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Abstract We show in the present paper that pseudo-Hermitian Hamiltonian systems with
even PT -symmetry (P2 = 1,T 2 = 1) admit a degeneracy structure. This kind of degen-
eracy is expected traditionally in the odd PT -symmetric systems (P2 = 1,T 2 = −1)
which is appropriate to the fermions (Scolarici and Solombrino, Phys. Lett. A 303, 239
2002; Jones-Smith and Mathur, Phys. Rev. A 82, 042101 2010). We establish that the
pseudo-Hermitian Hamiltonians with even PT -symmetry admit a degeneracy structure if
the operator PT anticommutes with the metric operator ησ which is necessarily indefi-
nite. We also show that the Krein space formulation of the Hilbert space is the convenient
framework for the implementation of unbroken PT -symmetry. These general results are
illustrated with great details for four-level pseudo-Hermitian Hamiltonian with even PT
-symmetry.

Keywords Pseudo-Hermiticity · PT -symmetry · Degeneracy · Krein space

1 Introduction

The research works which deal with pseudo-Hermitian and PT -symmetric Hamiltoni-
ans have received a great deal of interest over the last two decades [3–10, 12, 13]. In this
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context, Sato et al. [14] established a generalization of the Kramers degeneracy to pseudo-
Hermitian Hamiltonians admitting even time-reversal symmetry (T 2 = 1). This extension
is achieved using the mathematical structure of split-quaternions1 instead of quaternions,
usually adopted in the case of Hermitian Hamiltonians with odd time-reversal symmetry
(T 2 = −1) [15]. In a recent paper [16], we have found that the metric operator for the
pseudo-Hermitian Hamiltonian H that allows the realization of the generalized Kramers
degeneracy is necessarily indefinite. We have further shown that such H with real spectrum
also possesses odd antilinear symmetry induced from the existing odd time-reversal sym-
metry of its Hermitian counterpart h, so that the generalized Kramers degeneracy of H is in
fact crypto-Hermitian Kramers degeneracy [16].

On the other hand, as it is well known in PT quantum theory [5, 12], due to the anti-
linearity of PT , the eigenstates of a PT -symmetric Hamiltonian H , may or may not
be the eigenstates of PT . If every eigenstate of H is also an eigenstate of PT , then we
have an unbroken PT -symmetry, which corresponds to real eigenvalues. Conversely, if
some of the eigenstates of a H are not simultaneously eigenstates of PT , then we have
a broken PT -symmetry, which corresponds to complex conjugate eigenvalues. The PT
-broken and PT -unbroken phases are separated by exceptional points (EPs) [17]. For PT -
symmetric systems, the exceptional points are an obligatory passage in the PT -broken and
PT -symmetric phase transitions. In this context, Berry has shown [18] that non-Hermitian
physics differs radically from Hermitian physics in the presence of degeneracies. This non-
Hermitian behavior has been further illustrated in several physical examples [18]. Recently,
the role of degeneracy in PT -symmetry breaking has been also subject of investigations
[19]. The degeneracy for odd PT -symmetric systems (P2 = 1,T 2 = −1) appropriate to
the fermions was first proven by Scolarici and Solombrino in [1], and studied afterwards by
Jones-Smith and Mathur [2] who extended PT -symmetric quantum mechanics to the case
of odd time-reversal symmetry. It has been established that an analog of Kramers degen-
eracy exists also for odd PT -symmetric systems, and an unbroken PT -symmetry can
exist if we assemble the two column vectors of the PT doublets in a single quaternionic
column [2].

The purpose of the present paper is to extend the non-Hermitian degeneracy behav-
ior developed for odd PT -symmetric systems [2] to even PT -symmetric ones
(P2 = 1,T 2 = 1).

The paper is organized as follows. In Section 2, we first analyze the existence of the
degeneracy structure for pseudo-Hermitian Hamiltonian systems with even PT -symmetry.
We will establish that the degeneracy structure exists if the PT operator anticommutes
with the metric operator ησ , which is necessarily indefinite metric. Moreover, we empha-
size in Section 3 the role of the Krein space formulation of the Hilbert space for restoring
an unbroken PT -symmetry. This degeneracy structure is thus well implemented in the
Krein space formulation of the Hilbert space. In the purpose of illustration of the above
general results, we study in great details in Section 4, the pseudo-Hermitian four-level
Hamiltonian invariant under the even PT -symmetry. The paper ends with conclusion and
outlook.

