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Abstract Inspired by Lifshitz theory for quantum critical phenomena in condensed mat-
ter, Horava proposed a theory for quantum gravity with an anisotropic scaling in ultraviolet.
In Horava-Lifshitz gravity (HLG), we have studied the impacts of six types of equations
of state on the evolution of various cosmological parameters such as Hubble parame-
ters and scale factor. From the comparison of the general relativity gravity with the HLG
with detailed and without with non-detailed balance conditions, remarkable differences are
found. Also, a noticeable dependence of singular and non-singular Big Bang on the equa-
tions of state is observed. We conclude that HLG explains various epochs in the early
universe and might be able to reproduce the entire cosmic history with and without singular
Big Bang.

Keywords Quantum gravity · Modified theory of gravity · Early universe

1 Introduction

The perturbative nonrenormalizability of the theory of general relativity (GR) is one of
the greatest obstacles against proposing quantum gravity theory that should be correct at
all scales. The latter belongs to the yet-unsolved problems in the fundamental physics [1].
Weakness of the gravitational force is another difficulty preventing the quantum effects of
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gravity to be detectable at the currently-probed scales. The recent detection of the grav-
itational waves is strictly limited to pulsars in binary star systems [2]. Accordingly, the
resulting gravitational waves become very great.

At a Gaussian fixed point, GR does not satisfy the perturbative renormalizability because
the gravitational coupling (G) is a dimensioned quantity (G � mass−2) and accordingly the
ultraviolet (UV) divergences are uncontrollable. By introducing higher terms of the scalar
curvature, the action shall be cured. On the other hand, this introduces an additional prob-
lem, for instance, to the uniqueness [3]. From a minimal approach that will be elaborated
below, which assures perturbatively renormalizable UV completion of GR as quantum field
theory (QFT) for 4-dimensional metric field, one looses some properties of GR and cre-
ates additional degrees-of-freedom. Such an approach benefits from the success of QFT in
describing all forces (except gravity so-far) and the standard model of the elementary parti-
cles. The scalar field theory, that was proposed by Lifshitz in order to explain the quantum
critical phenomena in condensed matter [4], inspired Horava to propose a theory for the
quantum gravity with an anisotropic scaling in UV. This new approach is thus known as
Horava-Lifshitz gravity (HLG) [5–14], where the dynamical critical exponent (z) makes the
theory non-relativistic.

In analogy to critical systems, the UV fixed point has been treated [15]. The HLG
approach assures causal dynamical triangulations [16], renormalization group approaches
based on asymptotic safety [17, 18] and symmetries of GR. This approach was discussed
in an extensive amount of literature [19–21], where problems such as, internal consistency
and compatibility with observations are treated, as well. The new dimensionless coupling
λ is assumed to approach unity in the infrared (IR) limit with the argumentation that at the
HLG-charactering parameter λ �= 1, HLG theory can’t be reduced to GR. For the sake of
completeness, we mention that this is not always the case for all HLG models [22]. Recent
astrophysical observations obviously indicate that the universe expands with an accelerating
rate, probably due to dark energy [23, 24]. Besides inflation, a series of symmetry-breaking
phase transitions, where topological defects may have been formed [25], were conjecture to
take place. On the other hand, the HLG-type approach [5] proposes that the modification in
gravity is responsible for the accelerated expansion of the universe.

Furthermore, various modified theories for gravity can be implemented [26, 27]. They
successfully unify various inflation models with the late-time acceleration and cosmolog-
ical observations. But when endorsing any proposal about (non)singular Big Bang due to
controversial quantum gravity approaches such as generalized uncertainty principle (GUP)
and modified dispersion relation (MDR) [28] should be seen as unwarranted claims. the Big
Bang singularity is a fundamental problem, which should be tackled by a good quantum
gravity theory, such as HLG or even better.

The present paper is organized as follows. The cosmological evolution governed by a
simple version of HLG shall be introduced. The Horava-Lifshitz gravity is introduced in
Section 2. The field equations in Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmol-
ogy are elaborated in Section 3. Sections 3.1 and 3.2 are devoted to Horava-Lifshitz gravity
with non-detailed and detailed balance conditions, respectively. For the different equations-
of-state (EoS), different solutions for the resulting differential equations shall be outlined.
An extensive comparison between scale factor in cosmological radiation, matter, �CDM,
de Sitter, Chaplygin gas [29] and quantum chromodynamical (QCD) EoS shall be intro-
duced. The results and discussion are given in Section 4. To Section 5 the final conclusions
are assigned.
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2 Reminder of Horava-Lifshitz Gravity

The basic assumptions of Horava-Lifshitz gravity are antisotropic UV scalings between
Minkowskian space and time

t −→ lz t, xi −→ l xi , (1)

where z is the dynamical critical exponent given in UV, l is constant by which the scaling
is performed and to the critical exponent the value 2 is assigned. Because the anisotropic
scaling implies a preferred time coordinate, the usual 4-dimensional Lorentzian metric can’t
be the only fundamental structure on a pseudo-Riemannian (Lorentzian) manifold.

