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Abstract We reconsider the holographic dark energy (HDE) model with a slowly time
varying c2(z) parameter in the energy density, namely ρD = 3M2

pc2(z)/L2, where L is the
IR cutoff and z is the redshift parameter. As the system’s IR cutoff we choose the Hubble
radius and the Granda-Oliveros (GO) cutoffs. The latter inspired by the Ricci scalar curva-
ture. We derive the evolution of the cosmological parameters such as the equation of state
and the deceleration parameters as the explicit functions of the redshift parameter z. Then,
we plot the evolutions of these cosmological parameters in terms of the redshift parame-
ter during the history of the universe. Interestingly enough, we observe that by choosing
L = H−1 as the IR cutoff for the HDE with time varying c2(z) term, the present accelera-
tion of the universe expansion can be achieved, even in the absence of interaction between
dark energy and dark matter. This is in contrast to the usual HDE model with constant c2

term, which leads to a wrong equation of state, namely that for dust wD = 0, when the IR
cutoff is chosen the Hubble radius.

Keywords Holographic dark energy · Varying c term · Redshift

1 Introduction

According to nowadays observations, present acceleration of the universe expansion has
been well established [1–4]. Within the framework of general relativity (GR), the responsi-
ble component of energy for this accelerated expansion is known as dark energy (DE) with
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negative pressure. However, the nature of DE is still unknown, and some candidates have
been proposed to explain it. The earliest and simplest candidate is the cosmological con-
stant with the time independent equation of state ω� = −1 which has some problems like
fine-tuning and coincidence problems. Therefore, other theories have been suggested for
the dynamical DE scenario to describe the accelerating universe.

An interesting attempt for probing the nature of DE within the framework of quantum
gravity, is the so-called HDE proposal. This model which has arisen a lot of enthusiasm
recently [5–33], is motivated from the holographic hypothesis [34, 35] and has been tested
and constrained by various astronomical observations [36–40]. In holographic principle a
short distance cutoff could be related to a long distance cutoff (infrared cutoff) due to the
limit set by formation of a black hole. Based on the holographic principle, it was shown
by Cohen et al. [5] that the quantum zero-point energy of a system with size L should not
exceed the mass of a black hole with the same size, i.e.,

L3ρD ≤ LM2
p, (1)

where M2
p = 8πG is the reduced Planck mass and L is the IR cutoff. The largest L allowed

is the one saturating this inequality so that we get the

ρD = 3c2M2
p/L2, (2)

where c2 is a dimensionless model parameter. There are many models of HDE, depending
on the IR cutoff, that have been studied in literatures [41–47]. The simple choice for IR cut-
off is the Hubble radius, i.e., L = H−1 which leads to a wrong equation of state (EoS) and
the accelerated expansion of the universe cannot be achieved. However, as soon as an inter-
action between HDE and dark matter is taken into account, the identification of IR cutoff
with Hubble radius H−1, in flat universe, can simultaneously drive accelerated expansion
and solve the coincidence problem [48, 49]. Then, Li [6] showed that taking the particle
horizon radius as IR cutoff it is impossible to obtain an accelerated expansion. He also
demonstrated that the identification of L with the radius of the future event horizon gives
the desired result, namely a sufficiently negative equation of state to obtain an accelerated
universe.

It is worth noting that, for the sake of simplicity, very often the c2 parameter in the
HDE model is assumed constant. However, there are no strong evidences to demonstrate
that c2 should be a constant and one should bear in mind that it is more general to consider
it a slowly varying function of time. It has been shown that the parameter c2 can play an
essential role in characterizing the model. For example, it was argued that the HDE model
in the far future can be like a phantom or quintessence DE model depending whether the
parameter c2 is larger or smaller than 1, respectively. By slowly vary function with time, we
mean that (ċ2)/(c2) is upper bounded by the Hubble expansion rate, i.e., [50]

