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Abstract In this paper, a simple encryption scheme for quantum color image is proposed.
Firstly, a color image is transformed into a quantum superposition state by employing
NEQR (novel enhanced quantum representation), where the R,G,B values of every pixel
in a 24-bit RGB true color image are represented by 24 single-qubit basic states, and each
value has 8 qubits. Then, these 24 qubits are respectively transformed from a basic state
into a balanced superposition state by employed the controlled rotation gates. At this time,
the gray-scale values of R, G, B of every pixel are in a balanced superposition of 224 multi-
qubits basic states. After measuring, the whole image is an uniform white noise, which does
not provide any information. Decryption is the reverse process of encryption. The exper-
imental results on the classical computer show that the proposed encryption scheme has
better security.

Keywords Image processing · Quantum image representing · Quantum image
processing · Quantum image encrypting

1 Introduction

With the development of multimedia information technology, information security issues
are gradually put on the agenda. The image is one of the important tools of carrying infor-
mation, it has been widely studied. The classic image processing is a relatively mature
discipline. The study of quantum image processing begins with the establishment of the
form of quantum image representation. For the classic image processing, the relevant tech-
nologies (e.g., image encryption, image geometric transformation, image enhancement,
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image compression) have developed quite mature [1–14]. Many classic image process-
ing problems, such as image transformation, image security, are built on the basis of the
representation of an image. Similarly, quantum image processing also needs to select a rea-
sonable representation and storage method. At present, there is no uniform or universally
accepted definition about the representation of quantum image. Existing representation basi-
cally draws on the classic image description method. That is, how to encode the pixel’s gray
(color) and position, and describe it into a quantum superposition state.

In terms of quantum image representation, Yan et al. [29] has made a detailed analysis of
the existing methods. At present, the main quantum image representation are as follows: (1)
Quantum image representation based on Qubit Lattice [15–17]. In this method, according to
the different wavelength of the electromagnetic wave, the monochromatic electromagnetic
wave is geometrically mapped and stored in the quantum state. (2) Quantum image represen-
tation based on quantum entanglement [18]. This method makes the corresponding pixels
in the image by quantum entanglement. However, this method can only store and process
the binary image, which limits the application of this method. (3) Flexible Representation
of Quantum Images (FRQI) [19–22]. In this method, the gray level and the position of the
pixels are expressed as a normalized quantum superposition state, and a method for mak-
ing such a quantum state is given. However, this method can only describe the monochrome
gray level image. When describing a color image, need to use three qubits stored three color
gray-scale information. (4) NEQR (novel enhanced quantum representation) [23]. By using
this method, some classical image processing algorithms can be easily extended to quantum
images. For these models, only in NEQR, the pixel color values are represented as basic
state of qubits, rather than the probability amplitude of basic state, which eliminates the
influence of measurement process and is currently the most ideal quantum image represent-
ing method. In addition, the video signal is another type of digital signal different from the
digital image, and Yan et al. [30] gives the coding method of the video signal, which further
enriches the emerging research field of quantum information processing.

Quantum image encryption is one of the important branches of quantum image process-
ing. In an encryption scheme, the data are encrypted and transmitted by the sender in public
environment, and it only can be decrypted by the designated receiver with the decryption
key. Although the secret information can be detected by the attacker, he/she has no way to
get it. As the quantum counterpart of classical encryption schemes, quantum image encryp-
tion has been developed rapidly in recent years. However, so far, the literatures in this
direction are still relatively scarce. Based on quantum image geometric transformations,
Zhou et al. [24] presented a quantum image encryption scheme. However, this encryption
method does not follow the principle of quantum mechanics. In [25, 26], Yang et al. deeply
studies the problem of quantum image encryption, and proposed an encryption scheme that
can be run on future quantum computer. In Yang’s approach, the color information of each
pixel is encoded by three qubits |r〉, |g〉, |b〉 that represent three primary colors of red, green,
blue, respectively. However, the color values of the pixels are encoded with probability
amplitude of qubits. By the influence of quantum states collapse, during the measurement,
this method is difficult to obtain accurate pixel values. In view of this, we propose an novel
color image encryption method. In our scheme, we use the NEQR model to represent the
color image, in which 24 qubits are employed to represent the pixel gray scale values of
each pixel. The encryption process is achieved by employing the controlled rotation gates.
In the encrypted image, the color value of each pixel is a balanced superposition of 224 basic
states. After measuring, the whole image is an uniform white noise, which does not provide
any information. Although the encryption process is very simple, but the encryption effect
is ideal.
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The rest of this paper is organized as follows. The next section introduces the NEQR
model, and then the represent and encryption method of color image are given in Section 2.
In Section 3, we simply introduce the measurement of quantum image. In Section 4, we
present the simulation results on the classical computer. Finally, a short conclusion is given
in Section 5.