The original theory postulated z to take the value assuring dimensionless gravitational
coupling, which in turn guarantees power-counting renormalizability. At z = 1, the sym-
metries of GR are recovered. In order to single out a spacial (temporal) coordinate in a
differentiable manifold, a codimension foliation on the manifold as a basic structure of the
theory was proposed [5]. The foliation structure fulfils local Galilean invariance but implies
impossible full-diffeomorphism invariance in GR. The latter means the existence of an undo
one-to-one mapping f and its inverse besides their differentiabilities. Thus, GR may be
considered as an emerging in an infrared fixed point [25].

The HLG is a projectable approach minimizing the number of independent couplings in
the potential and adopting an extra principle to contract the potential, i.e. detailed balance
conditions. In constructing the theory, a new set of symmetries should be introduced. Impos-
ing invariance under foliation-preserving diffeomorphisms, δ xi = ξ(xi, t) and δ t = f (t)

would define field content, which paradoxically not always the one in GR and would make
the theory violates the Lorentz invariance principle. On the other hand, for Arnowitt, Deser
and Misner [ADM] formalism [30] (GR with global time foliation, 3-dimensional metric of
the spatial hypersurfaces gives all the dynamics), the metric is given as

ds2 = − N2 dt2 + gij (dxi + Ni dt)(dxj + Nj dt), (2)

where i, j = 1, 2, 3, and N (Ni) being lapse function (shift 3-vector), which are the gauge
fields of the diffeomorphism group. The lapse variable is taken to be just time-dependent so
that the projectability condition holds and by using the foliation-preserving difeomorphisms
N can be fixed to unity.

The variables in Eq. 2 are dynamical so that under the above scaling

N −→ N, gij −→ gij , Ni −→ l2 Ni, Ni −→ l−2 Ni. (3)

In terms of the metric Eq. 2, the Ricci scalar reads

R = Kij Kij − K2 + R(3) + 2∇μ

(
nμ ∇ν nν − nν ∇ν nμ

)
, (4)

where K = gi j Ki j , Ki j = (∂t g
(3)
i j − ∇(3)

i Nj − ∇(3)
j Ni)/(2N) is the extrinsic curvature

of spatial slices, R(3) is the spacial scalar curvature, and nν is a unit vector perpendicular to
a hypersurface of constant time. ∇ is the covariant derivative on the spatial slice.

The HLG action is decomposed of kinetic, potential and matter parts.

• The kinetic action can be built with at most two time-derivatives of the metric. This is
a universal and most general invariant term. The new dimensionless coupling λ, whose
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role in the theory is still a subject of debate, differentiates the HLG kinetic term from
the GR one

Sk =
∫

dt dx3 2
√

g N

k2

(
Kij Kij − λK2

)
. (5)

When combining this kinetic term with the line element and the anisotropic scaling of
space and time, the scaling dimension of the gravitational coupling can be determined.

• The potential action term [31, 32] (GR contains only two derivatives) is affected by the
choice between projectable and non-projectable theories [22]

Sv = − 2

κ2

∫
dtd3x

√
gN

[
σ + γ R + γ1 R2 + γ2 Rij Rij + ξ εijk Ril ∇j Rl

k

+ σ1 R3 + σ2 R Rij Rij + σ3 R
j
i Rk

j Ri
k + σ4 ∇i R ∇ i R+ σ5 ∇i Rjk ∇i Rjk

]
.(6)

The coefficients are given in just three parameters, μ, �ω and ζ [33]

σ =− 3κ4μ2�2
ω

16(3λ − 1)
, γ=−3 �ω σ, γ1 = κ4μ2(1− 4λ)

64(3λ − 1)
, γ2 = κ4μ2

16
, ξ =− 64

μ ζ 2
γ2,

σ1 = κ4

8ζ 4
, σ2 = −5 σ1, σ3 = 6 σ1, σ4 = −3

4
σ1, σ5 = 2 σ1, (7)

where κ2 = 8πG/c4 and �ω are Einstein coupling and cosmological constant, respec-
tively. The lower-order variables in expression (7); the cosmological constant and the
Ricci scalar, match the ones in GR.

• The matter part of the action [34] is given as

Sm =
∫

dt dx3 √
g N Lm, (8)

where Lm is the Lagrangian density of matter fields Lm(N,Ni, gij , φ).

2.1 Scale-Invariant Quantum Fluctuations

In Ref. [35], a simple scenario for the scale-invariant quantum fluctuations was introduced.
This was based on HLG without an additional scalar degree-of-freedom. Accordingly, it is
believed that the inflation is self-consistently existing in the early universe. For this simple
scenario, the detailed balance conditions were not necessary but the inflation scenario itself
may be still or no longer needed, for instance, serious horizon problems remain unsolved,
such as monopole and domain walls. They still require inflation with slow-roll conditions.

Later on many authors seem to disagree with Ref. [35]. The inflation was studied in HLG
without the projectability conditions [36]. But, opposite to the proposal of Ref [35], the
linear scalar perturbations equations of the FLRW universe are derived for a single scalar
field. A master equation of the perturbations has been specified for a particular gauge. The
power spectrum and the spectrum index of the comoving curvature perturbations have been
determined. It was noticed that the perturbations remain scale-invariance, and HLG without
the projectability conditions is consistent with all current cosmological observations. This
is another solid support for adding scalar field(s).