(c2)̇

c2
≤ H, (3)

where dot indicates derivative with respect to the cosmic time. In this case the time scale of
the evolution of c2 is shorter than H−1 and one can be satisfied to consider the time depen-
dency of c2 [50]. Considering the future event horizon as IR cutoff, the HDE model with
time varying parameter c2, has been studied in [51]. It was argued that depending on the
parameter c2, the phantom regime can be achieved earlier or later compared to the usual
HDE with constant c2 term. In this paper, we reconsider the HDE model with the slowly
varying parameter c2(z) by taking into account the Hubble horizon L = H−1 and GO cut-
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off,L = (αH 2+βḢ )−1/2, as the system’s IR cutoffs. We shall study four parameterizations
of c(z) as follows

GHDE1 : c(z) = c0 + c1
z

(1 + z)
, (4)

GHDE2 : c(z) = c0 + c1
z

(1 + z)2
, (5)

GHDE3 : c(z) = c0

1 + c1 ln(1 + z)
, (6)

GHDE4 : c(z) = c0 + c1

(
ln(2 + z)

1 + z
− ln 2

)
, (7)

where GHDE stands for the Generalized HDE model. The above choices for c(z)

are inspired by the parameterizations known as Chevallier-Polarski-Linder parametriza-
tion (CPL) [52, 53], Jassal-Bagla-Padmanabhan (JBP) parametrization [54], Wetterich
parametrization [55, 56], and Ma-Zhang parametrization [57], respectively. Setting c1 = 0
in all these four parameterizations, the original HDE with constant c parameter is recovered.

The paper is organized as follows. In section II, we drive the basic equations for the HDE
with time varying c2 parameter. In this section, we consider the Hubble radius as IR cutoff
and derive the evolution of equation of state and deceleration parameters by choosing c(z).
In section III, we repeat the study for the GO cutoff and investigate the evolution of the
cosmological parameters. The last section is devoted to conclusion and discussions.

2 GHDE in Flat FRW Cosmology with Hubble Radius as IR Cutoff

In the context of flat Friedmann-Robertson-Walker (FRW) cosmology, the Friedmann
equation is given by

H 2 = 1

3M2
p

(ρm + ρD), (8)

where ρm and ρD are the energy densities of pressureless dark matter and dark energy,
respectively. By using the dimensionless energy densities

�m = ρm

3m2
pH 2

, �D = ρD

3m2
pH 2

, (9)

the Friedmann equation (8) can be written as

�m + �D = 1. (10)

We shall assume there is no interaction between dark matter and GHDE. Therefore, both
component obey the equation of conservation respectively. The conservation equations for
pressureless dark matter and dark energy, are, respectively, given by

ρ̇m + 3Hρm = 0, (11)

ρ̇D + 3H(1 + ωD)ρD = 0, (12)

where wD = pD/ρD is the EoS parameter of GHDE. In this section we consider the Hubble
radius as IR cut off,(L = H−1), thus the energy density of GHDE model from (2) can be
written as

ρD = 3M2
pc2(z)H 2. (13)

Using definition (9), the dimensionless energy density for the GHDE becomes

�D(z) = c2(z). (14)
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Taking the time derivative of (13), we find

ρ̇D = 2ρD

(
ċ(z)

c(z)
+ Ḣ

H

)
. (15)

Besides, if we take the time derivative of Friedmann equation (8), after using (10), (11) and
(15), we find

Ḣ

H 2
= −3

2
+ c′(z)c(z)

1 − c2(z)
, (16)

where c′ = ċ/H and the prime represents the derivative with respect to x = ln a. Combining
(15) and (16) with (12), one can obtain the EoS parameter of GHDE as

ωD = −2

3

c′(z)
c(z)[1 − c2(z)] , (17)

Clearly, for constant parameter we have, c′(z) = 0 which leads to a wrong equation of state,
namely that for dust with ωD = 0 [8]. This implies that the HDE with L = H−1 as cutoff
cannot described an accelerating universe [8]. However, taking the time varying c2 term
in the energy density of the HDE, it is quite possible to reproduce the acceleration of the
cosmic expansion.