2 Novel Enhanced Quantum Representation (NEQR)

The NEQR have been proposed in [23]. While the FRQI encodes a gray-scale value of 8 bits
in 1 qubit, the NEQR represents it in a binary string of 8 qubits. In the NEQR representation,
the gray-scale image f (Y, X) with n × n pixels is expressed by the following equation.

|I 〉 = 1

2n

2n−1∑

Y=0

2n−1∑

X=0

|f (Y, X)〉|YX〉 = 1

2n

2n−1∑

Y=0

2n−1∑

X=0

q−1⊗

i=0

|Ci
YX〉|YX〉, (1)

where f (Y, X) = C0
YXC1

YX · · ·Cq−1
YX , Ck

YX ∈ {0, 1}, f (Y,X) ∈ {0, 1, · · · , 2q−1}.
In order to explain this scheme in detail, we use a small image with 2× 2 pixels in Fig. 1

as an example image, and the following equation shows its NEQR representation, where the
range of gray scale is from 0 to 255.

|I 〉 = 0.5(|(0)dec〉|00〉 + |(100)dec〉|01〉 + |(200)dec〉|10〉 + |(255)dec〉|11〉)
= 0.5|(00000000)bin〉|00〉 + 0.5|(01100100)bin〉|01〉
+ 0.5|(11001000)bin〉|10〉 + 0.5|(11111111)bin〉|11〉.

(2)

3 Quantum Encryption Scheme for Color Image

As mentioned earlier, for a 2n × 2n image of the gray range of 0 ∼ 2q − 1, the q + 2n
qubits are needed to represent it by NEQR. For a color image of gray scale range 0 ∼ 28 − 1,
each primary color (R or G or B) needs 8 qubits. Therefore, for a 2n × 2n color image of
gray scale range 0 ∼ 28 − 1, 24 + 2n qubits are need to represent it by NEQR. The specific
implementation scheme of quantum encryption algorithm for color image is described as
follows.

Fig. 1 2 × 2, 256-level image
and its NEQR representation
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3.1 Preparation of NEQR-Based Quantum Image

First, we need to prepare 24 + 2n qubits in the state of |0〉. The tensor product of these 24
qubits is written as |0〉⊗(24+2n). Suppose that the binary number of the R,G,B values of pixel
P(Y, X) is written as

f (Y,X) = CR0
YX · · ·CR7

YX CG0
YX · · ·CG7

YX CB0
YX · · ·CB7

YX

= C0
YX· · ·C7

YXC8
YX· · ·C15

YXC16
YX· · ·C23

YX,
(3)

where Ci
YX ∈ {0, 1}, i = 0, 1, · · · , 23.

In NEQR, an important operator is UYX , and the main work of UYX is �YX . This oper-
ator converts the R,G,B values of pixel P(Y, X) to quantum state |f (Y,X)〉 as shown in
following equation, and its corresponding quantum circuit is shown in Fig. 2.

�YX|0〉⊗24=⊗23
i=0(�

i
YX|0〉)=⊗23

i=0|0 ⊕ Ci
YX〉=⊗23

i=0|Ci
YX〉=|f (Y,X)〉. (4)

According to NEQR representation, a 2n × 2n color image can be described as follows.

|�0〉 = 1

2n

2n−1∑

Y=0

2n−1∑

X=0

|f (Y,X)〉|YX〉 = 1

2n

2n−1∑

Y=0

2n−1∑

X=0

⊗23
i=0|Ci

YX〉|YX〉. (5)

Next, taking a 2 × 2 color image in Fig. 3 as an example, we introduce the specific
implementation methods of NEQR image. In Fig. 3, the R,G,B values of the 4 pixels are:
f (00)=[0, 128, 128], f (01)=[128, 0, 128], f (10)=[128, 128, 0], f (11)=[128, 128, 128].
To facilitate the description of the physical implementation of quantum image, we first
introduce the concept of the quantum NOT gate and the controlled-NOT gate.

Quantum NOT gate is a single qubit gate, it can be describe by the matrix X =(
0 1
1 0

)
. This gate’s role in a single qubit is to flip the state of the qubit, namely,

X|0〉 = |1〉, X|1〉 = |0〉. The controlled-NOT gate is a multi-qubits gate, the corresponding
quantum circuits is shown in Fig. 4.

