exp � and we therefore ask whether a state
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on (�, Divk) extends over exp �. This question was investigated in a nice paper [22] with
the answer that there are always states that do not extend over exp � as states but that each
state on (�, Divk) always allows for an extension over exp � as a signed state. In other
words, there is always a set {α1, α2, . . . , αn} of real (not necessarily non-negative) numbers
with

∑n
i=1 α1 = 1 and with the property that the combination of the Dirac states on exp �

with the coefficients αi , (i ≤ n), gives us the original state s when restricted to (�,Divk).
We would like to contribute to this result by formulating—in the line of Farkas lemma (see
[9, 10])—a necessary condition for a state to be extended as a state (we could strengthen
it to obtain a necessary and sufficient condition but the formulation is then perhaps less
satisfactory and less elegant). To do that, we have to express the result of [22] in more detail
and fix some terminology.

Let n = mk, when k ≥ 3, m ≥ 3 and k is odd. Let us assign to the logic (�,Divk)

a matrix, P(Divk), in the following manner. The matrix P(Divk) is an (n − 1) × (n − 1)

matrix such that the rows of P(Divk) are the following vectors (each vector contains k

many of 1’s and (n − 1 − k) many of 0’s):

r1 = (1, 1, . . . , 1, 0, 0, . . . , 0, 0, 0),

r2 = (0, 1, 1, . . . , 1, 1, 0, . . . , 0, 0),

...

rn−k−1 = (0, . . . , 0, 1, 1, . . . , 1, 1, 1, 0),

rn−k = (0, 0, . . . , 0, 1, 1, . . . , 1, 1, 1),

rn−k+1 = (1, 0, 0, . . . , 0, 1, 1, . . . , 1, 1),

rn−k+2 = (1, 1, 0, 0, . . . , 0, 1, 1, . . . , 1),

...

rn−2 = (1, 1, . . . , 1, 0, 0, . . . , 0, 1, 1),

rn−1 = (1, 1, 1, . . . , 1, 0, 0, . . . , 0, 1).

Let us assign to each vector of the row the set Ai (i ≤ n − 1) of Divk which “copies
the coordinates” (for instance, to the vector r1 = (1, 1, . . . , 1, 0, 0, . . . , 0, 0, 0) we assign
A1 = {1, 2, . . . , k}, to the vector r2 = (0, 1, 1, . . . , 1, 1, 0, . . . , 0, 0) we assign A2 =
{2, 3, . . . , k+1}, etc.). Write si = s(Ai). The author of [22] shows that the system P(Divk)·
xT = si has a precisely one solution (det(P (Divk)) = k). In fact, by the Cramer rule we
obtain xi = det(Pi )

k
, i ≤ n − 1, where Pi is the i-th Cramer matrix associated to P(Divk).

The coordinates of the vector determine the values of the extension of s over exp �. This
follows from the fact proved in [22] that the sets Ai are generators of Divk . It further shows
that there is always an extension of s over exp � as a signed state. A necessary condition
for a non-negative extension is given by the following version of Farkas lemma (by an
additional condition, we can even arrive to a characterization).

Theorem 2 Let n = mk, where k ≥ 3, m ≥ 3 and k is odd. Write � = {1, 2, . . . , n} and
consider the logic (�,Divk). Then

1) (�,�Divk) = (�, exp �),
2) if s is a state on (�, Divk) and P(Divk) is the matrix associated to (�,Divk), then

the validity of the following implication is a necessary condition for s to be extended
over exp � as a state: If (P (Divk))

T · pT ≥ 0 for a vector p with all coordinates
integer, then (s1, s2, . . . , sn−1) · pT ≥ 0,
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3) suppose that the implication in the condition 2) above is valid and suppose that
s({1, 2, . . . , k − 1, n}) − ∑k−1

i=1
det(Pi )

k
≥ 0. Then s extends over exp � as a state.

Proof Since P(Divk) is a matrix with the entries 0 and 1 only, we can apply the variant of
Farkas lemma proved in [7]. The condition 3) guarantees that we can find the non-negative
extension for the singleton {n}, too.

Let us note that the system of linear equations considered above may indeed have a
“properly signed” solution (thus, there is a state on (�, Divk) that cannot be extended
over exp � as a state. Take, for instance, n = 9, k = 3 and m = 3. Thus � =
{1, 2, . . . , 9}. Consider the evaluation e : � → R such that e(1) = − 1

7 , e(2) =
e(3) = . . . = e(9) = 1

7 . This evaluation uniquely determines a (non-negative) state on
(�, Divk) by setting s(A) = ∑

a∈A e(a). The state s cannot be extended over exp � as
a state. This can be verified directly or it suffices to take, in our condition 2), the vector
p = (3, −2, 0, 2, 0, −2, 3, −1).