Another important cosmological parameter for studying the evolution of the universe is
the deceleration parameter which is given by

q = 1 − Ḣ

H 2
. (18)

Substituting (16) into (18) yields

q = 1

2
− c′(z)c(z)

1 − c2(z)
. (19)

Again for c′(z) = 0 the declaration parameter reduces to q = 1/2 > 0 which implies a
decelerated universe.

We see from (17) and (19) that the evolution of these cosmological parameters depend
on the functional form of c(z). In what follow, we consider four types of parametrization
for c(z) as given in (4)–(7).

2.1 GHDE1: the CPL Type

We start with the CPL type for c(z), namely

c(z) = c0 + c1
z

(1 + z)
. (20)

When z → ∞ (in the early universe), we see that c → c0 + c1 and as z → 0 (at the present
time), c → c0. Thus holographic parameter c varies slowly from c0 + c1 to c0 from past to
present. On the other hand requiring the fact that the energy density of GHDE1 is positive,
we need to have the conditions c0 > 0 and c0 + c1 > 0.

Using the fact that a/a0 = (1+z)−1, where z is the redshift parameter and prime denotes
the derivative with respect to x = ln a, we arrive at c′ = −(1+ z)dc/dz. Taking derivatives
of (20), it follows that

c′ = −(1 + z)
dc

dz
= − c1

1 + z
. (21)
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Substituting (20) and (21) into (17), the EoS parameter is obtained as

ωD(z) = 2

3

c1(1 + z)2

[c0(1 + z) + c1z](1 + z)2 − [c0(1 + z) + c1z]3 . (22)

Combining (20) and (21) with (19), we can obtain the deceleration parameter as

q(z) = 1

2
+ c0c1(1 + z) + c21z

(1 + z)2 − [c0(1 + z) + c1z]2 . (23)

The behavior of ωD(z) and q(z) are plotted for different values of model parameters c0 and
c1 in Fig. 1. From these figures we see that our Universe has a transition from deceleration
to the acceleration phase around z ≈ 0.6 which is consistent with observations [60–65].

2.2 GHDE2: the JBP Model

The second parametrization of c(z) is the JBP parametrization which is written as

c(z) = c0 + c1
z

(1 + z)2
(24)

From (24) we see that at the late time where z → 0, we have c(z) → c0, and as z → 1, we
have c(z) → c0 + c1/4. Besides, in the early universe where z → ∞, we have c(z) → c0.

Taking derivative of (24) we find

c′(z) = −c1
1 − z

(1 + z)2
. (25)

Substituting (24) and (25) into (17), we obtain the EoS parameter for GHDE2 model as

ωD = 2

3

c1(1 − z)(1 + z)4

[c0(1 + z)2 + c1z][(1 + z)4 − (c0(1 + z)2 + c1z)2] . (26)

Combining (24) and (25) with (19) yields

q = 1

2
+ c1(1 − z)[c0(1 + z)2 + c1z]

(1 + z)4 − [c0(1 + z)2 + c1z]2 (27)
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Fig. 1 The evolution of EoS parameter ωD and the deceleration parameter q versus redshift z for GHDE1
model with L = H−1
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The behavior of ωD(z) and q(z) are plotted for different values of model parameters c0 and
c1 in Fig. 2. Again, the universe has a transition from deceleration to the acceleration phase
around z ≈ 0.6 and at the late time the EoS parameter can cross the phantom linewD = −1.

2.3 GHDE3: the Wetterich Type

The third parametrization is Wetterich-type which has the following form of c(z):

c(z) = c0

1 + c1 ln(1 + z)
. (28)

In this model, at the late time where z → 0, we have c(z) → c0 and at the early universe
where z → ∞, we get c(z) → 0. It follows directly that,

c′(z) = −(1 + z)
dc(z)

dz
= c0c1

[1 + c1 ln(1 + z)]2 . (29)

Inserting (28) and (29) into (17), one can get

ωD(z) = −2

3

c1[1 + c1 ln(1 + z)]
[1 + c1 ln(1 + z)]2 − c20

. (30)

Combining (19), (28) and (29), we find

q(z) = 1

2
+ c20c1

[1 + c1 ln(1 + z)]
(
c20 − [1 + c1 ln(1 + z)]2

) . (31)

We have plotted the evolutions of ωD(z) and q(z) in term of redshift parameter z in Fig. 3.
From these figures it is obvious that the present acceleration can be addressed in this model
and the transition from deceleration to the acceleration phase occurs around z ≈ 0.6.