Fig. 2 The black-box circuit of quantum operation �YX , which transforms color value f (Y,X) into the
quantum state |f (Y,X)〉 as in (4)
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Fig. 3 A color image of size of
2 × 2

In Fig. 4, the first n qubits of |x1〉, |x2〉, · · · , |xn〉 are the control qubits, and the last one
|ϕ〉 is the target qubit. The notation “⊕” on the |ϕ〉 denotes the quantum NOT gate. The
notation “•” on the control qubits indicates that the target qubit |ϕ〉 is controlled by this
control qubit only when it lives in state |1〉. Similar, the notation “◦” on the control qubits
indicates that the target qubit |ϕ〉 is controlled by this control qubit only when it lives in
state |0〉. When and only when all control bits are satisfied with the control condition, the
target qubit |ϕ〉 is flipped by quantum NOT gate [27].

As a matter of fact, the NEQR representation provides the interface of the color image
from the classical domain to the quantum domain. Next, in order to explain the concrete
realization method of a NEQR-based color image, taking the 2 × 2 color image in Fig. 3
as an example, the quantum circuit of transforming a classical image into a NEQR-based
quantum image is given in Fig. 5.

In Fig. 5, |�0〉 = |0〉⊗26, the |�1〉 and the |�2〉 are written as

|�1〉 = 1

2

(
1∑

Y=0

1∑

X=0

|0〉24 ⊗ |YX〉
)

, (6)

|�2〉 = 1
2 (|00000000, 10000000, 10000000〉|00〉+|10000000, 00000000, 10000000〉|01〉+
|10000000, 10000000, 00000000〉|10〉+
|10000000, 10000000, 10000000〉|11〉).

(7)

Fig. 4 Quantum circuit of
controlled-NOT gate
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Fig. 5 Quantum circuit of transforming the classical image into the corresponding quantum version

The |�2〉 in (7) is a NEQR-based quantum image corresponding to the 2 × 2 classical
image in Fig. 3.

3.2 Encrypt Scheme of Quantum Color Image

According to NEQR, the R,G,B values of pixel P(Y, X) are stored in the basic state consist-
ing of 24 qubits |C0

YX〉, |C1
YX〉, · · · , |C23

YX〉, rather than storing in the probability amplitude
of the basic state. This basic state is a deterministic state without any randomness. The
binary numbers of this basic state are the R,G,B values of the corresponding pixel, which
is the advantage of NEQR. For example, the basic state |10000000, 00000000, 10000000〉
denote that the R,G,B values of R = 128,G = 0, B = 128.

In the encryption method proposed in this paper, all 24 qubits |C0
YX〉, |C1

YX〉, · · · , |C23
YX〉

are randomly rotated π/4 or−π/4. As a result, the color value of each pixel is no longer in a
determined basic state, but in a balanced superposition state of containing 224 basic states. In
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this case, the color image is an uniform white noise which does not contain any information
of the original image after it is measured. Next, we introduce the specific rotation method.

For a 2n × 2n color image, first, generate a random sequence of length 24 × 22n and
values from the {−1, 1}.

S = 2 ∗ round(rand(2n, 2n, 24)) − 1, (8)

where the rand(n, m, p) is a MATLAB function which generates n × m × p random num-
bers uniformly distributed in the interval (0, 1), and the round is a rounding function. In
subsequent experiments, the specific version of MATLAB is 2014a.

It is worth noting that, the rand() function returns a pseudo-random number, not the
true random number. This may lead to an inaccuracy of simulation process. Due to the
lack of hardware devices that can generate truly random numbers, therefore, limited by
the hardware environment, at present, we can only use the rand() function to simulate the
performance of the proposed scheme, which is also the most commonly used method of
other similar literatures.

A single qubit rotation gate is defined as

R(θ) =
[
cos θ − sin θ

sin θ cos θ

]
. (9)

Let Ri
YX = R(S(Y, X, i) × π/4), R̃YX = ⊗23

i=0R
i
YX, then

R̃YX(⊗23
i=0|Ci

YX〉) = ⊗23
i=0(R

i
YX|Ci

YX〉) = ⊗23
i=0|Ĉi

YX〉. (10)

According to the principle of quantum computation, the controlled random rotation operator
of color qubits of the pixel (Y,X) in the color image can be defined as follows.

RYX =
⎛

⎝I⊗24 ⊗
2n−1∑

j=0

2n−1∑

i=0,j i 	=YX

|ji〉〈ji|
⎞

⎠ + R̃YX ⊗ |YX〉〈YX|. (11)

The rotation operator of the whole color image can be composed of 22n sub operator RYX

as follows.