In framework of nonrelativistic HLG with the projectability conditions and an arbitrary
coupling constant λ, the inflation has been studied [37]. Accordingly, the FLRW universe
without specifying the gauge is necessarily flat. But by adding a single scalar field, it was
noticed that both metric and scalar field become strongly coupled and almost identically
oscillating in sub-horizon regions. In super-horizon regions, the comoving curvature pertur-
bation remains constant although the FLRW perturbations become adiabatic. Furthermore,
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the perturbations of the slow-roll parameters, for instance, both scalar and tensor are found
scale-invariant. Concrete tuning the coupling coefficients makes the spectrum index of the
tensor perturbation identical as that in GR. But the ratio of scalar to tensor spectra can be
similar to that from GR and seems to depend on the spatial higher-order derivative terms.

Furthermore, the emergence of finite-time future singularities has been studied in Ref.
[38]. It was found that such singularities can be cured by adding a higher-order spatial
derivative term. Recently, the general formulas for the inflationary power spectra of scalar
and tensor are driven in the presence of a scalar field [39].

We conclude that in simple scenarios for scale-invariant cosmological perturbations with
HLG, the inflation is not necessarily guaranteed.

3 Field Equations in FLRW Cosmology

For a cosmological context, we recall FLRW metric, which is an exact solution of the
Einstein’s field equations of GR,

N = 1, Ni = 0, gij = a2(t)γij , (9)

where a(t) is the scale factor and γij dxidxj = dr2/(1 − kr2) + r2d�2
2. Accordingly, the

homogeneous and isotropic metric is given as

ds2 = −dt2 + a(t)2

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

]

, (10)

with the curvature constant k = −1, 0 and 1 represents open, flat or closed universe,
respectively.

3.1 Horava-Lifshitz Gravity with Non-Detailed Balance Conditions

In HLG with non-detailed balance conditions and by varying N and gij , the Friedman
equations can be extracted [25],

3(3λ−1)H 2 = κ2

2
ρ + 6

[
σ

6
+ K

γ

a2
+ 2K2 3γ1 + γ2

a4
+ 4K3 9σ1 + 3σ2 + σ3

a6

]
, (11)

(3λ−1)

(
Ḣ + 3

2
H 2

)
= −κ4

4
p − 3

[
−σ

6
− K

γ

3a2
+ 2K3 9 σ1 + 3 σ2 + σ3

a6

]
. (12)

By substituting with the variables given in Eqs. 7, 11 and 12, the Freidmann equations
read

H 2 = κ2

6(3λ − 1)
ρ − κ4μ2�2

w

16(3λ − 1)2
+ κ4Kμ2�ω

8(3λ − 1)2a2
− κ4K2μ2

16(3λ − 1)2a4
, (13)

Ḣ + 3

2
H 2 = − κ2

4(3λ − 1)
p − 3 κ4 μ2 �2

w

32(3 λ − 1)2
+ K κ4 μ2 �ω

16(3 λ − 1)2 a2
. (14)

where H = ȧ/a, Ḣ = ä/a − H 2 and ä/a = Ḣ + H 2.
Then, from Eqs. 13 and 14, we get

ä =
{

− κ2

12(3λ − 1)
[ρ + 3p] − κ4 μ2 �2

ω

16(3λ − 1)2

}

a + K2 κ4 μ2

32(3λ − 1)2
a−3. (15)
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Based on equations of state (EoS) describing the cosmological background geometry,
this differential equation can be solved. From the continuity equation

ρ̇ + 3H(ρ + p) = 0, (16)

and with the EoS p = ω ρ, we get ρ = ρ0 a−3(1+ω) and p = ω ρ0 a−3(1+ω), where ω - in
natural units - is a dimensionless quantity. It is related to the speed of sound squared within
the system of interest. Then, Eq. 15 can be expressed as

ä = −κ2 ρ0(1 + 3ω)

12(3λ − 1)
a−2−3ω − κ4μ2�2

ω

16(3λ − 1)2
a + K2κ4μ2

32(3λ − 1)2
a−3. (17)

3.1.1 Perturbation Stability

Equation 14 can be rewritten as

Ḣ = −2

3
H 2 − κ2

4(3λ − 1)
p − L + M

a2
, (18)

where L = 3κ4μ2�2
ω/[32(3λ − 1)2] and M = Kκ4μ2�ω/[16(3λ − 1)]. Assuming

perturbation in Eq. 18 leads to

Ḣ + δ̇H = −2

3
H 2 − 3Hδ H − κ2

4(3λ − 1)
p − L + M

a2
− 2

M

a2

δa

a
. (19)

For an EoS in which δp � δρ and for the first-order perturbation, we get

δ̇H = −3HδH − 2
M

a2

δa

a
. (20)

However from the continuity equation, Eq. 16,

δ ≡ δρ

ρ
= −3(1 + ω)

δa

a
. (21)

Then

δ̇ H = M δ H + N δ, (22)

δ̇ = P δ H + Q δ, (23)

with M = −3H , N = 2M/[3(1 + ω)a2], P = −3(1 + ω), and Q = −3Hω. Thus,

δ̈ H −
(

M + Ṅ
N + Q

)

δ̇ H −
(

Ṁ − MṄ
N + PN − QM

)

δ H = 0, (24)

For Ṅ /N = −2ȧa = −2H , the term with the first-order perturbation reads (5 + 3ω)H

is apparently positive. This gives a stable solution irrespective to the third term in left-hand
side.