2.4 GHDE4: the Ma-Zhang Type

The last choice for the parametrization of c(z) was proposed in [57] and can be written as

c(z) = c0 + c1

(
ln(2 + z)

1 + z
− ln 2

)
. (32)
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Fig. 2 The evolution of EoS parameter ωD and the deceleration parameter q versus redshift z for GHDE2
with L = H−1
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Fig. 3 The evolution of ωD and q versus redshift z for GHDE3 with L = H−1

At the present time where z → 0 we have c(z) → c0, and at the early time where z → ∞,
one gets c(z) → c0−c1 ln 2. It is worth noting that for the previous choice of c(z), we could
not investigate the future behavior of c(z), because it diverges at the future time where z →
−1. However, in case of the Ma-Zhang parametrization we have c(z) → c0 + (1 − c1 ln 2)
as z → −1. From (32) it is easy to show that

c′(z) = −(1 + z)
dc(z)

dz
= c1

(2 + z) ln(2 + z) − (1 + z)

(1 + z)(2 + z)
. (33)

Combining (32) and (33) with (17) and (19), we arrive at

ωD(z)= 2

3

c1(1 + z)2[(1 + z) − (2 + z) ln(2 + z)]
(2+z)(c0(1+z)+c1 ln(2+z)−c1(1+z)ln2)[(1+z)2−[c0(1+z)+c1ln(2+z)−c1(1+z)ln2]2] ,

(34)

q(z) = 1

2
+ c1[c0(1 + z) + c1 ln(2 + z) − c1(1 + z) ln 2][1 + z − (2 + z) ln(2 + z)]

(2 + z)
(
(1 + z)2 − [c0(1 + z) + c1 ln(2 + z) − c1(1 + z) ln 2]2

) .

(35)
In order to have an insight on the behaviour of these functions, we plot them in term
of z in Fig. 4. From these figures, we see that the behaviour is similar to the previous
parameterizations.

3 GHDE in Flat Universe with GO Cutoff

In this section we consider the GO cutoff as the system’s IR cutoff, namely L = (αH 2 +
βḢ )−1/2 which first proposed in [59]. With this IR cutoff, the energy density (2) is written

ρD = 3M2
pc2(z)

(
αH 2 + βḢ

)
, (36)
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Fig. 4 The evolution of EoS parameter ωD and the deceleration parameter q versus redshift z for GHDE4
with L = H−1

where α and β are constants that should be constrained by observational data. Using the
definition of density parameter (10) one can obtain

�D = c2(z)

(
α + β

Ḣ

H 2

)
. (37)

Taking the time derivative of (37), we get

�̇D = 2�D

(
ċ(z)

c(z)
− Ḣ

H

)
+ c2(z)

H 2

(
2αḢH + βḦ

)
. (38)

Now taking the time derivative of both sides of (8) and using (36) one can obtain

c2H−3(2αḢH + βḦ ) = 2
Ḣ

H 2
+ 3(1 − �D) − 2�D

ċ(z)

Hc(z)
. (39)

Combining (38) and (39) the equation of motion for the dimensionless GHDE density can
be written as

�̇D = (1 − �D)

(
2Ḣ

H
+ 3H

)
. (40)

By help of (37) and using the fact that �̇D = H�′
D , the evolution of dimensionless GHDE

density may be rewritten as

�′
D(z) = (1 − �D)

(
2�D

βc2(z)
− 2α

β
+ 3

)
, (41)

where the prime denotes derivative with respect to x = ln a. Taking the time derivative of
both sides of (8) and using (12) and (37) we can obtain the EoS parameter of GHDE model
as follows