R =
2n−1∏

Y=0

2n−1∏

X=0

RYX. (12)

Taking the 2× 2 color image in Fig. 3 as an example, the quantum circuit of performing
random rotation is shown in Fig. 6.

3.3 Security of Encrypted Image

In our quantum encryption scheme, the security of the encrypted image is guaranteed by
following two points.

(1) For the color image after encryption, the color value of all pixels is no longer in the
determined basic state, but in a balanced superposition state of 224 basic states.

Taking the first pixel in Fig. 3 as an example, the color value of this pixel is f (0, 0) =
[0, 128, 128], the corresponding qubits’ basic state is |C00〉 = |00000000, 10000000,
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10000000〉. The rotation of these qubits is only 4 cases, namely, rotating | Ci
00〉 = |0〉

through ±π/4, and rotating |Ci
00〉 = |1〉 through ±π/4. The specific rotation is as follows.

|Ci1
00〉 =

[
cos( π

4 ) − sin( π
4 )

sin( π
4 ) cos( π

4 )

][
1
0

]
= |0〉 + |1〉√

2
= |+〉, (13)

|Ci2
00〉 =

[
cos(−π

4 ) − sin(−π
4 )

sin(−π
4 ) cos(−π

4 )

][
1
0

]
= |0〉 − |1〉√

2
= |−〉, (14)

|Ci3
00〉 =

[
cos( π

4 ) − sin( π
4 )

sin( π
4 ) cos( π

4 )

][
0
1

]
= −|0〉 + |1〉√

2
= −|−〉, (15)

|Ci4
00〉 =

[
cos(−π

4 ) − sin(−π
4 )

sin(−π
4 ) cos(−π

4 )

][
0
1

]
= |0〉 + |1〉√

2
= |+〉. (16)

It can be known that, regardless of the situation, after the rotation, the |Ci
00〉 is in a bal-

anced (equal probability distribution) superposition state of |0〉 and |1〉. Therefore, after the
rotation, the tensor product of 24 qubits is in an equilibrium (equal probability distribution)
superposition of 224 basic states.

It is worth noting that, when the basic states |+〉 = |0〉+|1〉√
2

and |−〉 = |0〉−|1〉√
2

are used as

measurement operators, the state represent the color value of a pixel is a determined basic
state for the color encryption image. However, the proposed scheme is still secure. From
(13–16), after the encryption, the basic state |0〉 is transformed into |+〉 and |−〉 with equal
probability, and the basic state |1〉 is also performed by the same transformation. In this case,
each qubit has an error measurement probability of 50%. Therefore, the results are similar
to those measured using basic states |0〉 and |1〉. Thus, the security of the encrypt scheme is
only rely on class random function rand(n, m, p).

(2) The key space is large enough.

In our quantum encryption scheme, the Key is a random arrangement of 2n×2n×24=3×
22n+3 1 and -1. It can be seen, the size of the key space is 23×22n+3. Therefore, the encrypted
image has a large key space, enough to resist brute force attacks of illegal users.

3.4 Decryption of Encrypted Image

Since the encryption strategy proposed in this paper is designed based on quantum com-
puter, so all the operators are reversible and unitary, the inverse operator is its own
conjugate transpose, and the decryption procedure is just the inverse of the encryption pro-
cedure. According to the reversibility of quantum computing, the decryption process can
be achieved by employing the conjugate transpose of encryption operators. In this phase,
the key is needed to decrypt the encrypted image. Our decryption procedure is briefly
summarized as follows.

First of all, legitimate receiver gets the secret key S in (8) through sharing it with sender,
and then he/she constructs the following rotation matrix

R̃YX =
23⊗

i=0

[
cos(S(Y,X, i) × π/4) − sin(S(Y,X, i) × π/4)
sin(S(Y,X, i) × π/4) cos(S(Y,X, i) × π/4)

]
, (17)

RYX =
⎛

⎝I⊗24 ⊗
2n−1∑

j=0

2n−1∑

i=0,j i 	=YX

|ji〉〈ji|
⎞

⎠ + R̃YX ⊗ |YX〉〈YX|. (18)
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Fig. 6 Quantum circuit of performing random rotation of qubit Ci
YX, i = 0, 1, · · · , 23

The decryption operation of encrypted image can be achieved by following unitary operator

R =
⎛

⎝
2n−1∏

Y=0

2n−1∏

X=0

RYX

⎞

⎠
†

, (19)

where R† denotes the conjugate transpose R. Specifically, the decryption process can be
described as |I 〉decryption = R|I 〉encryption.
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3.5 Quantum Image Measurement