3.1.2 Various Equations-of-State

In describing the cosmic geometry, we wanted to analyse systematically the effects of
implementing various equations-of-state.
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• When the cosmological geometry is dominantly filled with matter (dust approxima-
tion), ω = 0, Eq. 13 can be rewritten as

ȧ2 = κ2ρ◦
6(3λ − 1)

a−1 − κ4μ2�2
w

16(3λ − 1)2
a2 − K2κ4μ2

16(3λ − 1)2
a−2 + κ4Kμ2�2

w

8(3λ − 1)2
. (25)

When assuming that the cosmological constant �ω and Einstein coupling κ are
negligibly small, Eq. 25 gets the solution

t = 2

3
(A1 a − 2 B1)A

−2
1

√
A1 a + B1. (26)

where A1 = κ2ρ◦/[6(3λ − 1)] and B1 = −K2κ4μ2/[16(3λ − 1)2]. Deducing scale
factor does not restrict the applicability of the present analysis. Other cosmological
quantities such as Hubble and deceleration parameters are good examples.

• For cosmological geometry filled with radiation (perfect fluid approximation), ω =
1/3, Eq. 13 becomes

ȧ2 =
(

κ2 ρ0

6(3λ − 1)
− K2κ4μ2

16(3λ − 1)2

)

a−2 − κ4μ2�2
w

16(3λ − 1)2
a2 + κ4Kμ2�2

w

8(3λ − 1)2
, (27)

which has the following solution

t = 1√−B2
arcsin

⎛

⎜
⎝

−2B2a
2 − C1√

−4B2A2 + C2
1

⎞

⎟
⎠ , (28)

where A2 = κ2 ρ0/[6(3λ−1)]−K2κ4μ2/[32(3λ−1)2] and B2 = −κ4μ2�2
w/[16(3λ−

1)2] and C1 = κ4Kμ2�2
w

8(3λ − 1)2
.

• For cosmological geometry filled with cold dark-matter, ω = −1/3, Eq. 13 is written
as,

ȧ2 =
(

κ2ρ◦
6(3λ − 1)

+ κ4Kμ2�2
w

8(3λ − 1)2

)

− K2κ4μ2

16(3λ − 1)2
a−2 − κ4μ2�2

w

16(3λ − 1)2
a2, (29)

The solution looks similar to the one in Eq. 27

t = 1√−B2
arcsin

(
−2B2a

2 + B2 − C1√−4B1B2 + (−B2 + C1)2

)

. (30)

• For cosmological geometry filled with vacuum (dark) energy (cosmological constant),
ω = −1, then Eq. 13 can be written as [40],

ȧ2 =
(

κ2ρ◦
6(3λ − 1)

− κ4μ2�2
w

16(3λ − 1)2

)

a2 − K2κ4μ2

16(3λ − 1)2
a−2 + κ4Kμ2�2

w

8(3λ − 1)2
(31)

Then, the solution reads

t = 1√
A2 + B1

arcsin

⎛

⎜
⎝

2(A1 + B2)a
2 − C1√

4(A1 + B2)(B1) + C2
1

⎞

⎟
⎠ , (32)

• For cosmological geometry filled with Chaplygin gas [29], which is a hypothetical
(non-baryonic) substance satisfying p = −A/ρα , where A is positive and α ranges
between 0 and 1, i.e. negative pressure, and does not cluster, gravitationally. It was
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named after Sergey Chaplygin (1869-1942), and expresses energy of quantum vac-
uum, and gravity modification. It might signal extra-dimensions and is conjectured as
a candidate for dark energy. The energy density and pressure, respectively, read

ρ =
[
A + B

a3(1+α)

]1/(1+α)

, (33)

p = −A

[
A + B

a3(1+α)

]−α/(1+α)

, (34)

where B is an integration constant.
In FLRW cosmology, the Chaplygin equations of state, Eqs. 33 and 34, are

substituted in Eqs. 13 and 15 to give

ä = − κ2 A
1

1+α

12(3λ − 1)

{[(
1 + B/A

1 + α
a−3(1+α) + · · ·

)
− 3

(
1 + αB/A

1 + α
a−3(1+α) + · · ·

)]

− κ4 μ2 �2
ω

16(3λ − 1)2

}

a + K2 κ4 μ2

32(3λ − 1)2
a−3. (35)

When ignoring the Taylor terms with orders ≥ 2, then

ȧ2 =
(

κ2 A
1

1+α

6(3λ − 1)
− κ4 μ2 �2

ω

16(3λ−1)2

)

a2+ κ2BA
−α
1+α

6(3λ−1)(1 + α)
a−(1+3α)− K2 κ4 μ2

16(3λ−1)2
a−2

+ κ4 Kμ2�2
ω

8(3λ − 1)2
. (36)

The possible solution for this differential equations depends on the choices of A and
α. Here, we elaborate different cases:

– First for a modified Chaplygin gas [29] with A �= 1 and by assuming that
α = 1/3, then Eq. 36 is reduced to

ä =
{

−κ2 A3/4

12(3λ−1)

[
−2 + 3

2

B

A
a−4

]
− κ4 μ2 �2

ω

16(3 λ−1)2

}

a+ K2 κ4 μ2

32(3λ−1)2
a−3, (37)