ωD(z) = 2α

3β�D

− 2

3βc2(z)
− 1

�D

. (42)

Substituting (37) into (18), we get

q(z) = −1 − �D

βc2(z)
+ α

β
. (43)

Following the previous section, we shall consider four types of parametrization of c(z) listed
in (4)–(7), respectively.
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3.1 GHDE1: The CPL type

Substituting (4) in (41), the equation of the evolutionary of dimensionless GHDE1 density
is obtained as

�′
D = (1 − �D)

(
2�D(1 + z)2

β(c0(1 + z) + c1z)2
− 2α

β
+ 3

)
(44)

The evolution of the dimensionless GHDE density parameter �D as a function of 1 + z =
a−1 is shown in Fig. 5. From this figure we see that at the early universe where z → ∞ we
have �D → 0, while at the late time where z → −1, the DE dominated, namely �D → 1.

Using (4), (42) and (43) we can obtain the equation of state and deceleration parame-
teres as

ωD(z) = 2α

3β�D

− 2(1 + z)2

3β[c0(1 + z) + c1z]2 − 1

�D

, (45)

q(z) = −1 − �D(1 + z)2

β(c0(1 + z) + c1z)2
+ α

β
. (46)

The evolution of EoS parameter ωD and deceleration parameter q are shown numerically in
Fig. 6. where we fix c0 = 2.7, c1 = −0.7 and set different values of α and β. From these
figures we clearly see that we have a transition from deceleration to acceleration universe
phase around z ≈ 0.6 which is compatible with observations [63–65].

3.2 GHDE2: the JBP Model

Combining (5) and (41) one can derive he evolution of dimensionless GHDE2 density as

�′
D = (1 − �D)

(
2�D(1 + z)4

β(c0(1 + z)2 + c1z)2
− 2α

β
+ 3

)
(47)
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Fig. 5 The evolution of the dimensionless density parameter �D versus redshift z for GHDE1 model with
GO cutoff
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Fig. 6 The evolution of equation of state parameterωD and deceleration parameter q versus 1+z for GHDE1
model with GO cutoff

The evolution of the dimensionless GHDE density parameter �D as a function of redshift
z is shown in Fig. 7. Using (24), (42) and (43) we can obtain the equation of state and
deceleration parameters as

ωD(z) = 2α

3β�D

− 2(1 + z)4

3β[c0(1 + z)2 + c1z]2 − 1

�D

, (48)

q(z) = −1 − �D(1 + z)4

β[c0(1 + z)2 + c1z]2 + α

β
. (49)
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Fig. 7 The evolution of the dimensionless density parameter �D versus 1 + z for GHDE2 model with GO
cutoff
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Fig. 8 The evolution of equation of state parameterωD and deceleration parameter q versus 1+z for GHDE2
model with GO cutoff

The behavior of the equation of state parameter ωD and deceleration parameter q are plotted
in Fig. 8. Again, our universe has a phase transition during its history from a decelerated to
an acceleration phase.

3.3 GHDE3: the Wetterich Type

Using (6) and (41) we obtain the evolution of dimensionless GHDE3 density as
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+ 3

)
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Fig. 9 The evolution of the dimensionless density parameter �D versus redshift 1 + z for GHDE3 model
with GO cutoff
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Fig. 10 The evolution of equation of state parameter ωD and deceleration parameter q versus 1 + z for
GHDE3 model with GO cutoff

The evolution of the dimensionless GHDE density parameter �D as a function of redshift
z is shown in Fig. 9. Inserting (28) in (42) and (43) we can obtain the equation of state and
deceleration parameters as follows

ωD(z) = 2α

3β�D

− 2[1 + c1 ln(1 + z)]2
3βc20

− 1

�D

, (51)

q(z) = −1 − �D(1 + c1 ln(1 + z))2

βc20

+ α

β
. (52)

The behavior of the EoS parameter ωD and deceleration parameter q are plotted in Fig. 10.