3.5.1 Measurement of Quantum Image after Decryption

According to the NEQR scheme, for the decrypted image, only the R,G,B values of every
pixel are stored in the determined basic state of multi-qubits, and the position of the pixel
is still stored in the superposition state with randomness. Therefore, each measurement will
lead to the collapse of a quantum system, which makes the quantum superposition system
collapse to a certain basic state. Thus, for each measurement, we can only get the informa-
tion of one pixel corresponding to the collapsed basic state. Although the position of this
pixel is random, the color value is accurate. This is the essence of NEQR is superior to
FRQI. Hence, through the preparation of a large number of the same quantum superposi-
tion state, and then the measurement is carried out on the superposition states, as long as the
number of prepared superposition states is enough, we can get the color value information
of all pixels. Thus, we can realize the transformation of the quantum image to the classical
image.

3.5.2 Measurement of Encrypted Image

For the encrypted image, the pixel position and its color value are all in an uniform quantum
superposition state. Similar to the measurement of the decrypted image, for each measure-
ment, we also can only get the information of one pixel corresponding to the collapsed
basic state, However, the pixel position and its color value obtained at this time are ran-
dom. In terms of the R,G,B values of every pixel, the probability of taking each value in
the (0, 0, 0) ∼ (255, 255, 255) is equal to 2−24. Hence, the encrypted image becomes an
uniform white noise after it is measured.

4 Simulation on Classical Computer

Herein, the simulations of the original image’s encryption and decryption are performed
on a classical computer due to the condition that the physical quantum computer is not
in our grasp right now. The simulations are demonstrated with a classical computer with
Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz 4.00GB RAM and 32-bit operating system.
The simulations are based on linear algebra with complex vectors as quantum states and
unitary matrices as unitary transforms using Matlab 7.8.0(R2009a).

In order to verify the performance of the proposed scheme, a more convincing scheme
must be chosen as a comparison target. In this paper, the double encryption scheme in
the time domain and frequency in [28] is chosen as the comparison scheme. The reason
this scheme is chosen as a comparison target is that it has some outstanding advantages as
follows. For encrypted image, the distribution of histogram is uniform, the chi-square value
is considerably low, the mean square error of encrypted image is big enough, the correlation
coefficients in all three directions are sufficiently small, and the total key length is large
enough to resist any brute-force attack, et. al.

The first 8 color images used in the experiment are from following website: http://sipi.
usc.edu/database/database.php, and the last 4 color images are from the Peking University

http://sipi.usc.edu/database/database.php
http://sipi.usc.edu/database/database.php
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and the Tsinghua University campus. For the first 8 images, each row and column contains
512 pixels. The sizes of the last 4 color images are 1024× 759, 770× 460, 1024× 683, and
998 × 598, respectively.

4.1 Encryption Effect

The original images are shown in Fig. 7, and the corresponding encrypted images are shown
in Fig. 8. The Decrypted images and the original images are exactly the same, so the display
will not be repeated.

In Fig. 8, the encrypted images are presented as random white noise, which suggests that,
at least from a visual point of view alone, the encryption strategy proposed in this paper is
effective.

4.2 Key Sensitivity Analysis

A desirable encryption scheme requires high sensitivity to the encryption keys. In order
to test the sensitivity of the secret key, a method of randomly changing some element in
encryption key is employed. Specifically, we randomly select respectively 10%, 20%, 30%,
40% of the secret key elements, and put these elements to their opposite number. Then
the modified secret key is used to decrypt the encrypted images. The decrypted images are
shown in Fig. 9.

To evaluate the quality of the color images restored from the encrypted images with the
modified secret key, the RGB Peak Signal-to-Noise Ratio (RGB-PSNR) is used as defined
below.

PSNR = 20 log10

⎛

⎜⎜⎜⎜⎝
255

√
1

3mn

m−1∑
i=0

n−1∑
j=0

3∑
k=0

[I ′(i, j, k) − I (i, j, k)]2

⎞

⎟⎟⎟⎟⎠
, (20)

where I ′(i, j) and I (i, j) denote the restored image and the original image, respectively, m
and n are the number of pixels per row and column in an image.

After the comparison of our restored images I ′ with the original images I , the RGB-
PSNR values of 12 restored images are obtained as presented in Table 1.