ȧ2 =
[

κ2 A3/4

6(3λ − 1)
− κ4 μ2 �2

ω

16(3 λ − 1)2

]

a2 +
[

κ2 BA−1/4

8(3λ − 1)
− K2 κ4 μ2

16(3λ − 1)2

]

a−2

+ κ4 Kμ2�2
ω

8(3λ − 1)2
, (38)

which has a solution

t = 1

2
√

A3

[

ln

(

a2 + C1

2A3
+

√

a4 + B3

A3
+ C1

A3
a2

)]

, (39)

where

A3 =
[

κ2 A3/4

6(3λ − 1)
− κ4 μ2 �2

ω

16(3 λ − 1)2

]

,

B3 =
[

κ2 BA−1/4

8(3λ − 1)
− K2 κ4 μ2

16(3λ − 1)2

]

.
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– For matter, the pressure vanishes or A = 0. Eq. 36 is reduced to

ȧ2 = − κ4 μ2 �2
ω

16(3 λ − 1)2
a2 − K2 κ4 μ2

16(3λ − 1)2
a−2 + κ4 Kμ2 �2

ω

8(3λ − 1)2
, (40)

which has a solution

t = 1√−B1
arcsin

⎛

⎜
⎝

−2B1a
2 − C1√

−4B1B2 + C2
1

⎞

⎟
⎠ . (41)

• For cosmological geometry filled with QCD matter, the EoS can be deduced from the
recent lattice QCD simulations [41], where w ranges between ∼ 1/6 and ∼ 1/4. For
sake for completeness, we highlight the importance of precise estimation of EoS from
heavy-ion collisions [42]. By substituting the deduced values of ω in Eq. 17, the result-
ing differential equation turns to be unsolvable. For simplicity, the first term in Eq. 17
can be approximated,

ä ≈
[

−3

4

κ2 ρ0

12(3λ − 1)
+ K2κ4μ2

32(3λ − 1)2

]

a−3 − κ4μ2�2
w

16(3λ − 1)2
a, (42)

ȧ2 ≈
[

κ2 ρ0

16(3λ − 1)
− K2κ4μ2

32(3λ − 1)2

]

a−2 − κ4μ2�2
w

16(3λ − 1)2
a2. (43)

Similar to Eq. 31, the solution reads

t = A log
[
2
(√

B2 A + B2 a2
)]

2
√

B2 A
, (44)

where A = [
B2 a4 + (A1 + B1)

]1/2
.

3.2 Horava-Lifshitz Gravity with Detailed Balance Conditions

The detailed balance condition is a technical trick proposed to reduce the couplings. Fur-
thermore, it was argued that HLG with detailed balance conditions has to be broken in order
to enable the theory to be compatible with the observations [43]. But, according to Horava’s
remarks, its restrictive power remains useful [44]. There is a possible connection between
detailed balance conditions and the entropic origin of gravity [45]. The detailed balance con-
dition is often believed to be abandoned with the aim to obtain an ultraviolet stable scalar
field in the theory. But because of its several attractive features, we wanted it to be imple-
mented in constructing the potential instead of effective field theory. Many authors wanted
to improve it by adding extra term to the action of the theory that softly violates the detailed
balance conditions [46] as an attempt to assure a more realistic theory in its infrared-limit.

It was shown [47] that the properties of the extra scalar degrees-of-freedom are the
reasons why detailed balance conditions don’t lead to GR in the infrared-limit.

From perturbation study of detailed balance conditions [43], two different strong cou-
pling problems have been identified. The first one explains why the GR solutions are
typically not recovered. The second is not necessarily associated with detailed balance
conditions but refers to breaking of diffeomorphism invariance, which is required for
anisotropic scaling in UV.

The authors of Ref. [43] claimed to uncover an additional mode in the detailed balance
conditions satisfying an equation of motion that is of first-order in time derivative. But, the
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proposed mode leads to very fast exponential instabilities at short distances and becomes
strongly coupled at an extremely low cutoff scale.

For HL gravity with detailed balance conditions, the field equations read [47]

H 2 = 2

3λ − 1

(
�ω

2
+ 8πGN

3
ρ − κ a−2 + κ2

2�ω

a−4

)

, (45)

ä

a
= 2

3λ − 1

(
�ω

2
− 4πGN

3
(ρ + 3 p) − K2

2�ω

a−4

)

. (46)

The continuity equations ρ = ρ0a
−3(1+ω) can be substituted in and the Friedmann

equation can be derived from the action

S =
∫

dt d3 X (�◦ + �1) , (47)

where

�◦ = √
gN

[
2

κ2

(
KijK

ij − λκ2
)

+ κ2μ2
(
�wR − 3�2

ω

)

8 (1 − 3λ)

]

, (48)

�1 = √
gN

[
κ2μ2(1 − 4λ)

32(1 − 3λ)
R2 − κ2

2w4

(

Cij − μw2

2
Rij

)(

Cij − μw2

2
Rij

)]

, (49)

and λ, κ , μ, ω and �ω are constants, and R (Rij ) being Ricci scalar (tensor). Cij is the

Cotton tensor, Cij = εikl∇k(R
j
l −Rδi

l /4). When comparing HLG �◦ to that of GR in ADM
formalism, then the speed of light and gravitational constant, respectively, reads

c = κ2μ

4

√
�ω

1 − 3λ
, (50)