z+1

Ω
D

0 1 2 3
0

0.2

0.4

0.6

0.8

1

α=0.7, β=0.5
α=0.5, β=0.3

c
0
=1.4, c

1
=0.8

Fig. 11 The evolution of the dimensionless density parameter �D versus 1+ z for GHDE4 model with GO
cutoff
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Fig. 12 The evolution of equation of state parameter ωD and deceleration parameter q versus 1 + z for
GHDE4 model with GO cutoff

3.4 GHDE4: the Ma-Zhang Type

Using (7) and (41), it is easy to show that the evolution of the dimensionless GHDE4 density
can be obtained as

�′
D = (1 − �D)

(
2�D(1 + z)2

β[c0(1 + z) + c1 ln(2 + z) − c1(1 + z) ln 2]2 − 2α

β
+ 3

)
. (53)

Figure 11 shows the evolution of the dimensionless GHDE density parameter �D . Again, at
the early universe where z → ∞ we have �D → 0, while at the late time where z → −1,
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Fig. 13 The evolution of equation of state parameter ωD and deceleration parameter q versus 1 + z for
GHDE4 model with GO cutoff
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the DE dominated, namely �D → 1. Inserting (7) in (42) and (43) we can obtain the EoS
and the deceleration parameters as follows

ωD(z) = 2α

3β�D

− 2(1 + z)2

3β[c0(1 + z) + c1 ln(2 + z) − c1(1 + z) ln 2]2 − 1

�D

, (54)

q(z) = −1 − �D(1 + z)2

β[c0(1 + z) + c1 ln(2 + z) − c1(1 + z) ln 2]2 + α

β
. (55)

The behavior of the EoS parameter ωD and the deceleration parameter q are plotted in
Figs. 12 and 13. When we fix 1 ≤ c0 ≤ 2 and −1 ≤ c1 ≤ 0 and vary the parameter
0 ≤ α, β ≤ 1 the GHDE4 can behave as phantom DE model at the future, while for
c0, c1 > 0 and 1 < α, β < 2 the EoS parameter cannot cross the phantom line and is always
larger than −1.

4 Conclusion and Discussion

In this paper, we have studied HDE with time varying parameter c2, the so-called general-
ized holographic dark energy (GHDE), in a spatially flat universe. It is important to note
that, for the sake of simplicity, very often the c2 parameter in the HDE model is assumed
constant. However, in general it can be regarded as a function of redshift parameter z dur-
ing the history of the universe. By choosing four parameterizations of c(z), including the
CPL type, JBP type, Wetterich type and Ma-Zhang type parameterizations for c(z), we have
investigated the effects of varying c2(z) term on the cosmological evolutions of the HDE
model. As system’s IR cutoff we considered the Hubble radius L = H−1 and the GO cut-
off L = (αH 2 + βḢ )−1/2 inspired by the Ricci scalar curvature. We have investigated the
evolution of EoS and deceleration parameters for all these parameterizations. We found that
all GHDE models, with both Hubble and GO cutoffs, can lead to an accelerated expanding
Universe.

The simple and natural choice for the system’s IR cutoff in the HDE model is the Hub-
ble radius L = H−1. However, it was argued that this choice for the IR cutoff leads to
a wrong equation od state for dark energy, namely ωD = 0 [8], unless the interaction
between two dark components of the universe is taken into account [48, 49]. In this paper,
we demonstrated that by taking into account the time varying parameter c(z) can leads to an
accelerated universe for L = H−1 IR cutoff, even in the absence of the interaction between
two dark components of energy of the universe. Besides, by suitably choosing of the param-
eter, not only the accelerated universe can be achieved, but also the EoS parameter can cross
the phantom line ωD = −1, even in the absence of interaction. As far as we know, this is a
new result, which has not been reported already. In order to more investigate the behavior
of the EoS and deceleration parameters, we plotted the evolution of these parameters ver-
sus redshift parameter z. From these figures we see that has a decelerated phase at the early
time (z → ∞) and encounters a phase transition to an accelerated phase around z ≈ 0.6
which is consistent with recent observations [60–65].
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