From Fig. 9, when the random components of secret key reaches 40%, the decryption
image has become an uniform white noise without any visual information. From Table 1,
when the random components of secret key reaches 40%, there is almost no difference
in the peak signal to noise ratio of the decrypted image and the corresponding encrypted
image, and when the random components of secret key reaches 10%, the peak signal to
noise ratio of the decrypted image is only about 12. Through the test, it is proved that the
correct image can be reconstructed only when the decryption key and the encryption key
match accurately. Due to the key space of proposed method is very big, unless someone has
obtained in advance the correct secret key, it is almost impossible to accurately restore the
original image.
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Fig. 7 The original images

4.3 Correlation Analysis of Adjacent Pixels

In ordinary image having definite visual content, each pixel is highly correlated with its
adjacent pixels. The good encryption approach should produce the cipher image with no

Fig. 8 The encrypted images
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Fig. 9 The secret key sensitivity
test, where the first column is the
decrypted images by the secret
key with 10% random
components, the remainder
analogy

such correlation in the adjacent pixels (correlation coefficient≈ 0). To quantify and compare
the correlations of adjacent pixels in the original image and its encrypted version, we also
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Table 1 The RGB-PSNR values of 12 encrypted images and the restored images by the secret key with
some random components

No. Encrypted image Random key 10% Random key 20% Random key 30% Random key 40%

1 7.6332 11.6899 9.88850 8.6351 7.6299

2 7.0625 11.4513 9.54160 8.1550 7.0694

3 8.7692 12.1131 10.5502 9.5217 8.7724

4 8.6237 12.0695 10.4762 9.3972 8.6196

5 7.9774 11.8164 10.1026 8.8913 7.9738

6 8.0899 11.8584 10.1693 8.9856 8.0804

7 8.0796 11.8578 10.1606 8.9729 8.0773

8 8.4789 12.0099 10.3735 9.2823 8.4725

9 7.1244 11.4734 9.58580 8.2120 7.1225

10 7.0173 11.4210 9.51120 8.1250 7.0174

11 8.4324 11.9889 10.3609 9.2647 8.4323

12 7.5217 11.6301 9.82490 8.5313 7.5137

calculated the correlation coefficient Rxy of adjacent pixels of the original image and its
encrypted version by the following equation.

RR(xR, yR) = E(xR − E(xR))E(yR − E(yR))√
D(xR)D(yR)

, (21)

RG(xG, yG) = E(xG − E(xG))E(yG − E(yG))√
D(xG)D(yG)

, (22)

RB(xB, yB) = E(xB − E(xB))E(yB − E(yB))√
D(xB)D(yB)

, (23)

where E(xR),E(xG),E(xB) and D(xR),D(xG),D(xB) denote the expectation and vari-
ance of the gray-level value of three primary colors of red, green, blue, respectively.

To investigate the diffusion effect of our scheme, the correlation is tested between two
horizontally, vertically, and diagonally adjacent pixels in the 12 original images and the cor-
responding encrypted images, respectively. Specifically, by randomly selecting 10,000 pairs
of adjacent pixels in each direction from the original image and its encrypted version, the
correlation between pixels can be obtained. Suppose that the IOri and IEnc denote the orig-
inal image and the encrypted image, respectively, and that the I[28] denotes the encrypted
image by using the scheme in [28]. The results of correlation coefficients for horizontal, ver-
tical and diagonal adjacent pixels for 12 original images and their corresponding encrypted
images are given in Table 2.

It is clear from Table 2 that the correlation between the adjacent pixels in the original
image IOri is very strong, and the adjacent pixels in the encrypted image IEnc is almost
irrelevant, and in all three directions of horizontal, vertical and diagonal, the correlation of
our method are weaker than that of [28]. This indicates that our method is more secure than
scheme in [28].

The visual testing of the correlation of adjacent pixels can be done by plotting the dis-
tribution of the adjacent pixels in the plain image and its corresponding cipher image.
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To illustrate the diffusion effect of our scheme, taking the fourth image as an example, the
distribution of the adjacent pixels in the original image and its encrypted image are respec-
tively plotted in Figs. 10, 11 and 12. In each of the figure, the three child figures at the
top belong to the original image, and the three child figures at the bottom belong to the
encrypted image.

The experimental results show that the proposed encryption strategy generally provides
a satisfactory correlation performance.

4.4 Histogram Test

Histogram can reflect the distribution of pixel color value in the image, it is clear that the
uniform distribution of the histogram can effectively resist various brute force attacks. Tak-
ing the twelfth image as an example, the histogram of the pixel R,G,B values before and
after encryption is shown in Fig. 13, where the three child figures at the top belong to the
original image, and the three child figures at the bottom belong to the encrypted image.

It can be seen from the Fig. 13, the encrypting operation can exhibit a uniform distribu-
tion of the histogram, and do not provide any clue to employ any statistical attack on the
proposed image encryption algorithm.