G = κ2

32πc
. (51)

When assuming loss of generality, c = 1. In solving Eqs. 45 and 46 four cases are likely
to occur:

• if ρ◦ = 0, and κ �= 0

a2(t) = κ

�w

+ α exp

{

2

√
�ω

3 λ − 1
t

}

, (52)

where α is constant of integration (arbitrary constant).
• if ρ◦ �= 0, and κ = 0

a4(t) = −8πG

3
ρ◦ + α exp

{

4

√
�ω

3 λ − 1
t

}

. (53)

• if ρ◦ = κ = 0

a(t) = α exp

{√
�ω

3 λ − 1
t

}

. (54)

• if ρ◦ �= 0, and κ �= 0

a2(t) = κ

�ω

+ α exp

{

2 S

√
�ω

3λ − 1
t

}

, (55)

with S = 1 + 8 π Gρ◦ �2
ω/(3 κ2).
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The solutions of the differential Eqs. 45 and 46 depend on the EoS charactering the
cosmological background geometry. This shall be elaborated in the section that follows.

3.2.1 Various Equations-of-State

At finite cosmological constant, the Friedmann equations read [47]

ä

a
= 2

3 λ − 1

[
�ω

2
− 4 π GN

3
(ρ + 3p) − K2

2 �ω a4

]

. (56)

With continuity equation, this equation becomes

ȧ2 = �ω

3 λ − 1
a2 + 16 π GN

3(3 λ − 1)
ρ0 a−(1+3ω) − 2K

(3 λ − 1)
+ κ2

�ω(3λ − 1)
a−2. (57)

Due to various equations-of-state, this differential equation can be solved.

• At ω = 0, Eq. 57 can be reduced to

ȧ2 = �ω

3 λ − 1
a2 + 16 π GN

3(3 λ − 1)
ρ0 a−1 − 2K

(3 λ − 1)
+ κ2

�ω(3λ − 1)
a−2. (58)

Then, the solution reads

t = 2

3
D−2

1 (D1 a − 2F1) (D1 a + F1)
1/2 , (59)

where D1 = 16 π GN ρ0/[3(3 λ − 1)] and F1 = K2/[�ω(3 λ − 1)].
• At ω = 1/3, we obtain

ȧ2 = �ω

3 λ − 1
a2 +

(
16 π GN

3(3 λ − 1)
ρ0 + K2

�ω(3 λ − 1)

)

a−2 − 2K

3λ − 1
, (60)

which can be solved as follows .

t = 1

2
√

D2

[

ln

(

a2 + G2

2D2
+

√

a4 + F2

D2
+ G2

D2
a2

)]

, (61)

where D2 = �ω/(3 λ − 1) and F2 = 16 π GN ρ0/[3(3 λ − 1)] + K2/[�ω(3 λ − 1)] an
d G2 = − 2K

3λ−1 .
• At ω = −1/3, it results is

ȧ2 = �ω

3 λ − 1
a2 + κ2

�ω(3 λ − 1)
a−2 +

[
(16GN)

3(3λ − 1)
ρ◦ − 2

(3λ − 1)

]
, (62)

with the solution

t = 1

2
√

D2

[

ln

(

a2 + G2 + F2 − F3

2D2
+

√

a4 + F3

D2
+ G2 + F2 − F3

D2
a2

)]

, (63)

where F3 = K2/[�ω(3 λ − 1)].
• At ω = −1, we get

ȧ2 =
(

�ω

3 λ − 1
+ 16 π GN

3(3 λ − 1)
ρ0

)
a2 + κ2

�ω(3 λ − 1)
a−2 − 2K

3λ − 1
, (64)
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with the solution

t = 1

2
√

D2+F2−F3

[

ln

(

a2+ G2

2(D2+F2−F3)
+

√

a4+ F3

D2+F2 − F3
+ G2

D2 + F2 − F3
a2

)]

,(65)

• For the generalized Chaplygin gas [29], it becomes

ȧ2 =
(

�ω

3λ − 1
+ 16 π GNA

1
1+α

3(3 λ − 1)
a2 + K2

�ω(3 λ − 1)
a−2 − 2K

3λ − 1

)

, (66)

t = 1

2
√

D2 + D5

[

ln

(

a2 + G2

2(D2 + D5)
+

√

a4 + F3

D2 + D5
+ G2

D2 + D5
a2

)]

, (67)

where D5 = 16 π GN A1/(1+α)/[3(3 λ − 1)].
In a matter-dominated universe, i.e. p = 0 or A = 0, then ρ = B1/(1+α) a−3 and

ȧ2 = �ω

3 λ − 1
a2 + 16 π GNB

1
1+α

3(3 λ − 1)
a−1 + K2

�ω(3 λ − 1)
a−2 − 2K

3λ − 1
. (68)

Similar to Eq. 58, �ω is assumed to be negligibly small

t = 1

3
D−2

6 (2D6 a − F1)
1/2 (D6 a + F1) , (69)

where D6 = 8 π GN B1/(1+α)/[3(3 λ − 1)].
• For cosmological geometry filled with QCD matter, the EoS can be deduced from the

recent lattice QCD simulations [41]. As given in Fig. 3, w ranges between ∼ 1/6 and
∼ 1/4. For simplicity, the second term in Eq. 57 can be approximated,

ä ≈ −
[

2 π GN

(3 λ − 1)
ρ0 + K2

�ω(3 λ − 1)

]

a−3 + �ω

3 λ − 1
a. (70)

Similar to Eq. 71, the solution reads

t = B7 log
[
2

(√
D2 B7 + D2 a2

)]

2
√

D2 B7
, (71)

where B7 = [
D2 a4 − F7

]1/2
and D2 = �ω/(3 λ − 1) and F7 = 2 π GN ρ0/(3 λ −

1) + K2/[�ω(3 λ − 1)].