It should be noted, in connection with the theme of our paper, that an analogous question
about extensions of states has been asked and investigated in [13] for so called coarse-
grained logics and fully answered in [20] (for a further extension on this type of research,
see [5] and [6]). Recalling briefly the definition, if we again write n = mk and � =
{1, 2, . . . , n}, then the coarse-grained logic is the one generated by consecutive k-tuples in
� understood mod k. Hence the generating sets are {1, 2, . . . , k}, {2, 3, . . . , k + 1}, . . .,
{n−k+1, n−k+2, . . . , n}, {n−k+2, . . . , n, 1}, . . ., {n, 1, 2, . . . , k−1}. So the number of
generators is n (this number could be lowered but this is not a matter of our interest in this
paper). In a rather interesting manner, the nature of the extension problem differs consider-
ably from the previous situation. If m ≥ 3 and (�,L) is a coarse-grained logic on �, then a
state on (�,L) always allows for an extension over exp � as a state, and therefore the state
always allows for an extension over (�,�L) as a state. (In order to expose the structural
difference of the two situations, let us again consider the example of the previous paragraph
given by the evaluation e : � → R such that e(1) = − 1

7 , e(2) = e(3) = . . . = e(9) = 1
7 .

If understood as a state of (�, Div3), it cannot be extended over exp � as a state. How-
ever, if understood as a state on the coarse-grained logic (�,L), k = 3, it does allow for an
extension as a state (indeed, it suffices to take s({1}) = 1

7 , s({4}) = s({7}) = 3
7 , s({2}) =

s({3}) = s({5}) = s({6}) = s({8}) = s({9}) = 0).
Let us introduce the final area of questions which we want to take up (and contribute to)

in this paper. Let N = {1, 2, . . . , n, . . .} be the set of all natural numbers and let L be the
collection of all subsets A, A ⊂ N such that limn→∞ card(A∩{1,2,...,n})

n
exists. Put � = N

and let us consider (�,L). Let us call (�,L) a d-logic (the letter d indicates “density”
as sometimes referred to in the literature). This classical structure of number theory and
analysis has apparently not been considered from the point of view of quantum logics (in the
paper [27] this example was mentioned without any further discussion). Let us formulate
and prove certain properties of (�,L) for a potential further investigation within quantum
logics.

Theorem 3 Let (�,L) be a d-logic. Thus, � = N and L consists of all subsets of � that
are determined by the limit condition introduced in the paragraph above. Then

1) (�,L) is a (concrete) quantum logic,
2) if we write, for any A ∈ L, s(A) = limn→∞ card(A∩{1,2,...,n})

n
, then s is a state on L,
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3) L is not a lattice (and therefore L is not Boolean). In fact, any couple A, B ∈ L such
that A ∩ B /∈ L and A ∩ B is infinite does not have an infimum,

4) �L = exp �. More explicitly, for each A,A ⊂ exp � there are sets B,C ∈ L such
that s(B) = s(C) = 1

2 and A = B�C,

5) the state s can be extended over exp � as a state,
6) there is a family of 2ℵ0 almost disjoint subsets of �, {Aα, α < 2ℵ0}, such that s(Aα) =

0 for each α, α < 2ℵ0 . A consequence: Let us consider the quantum logic K = L/F
obtained as the factor of (�,L) with respect to the idealF of all finite sets. ThenK has
2ℵ0 elements and K is atomless. Moreover, this factor logic K is pseudocomplemented
(i.e., the elements A, B ∈ K are compatible exactly when A ∧ B exists).

Proof The statements 1) and 2) can be proved by routine verifications. Let us consider the
statement 3). It is easy to check that for any couple referred to in statement 3) the infimum
does not exists (the logic L contains all finite sets). What remains to show is that such
a couple exists at all. Indeed, it suffices to take for A the set of all odd numbers and to
construct the set B as follows. First we put into the set B the elements 2 and 3, then precisely
all even numbers from the segment (2k + 1) up to ( 3