The uniformity of a histogram is justified using the χ2 test [28], in the following equation

χ2 =
256∑

k=1

(Ok − Ek)
2

Ek

, (24)

where k denotes the number of gray levels (256), Ok denotes the observed occurrence fre-
quencies of each gray level (0-255), and Ek denotes the expected occurrence frequencies of
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Fig. 10 Correlations between two adjacent pixels in the red color
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Fig. 11 Correlations between two adjacent pixels in the green color
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Fig. 12 Correlations between two adjacent pixels in the blue color
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Fig. 13 The histogram distributions of the original image and the encrypted one

each level. For example, Ek is equal to 64 for image size of 128 × 128. Obviously, the less
the χ2 value, the better the uniformity. The χ2 values are presented for all twelve encrypted
images as shown in Table 3. In order to compare with other algorithms, the results obtained
by using the scheme in [28] are also given in this table.

From Table 3, the χ2 value for encrypted images of our proposed method is about is
considerably lower than this value of encryption scheme in [28].

Table 3 Comparison of χ2 test of the encrypted images between the proposed scheme and the scheme in
[28]

Original image Encrypted image Encrypted image

with our scheme with scheme in [28]

No. χ2
R χ2

G χ2
B χ2

R χ2
G χ2

B χ2
R χ2

G χ2
B

1 6.05E5 7.71E5 1.47E6 2.31E3 2.26E3 2.16E3 3.42E3 3.91E3 3.54E3

2 1.54E7 7.50E5 7.64E5 2.24E3 2.36E3 2.28E3 3.82E3 3.91E3 3.84E3

3 8.28E4 1.42E5 7.99E4 2.25E3 2.33E3 2.45E3 3.48E3 3.74E3 3.77E3

4 2.54E5 1.13E5 3.44E5 2.28E3 2.45E3 2.17E3 3.47E3 3.93E3 3.63E3

5 6.78E5 6.82E5 1.10E6 2.34E3 2.19E3 2.32E3 3.61E3 4.01E3 3.80E3

6 1.96E5 1.30E5 3.44E5 2.15E3 2.36E3 2.29E3 3.70E3 3.56E3 3.49E3

7 2.13E5 3.18E5 4.91E5 2.40E3 2.19E3 2.39E3 3.70E3 3.52E3 3.92E3

8 1.92E5 3.32E5 2.48E5 2.28E3 2.29E3 2.29E3 3.79E3 3.73E3 3.92E3

9 1.67E6 6.89E5 1.18E6 6.44E3 6.06E3 6.30E3 1.02E4 9.88E3 9.75E3

10 1.09E6 1.42E6 1.56E6 2.96E3 2.90E3 3.06E3 4.73E3 4.54E3 5.07E3

11 4.82E5 5.67E5 1.73E6 5.55E3 5.69E3 5.82E3 9.48E3 9.38E3 9.49E3

12 2.44E5 3.55E5 4.41E5 4.86E3 5.01E3 5.05E3 8.00E3 8.38E3 7.86E3
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4.5 Mean Square Error

An ideal encrypted image should be significantly different from the original one. The dif-
ference between encrypted images and original ones can be characterize by mean square
error (MSE) defined in the following equation.

MSER = 1

m × n

m∑

i=1

n∑

j=1

(IOri(i, j, 2) − IEnc(i, j, 1))
2, (25)

MSEG = 1

m × n

m∑

i=1

n∑

j=1

(IOri(i, j, 3) − IEnc(i, j, 2))
2, (26)

MSEB = 1

m × n

m∑

i=1

n∑

j=1

(IOri(i, j, 3) − IEnc(i, j, 3))
2, (27)

where m×n is the size of image. The parameters IOri(i, j, k) and IEnc(i, j, k), k = 1, 2, 3,
are R,G,B values of pixel (i, j) in original and encrypted images, respectively, where k = 1
denotes R, k = 2 denotes G, and k = 3 denotes B. The larger the MSE value, the better the
encryption security.

For all twelve encrypted images by our proposed scheme and scheme in [28], the MSE
values are calculated as shown in Table 4.

The MSE of the proposed encrypted image is more than MSE of the scheme in [28],
which shows that our method is more effective.