4 Results and Discussion

Based on studying a λ-dependent version of the Friedmann equations, it was concluded
that HLG becomes an attractive gravity theory if the generalized Wheeler-DeWitt metric
Gijkl = (gi k gj l+gi l gj k)/2 has an indefinite signature. But, it becomes a repulsive gravity
theory when the metric gets a positive sign. These results are also found in our calculations.
The various equations-of-state lead to different behavior of the scalar factor as an example
about the cosmological quantities.

In Fig. 1, the cosmic time (t) is given in dependence on the scale factor (a). In these
calculations all parameters are kept fixed, k = G = c = ρ0 = 1 and μ = 0.5, λ = 0.9
and �ω = 0.1. Correspondingly, neither t nor a is given in physical units. We compare
between HLG with non-detailed and detailed balance conditions and GR gravity for various
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Fig. 1 The cosmic time is given in dependence on the scale factor. We compare between non-detailed and
detailed balance HLG and GR (Einstein) gravity using various equations of state, ω = 1/3 (a), ω = 0 (b),
ω = −1/3 (c) and ω = −1 (d). All parameters are kept fixed, k = G = c = ρ0 = 1 and μ = 0.5, λ = 0.9
and �ω = 0.1. Correspondingly, neither t nor a has physical units

equations-of-state. It is worthwhile to notice that FLRW which is characterized by GR grav-
ity is non-singular for four types of equations of state; ω = 1/3 (a), ω = 0 (b), ω = −1/3
(c) and ω = −1 (d).

The singularity in the FLRW cosmology, which can be characterized by HLG with
non-detailed and detailed balance conditions, varies due to the equations of state. Such con-
clusions are only valid for the given parameters. Furthermore, the dependence of t on a

apparently varies with the equation of state, as well. Again, such conclusions are explicitly
valid for the given parameters. In other words, absence or presence of singular solutions
and even the dependence of t on a strongly depend on the equation of state and the gravity
itself. The non-singular solutions is obvious, as �ω is finite.

The top-left panel shows the results at ω = 1/3 (a), i.e. radiation-dominated (perfect fluid
approximation) FLRW universe. The HLG with non-detailed balance conditions, Eq. 28
leads to a very rapid increase in a, almost a parabolic shape. At a certain value of t , the scale
factor became t-independent, i.e. a diverges. The results from HLG with detailed balance
conditions, Eq. 71, and GR, Eq. 74, are also compared with.

The bottom-left panel shows the results at ω = 0 (b), i.e. matter-dominated (dust approx-
imation) FLRW universe. Again, the HLG with non-detailed, Eq. 26, and detailed balance
conditions, Eq. 69, lead to a rapid increase in a; an almost a linear dependence. Also here,
the GR gravity, Eq. 73, has a non-singular solution. The bottom-right panel presents the
results at ω = −1 (d), i.e. vacuum or dark energy or finite cosmological constant. We find
that the validity of HLG with non-detailed balance conditions is very limited. Also, HLG
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Fig. 2 As in Fig. 1 but for Chaplygin gas (a) and QCD (b) equations of state

with detailed balance conditions shows a very rapid change in a against t . The GR gravity
results in an inflationary phase followed by a slower expansion.

Despite the non-singular solutions, we notice that the expansion depicted in the right-
hand panel is faster than the one illustrated in the left-hand panel. Again, the universe seems
to start up its evolution from a very large scale factor.

Figure 2 presents the results from Chaplygin (a) and QCD (b) equations of states. The
results of the Chaplygin gas strongly depends on the parameter A. The HLG with detailed
balance conditions results in an almost linear dependence of a and t . The non-singular
solutions appear in both HLG approaches and equations of state. We conclude that the
difference between the Chaplygin and QCD results is due to non-baryonic and baryonic
equations-of-state, respectively.

While the present article was under review, we have completely conducted and published
a research paper in which the proposed solutions are confronted to recent PLANCK and
BICEPII observations [48]. With single scalar field potentials describing power-law and
minimal-supersymmetrically extended inflation, we have derived possible modifications in
the Friedmann equations. For various EoS, the dependences of the tensorial and spectral
density fluctuations (and their ratio) on the inflation field are characterized. The tensorial-
to-spectral density fluctuations are calculated with varying spectral index. It was found that,
they decrease when moving from HLG with non-detailed balance conditions, to Friedmann
gravity, to HLG without the projectibility conditions, and to HLG with detailed balance
conditions. Such a pattern remains valid for various EoS and different inflation potential
models. The calculations fit well with the recent PLANCK observations [49, 50].

Even, when studying the consequences of the quantum fluctuations on our understanding
of Landau-Raychaudhuri equations, we found that cosmic EoS play an essential role [51].