2 2k) and precisely all odd numbers
from the segment ( 3

2 2k + 1) up to (2k+1 + 1) for all natural k, k ≥ 2. It is easy to see that

s(A) = s(B) = 1
2 and that the sequence dn = card((B∩C)∩{1,2,...,n})

n
has the values 1

4 and 1
6

for its cluster points (thus, limn→∞ dn does not exist and hence B ∩ C /∈ L).
Let us take up the proof of statement 4). The formal expression of B and C would be

rather difficult and cumbersome, we will indicate the construction idea which is sufficiently
intuitive. Let us consider A expressed as a union of subsets, A = ⋃∞

i=1 Ii , where each Ii

(i ∈ N ) is a segment of consecutive points. Also, let us express the set �\A as a union of
subsets, �\A = ⋃∞

i=1 Hi (i ∈ N ), where each Hi is a segment of consecutive points. In
our argument, let us refer to an Ii as an “island” in A and to an Hi as a “hole” in A. If either
of Ii of Hi is equal to � up to a finite set, then the proof is easy. Suppose therefore that
both the families Ii and Hi (i ∈ N ) are infinite and each Ii and Hi is a finite set. We can
consider Ii and Hi with its order inherited from N(= �). Call this order the natural order of
Ii and Hi . Let us construct the sets B and C. Firstly, consider those islands Ii which consist
of an even number of elements. In this case the set B to be constructed contains precisely
the odd elements in the Ii considered in the natural order and, analogously, the set C to be
constructed contains precisely the even elements in the Ii . Secondly, consider the holes Hi

which consist of an even number of elements. Then we put the same points into both sets B

and C, and these sets will consist precisely of the odd elements in the Hi . It remains to take
up the odd-elements sets Ii and Hi . Then the situation is slightly more complicated. Let us
first consider the set of all the odd-elements islands Ii . If the latter set is empty, we do not
have anything to do. Otherwise, there is the first i (i ∈ N ), some i1, such that Ii1 is the first
odd-elements island. Further, we construct the set B from all the odd-ordered elements of
Ii1 and the set C from all the even-ordered elements of Ii1 . Then all odd-elements islands
Ii2k+1 will be treated equally. Next, we are to take the points from the islands of the type Ii2k

.
In this case we distribute the odd-ordered points of Ii2k

into the set C and the even-ordered
elements to the set B. Finally, let us consider the set of all the odd-elements holes Hi . If
the latter set is empty, we do not have anything to do. Otherwise there is the first i (i ∈ N ),
some i1, such that Hi1 is the first odd-elements hole. Then we construct both the sets B

and C from the odd-ordered elements of Hi1 . Then all holes Hi2k+1 will be treated equally.
Further, we are to take points from the holes of the type Hi2k

. In this case we construct the
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both sets B and C from the even-ordered points of Hi2k
. By the construction of the sets B

and C, it is not difficult to check that s(B) = s(C) = 1
2 .

The statement 5) can be proved by the classical result on the Banach limits (see e.g. [1],
p. 41).

In order to show the statement 6), let us first see that there is a collection of 2ℵ0 almost
disjoint subsets of �. An easy proof of this known result can be obtain as follows (see
also [11]). Identify � with the set of all rational numbers Q. For each irrational number
r ∈ R, let us choose a sequence (qr

n)n∈N of rational numbers that converges to r . Con-
sider the family of the previously constructed sequences Sr = {(qr

n), n ∈ N}. Let us take
the collection S = {Sr , r is an irrational number}. Then this collection is an almost disjoint
family of subsets of Q with the cardinality 2ℵ0 . Going back to �, we have the required
almost disjoint collection. Continuing our argument let us first observe that each infinite
subset of � contains a subset M with s(M) = 0. For each Sr choose such a set Mr . Write
M = {Mr, r is an irrational number}. Since the sets of S are pairwisely eventually almost
disjoint, so are the sets of M. This proves the first part of statement 6). To complete the
proof, we only need to observe that F consists of central elements of (�,L) and hence the
factor L/F gives us a quantum logic [26]. One only takes into account that the pseudocom-
plementedness (a ≤ b′ ⇐⇒ a ∧ b = 0) can be equivalently expressed by the equivalence
(a ∧ b exists ⇐⇒ a is compatible with b, see e.g. [18]). The rest is easy.

The results above indicate certain potential for the interpretation of the d-logic in the
realm of quantum logics. In concluding our paper, let us for instance note a link of the d-
logic with the projection logic L(H). Let us take an orthonormal basis, E = {vi, i ∈ N}, in
H . Then E understood as elements of L(H) generates a Boolean subalgebra BE of L(H).
Obviously, BE is Boolean isomorphic to exp N . Consider a state t on L(H). Let us call
it an E-d-state if the restriction of t on BE is a Banach extension of the state s on the d-
logic understood as being underlied by the set E . Observe that the E-d-states exist. Indeed, a
Banach extension of s considered as a state on exp E can be extended over the entire L(H)

[23]. It may be interesting to see what the size of the closure of the convex hull, conv(T ),
comes to (T is the set of all E-d-states for all choices of orthonormal bases E). How smaller
this conv(T ) is than the entire state space of L(H)?
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