4.6 Probability Deviation

In the encrypted image, the color value of each pixel is no longer in a determined basic state,
but in a balanced superposition state, and the probability of which is in state 0 or 1 state is

Table 4 Comparison of mean square error of the encrypted images between the proposed scheme and the
scheme in [28]

Our scheme Scheme in [28]

No. MSER MSEG MSEB Average MSER MSEG MSEB Average

1 1.141E4 1.236E4 9.857E3 1.121E4 1.116E4 1.256E4 9.879E4 1.120E4

2 1.781E4 1.316E4 7.386E3 1.278E4 1.725E4 1.273E4 7.133E3 1.237E4

3 8.618E3 7.749E3 9.531E3 8.633E3 8.518E3 7.625E3 9.439E3 8.527E3

4 1.062E4 9.046E3 7.111E3 8.927E3 1.032E4 9.115E3 7.056E3 8.832E3

5 9.978E3 1.066E4 1.043E4 1.036E4 9.651E3 1.040E4 1.009E4 1.004E4

6 7.289E3 1.147E4 1.151E4 1.009E4 7.203E3 1.142E4 1.145E4 1.002E4

7 7.962E3 1.123E4 1.115E4 1.011E4 7.828E3 1.107E4 1.124E4 1.005E4

8 8.762E3 9.512E3 9.415E3 9.229E3 8.587E3 9.239E3 9.323E3 9.050E3

9 1.295E4 1.062E4 1.424E4 1.260E4 1.307E4 1.055E4 1.407E4 1.256E4

10 1.275E4 1.111E4 1.489E4 1.292E4 1.273E4 1.112E4 1.483E4 1.289E4

11 8.348E3 7.534E3 1.210E4 9.329E3 8.296E3 7.455E3 1.192E4 9.225E3

12 1.041E4 1.146E4 1.264E4 1.150E4 1.040E4 1.138E4 1.255E4 1.145E4
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Table 5 Probability deviation contrasts between the original images and the encrypted images

Original image Encrypted image

No. �PR �PG �PB �PR �PG �PB

1 1048576 1048576 1048576 5.170E-26 5.170E-16 5.170E-26

2 1048576 1048576 1048576 5.170E-26 5.170E-26 5.170E-26

3 1048576 1048576 1048576 5.170E-26 5.170E-26 5.170E-26

4 1048576 1048576 1048576 5.170E-26 5.170E-26 5.170E-26

5 1048576 1048576 1048576 5.170E-26 5.170E-26 5.170E-26

6 1048576 1048576 1048576 5.170E-26 5.170E-26 5.170E-26

7 1048576 1048576 1048576 5.170E-26 5.170E-26 5.170E-26

8 1048576 1048576 1048576 5.170E-26 5.170E-26 5.170E-26

9 3108864 3108864 3108864 1.533E-25 1.533E-25 1.533E-25

10 1416800 1416800 1416800 6.985E-26 6.985E-26 6.985E-26

11 2797568 2797568 2797568 1.379E-25 1.379E-25 1.379E-25

12 2387216 2387216 2387216 1.177E-25 1.177E-25 1.177E-25

0.5. Suppose that the k−th qubit of pixel P(Y, X) is |Ck
YX〉 = cos θk

YX|0〉 + sin θk
YX|1〉. The

specific definition of probability deviation is as follows.

�PR =
2n−1∑
Y=0

2n−1∑
X=0

7∑
k=0

(cos2 θk
YX−0.5)2

0.5 , (28)

�PG =
2n−1∑
Y=0

2n−1∑
X=0

15∑
k=8

(cos2 θk
YX−0.5)2

0.5 , (29)

�PB =
2n−1∑
Y=0

2n−1∑
X=0

23∑
k=16

(cos2 θk
YX−0.5)2

0.5 . (30)

We calculated the probability deviation of 12 original images and the corresponding
encrypted images, and the results are shown in Table 5.

From Table 5, the probability deviation of all the encrypted images is almost zero, which
indicates that the qubits in encrypted image are accurately in the equilibrium quantum
superposition state, namely, the probability that they are in state |0〉 or state |1〉 is equal.
Therefore, only an uniform white noise can be obtained that all pixels take random values
when the encrypted image is measured, which can effectively resist brute force attacks of
illegal users.

5 Conclusions

In quantum digital images encryption, although, most of the encryption algorithms are
designed in the spatial domain and the frequency domain, the quantum digital image could
be encrypted only in the spatial domain as well. we proposed a simple algorithm to encrypt
an quantum images only in spatial domain. In proposed method, the images are represented
based on NEQR model. The pixel’s gray level information is described by 24 quantum bits
which is in |0〉 or |1〉. The encryption scheme is to make these qubits be in an equilib-
rium quantum superposition state. For a 2n × 2n color image, the secret key is a vector of
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length 2n × 2n × 24, and each component of the vector is randomly taken 1 or −1. The
advantage of this method is that it can be implemented on the future quantum computer
and has a large secret key space. The simulation results on a classical computer verify that
the proposed quantum image encryption scheme is more secure in comparison with other
encryption algorithms.
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