5 Conclusions

A theory for quantum gravity with an anisotropic scaling in UV based on a scalar field
theory was proposed by Horava, who was inspired by Lifshitz theory for the quantum critical
phenomena in condensed matter physics. Horava benefited from the success of QFT in
describing all forces (except gravity) and the standard model for the particle physics. We
study the impacts of various equations-of-state on FLRW cosmology based on Horava-
Lifshitz gravity. We also implement the so-called HLG with detailed balance conditions,
which was thought as a technical trick to reduce couplings in the theory. From the possible
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connection between detailed balance conditions and the entropic origin of the gravity, the
constructed potential can be used instead of adopting an effective field theory. Both are
compared with the GR gravity.

In this work, we have studied the dependence of scale factor (a) and cosmic time (t)
in the context of Horava-Lifshitz gravity in early universe by using different equations-
of-state. We have compared the results with the GR gravity. Remarkable differences from
what is predicted by GR are found. Also, a noticeable dependence on the equations of state
is observed in singular and non-singular Big Bang. These observations are precautionarily
corresponding to the fixed parameters k = G = c = ρ0 = 1 and μ = 0.5, λ = 0.9
and �ω = 0.1. The results presented in present paper are strongly depending on these
parameters, for instance, the non-singular solutions can be to a large extend understood due
to finite cosmological constant, �ω.

The present work presents a systematic analysis for the equations of state characterizing
the cosmic geometry and proposes a link between the conventional gravity by GR and its
Horava-Lifshitz counterparts. The latter are power-counting renormalizable quantum theo-
ries which assure causal dynamical triangulations, renormalization group approaches based
on asymptotic safety and symmetries of GR. The Horava-Lifshitz gravity introduces a new
set of symmetries imposing invariance under foliation-preserving diffeomorphisms. Various
types of equations of state are implemented.

In future works, we intend to extend this study to cover various topics, such as com-
parison with other theories such as the gravity’s rainbow [52–54], and determining the
possible impacts of the generalized uncertainty principle [55–57]. Also, we plan to study
third quantization of this theory [58, 59], such as in a simple cosmological model [60].

We conclude that HLG can explain various epochs in the early universe. Furthermore,
HLG might be able to reproduce the entire cosmic history with and without singular Big
Bang. It intends to study the stability of the given FLRW solutions and then analyse the
universe evolution scenarios, especially that HLG is conjectured to be a candidate for a
quantum field theory of gravity, despite its yet-unresolved problems.

Appendix A: Einstein Gravity

For EoS p = ω ρ and Friedmann equations with finite cosmological constant, the continuity
equation reads

ȧ2 = 8 π G

3
ρ0 a−(1+3 ω) + 1

3
�ω a2. (72)

Accordingly, we get following solutions

at ω = 0, t =
2C1 log

[
2
(√

BC1 + Ba3/2
)]

3
√

B C1
, (73)

at ω = 1

3
, t = 1√

B
ln

[
a2 − 2A

B

]
, (74)

at ω = −1

3
, a(t) = c1 exp

(√
B t

)
+ c2 exp

(
−√

B t
)

, (75)

at ω = −1 : a(t) = c3 exp
(√

C t
)

+ c4 exp
(
−√

C t
)

, (76)

and for generalized Chaplugin gas, a(t) = c5 exp
(√

D t
)

+ c6 exp
(
−√

D t
)

, (77)
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where C1 = √
B a3 − 2A, A = −4 π Gρ0/3, B = �ω/3, and C = −2A + B, D =

8 π GN A
1

1+α /3. c1 · · · c6 are integration arbitrary constants.

Appendix B: QCD Equation of State

From the recent lattice QCD simulations [41], we illustrate in Fig. 3, the pressure in depen-
dence on the energy density. As discussed in Ref. [42], the ultimate goal of the high-energy
experiments is first-principle determination of the underlying dynamics in the strongly inter-
acting matter. Determining the thermodynamical quantities, which are well-known tools
to describe nature, degrees of freedom, decomposition, size and even the overall dynam-
ics controlling evolution of the medium from which they are originating, is therefore very
essential. For the thermodynamical pressure, an approximate attempt utilizing the higher-
order moments of the particle multiplicity seems to be promising [42]. On the other hand,
determining the thermodynamical energy density and even relating the Bjorken energy den-
sity to the lattice energy density depends on lattice QCD at finite baryon chemical potential
and first-principle estimation of the formation time of the quark-gluon plasma (QGP). The
energy density can be deduced from the derivative of the free energy with respect to inverse
temperature. This would explain the need to implement another variable different than the
one responsible for the derivatives of the high-order moments.

In Fig. 3, the lattice QCD results on pressure vs. energy density are fitted as follows.

• Hadron:

p = (0.157 ± 0.0007) ρ1.008±0.07 ≈ 1

6
ρ. (78)

• Parton:

p = (0.222 ± 0.002) ρ1.069±0.0024 ≈ 1

5
ρ. (79)
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Fig. 3 In units of GeV/fm3, the pressure is given as function of the energy density (symbols). The curves
represent fits for hadron (long-dashed) and parton phase (dashed curves), separately. Both phases are fitted
by the dotted curve
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• Hadron-parton:

p = −0.01757 + (0.2413 ± 0.0007) ρ1.053±0.008 ≈ 1

4
ρ. (80)
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