1The quaternion algebra is generated by the 2 × 2 unit matrix σ0 and the pure imaginary complex number
i multiplied by the SU(2) Pauli matrices (iσx, iσy, iσz), while the split-quaternion algebra is generated by
the 2 × 2 unit matrix σ0 and the pure imaginary complex number i multiplied by the SU(1,1) Pauli matrices
(−σx,−σy, iσz).
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2 Pseudo-Hermiticity, PT -Symmetry and Degeneracy

We start our analysis by considering a diagonalizable non-Hermitian Hamiltonian H with a
real discrete spectrum. The associated complete biorthonormal eigenbasis

{|ψn,a〉, |φn,a〉
}

satisfies by definition [6, 9, 10, 20, 21],

H |ψn,a〉 = En|ψn,a〉,H†
∣∣φn,a

〉 = E∗
n

∣∣φn,a

〉
, (1)

〈φm,b

∣∣ψn,a

〉 = δmnδab, (2)

∑

n

dn∑

a=1

∣∣φn,a

〉 〈ψn,a | =
∑

n

dn∑

a=1

∣∣ψn,a

〉 〈φn,a | = 1, (3)

H =
∑

n

dn∑

a=1

En

∣∣ψn,a

〉 〈φn,a |, (4)

where n and a, b are, respectively, the spectral and degeneracy labels, dn is the multiplicity
(degree of degeneracy) of En. The Hamiltonian H is taken to be pseudo-Hermitian, this
means that H satisfies the relation [6, 9]

H † = ηHη−1, (5)

where η is Hermitian, linear invertible operator. As we deal with real eigenvalues of H, for
such H there exists a positive definite metric operator η+ given by [10],

η+ =
∑

n

dn∑

a=1

∣∣φn,a

〉 〈φn,a |, (6)

and its inverse

η−1+ =
∑

n

dn∑

a=1

∣∣ψn,a

〉 〈ψn,a |, (7)

with the properties [6, 10]
∣∣φn,a

〉 = η+
∣∣ψn,a

〉
, |ψn,a〉 = η−1+

∣∣φn,a

〉
. (8)

As established in [10], besides η+, there are Hermitian invertible operators ησ that are also
associated with the same biorthonormal system (1)–(4) and satisfy the pseudo-Hermitian
relation (5). ησ and its inverse are given by [10]:

ησ =
∑

n

dn∑

a=1

σa
n

∣∣φn,a

〉 〈φn,a |, (9)

and

η−1
σ =

∑

n

dn∑

a=1

σa
n

∣∣ψn,a

〉 〈ψn,a |, (10)

where σ = (σ a
n ) is a sequence of signs σa

n = ±. Thus, ησ and η+ are both metric operators
associated to the Hamiltonian H. Moreover, ησ and η+ are linked via the following relation
[11],

Cσ = η−1+ ησ , (11)

or
η+ = ησCσ , (12)
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where Cσ is the grading operator, which is a linear invertible involution operator2 associated
with H, given by [9, 10],

Cσ =
∑

n

dn∑

a=1

σa
n

∣∣ψn,a

〉 〈φn,a |, with C2
σ = 1, (13)

with the properties [9],
Cσ

∣∣ψn,a

〉 = σa
n

∣∣ψn,a

〉
. (14)

Since Cσ is an involution operator (C2
σ = 1), in view of (14) one deduce that σa2

n = 1. From
the equations (11) and (14), one can express the relations between |ψn,a〉 and |φn,a〉 given
in (8) as follow,

∣∣φn,a

〉 = ησCσ

∣∣ψn,a

〉 = σa
n ησ

∣∣ψn,a

〉
,

∣∣ψn,a

〉 = σa
n η−1

σ

∣∣φn,a

〉
. (15)

Furthermore, we assume that H is invariant under the even PT -symmetry, i.e
[
H,PT

] =
0, where P and T are parity and even time-reversal operators respectively, (P2 = 1,T 2 =
1). Here we define the parity operator P by following the definition given in [2]. The action
of P to any state ψ is to multiply ψ by the matrix S which is a real N -dimensional matrix
given by [2],

S =
(

I 0
0 −I

)
, (16)

where I denotes the (N/2)-dimensional identity matrix. For the time-reversal operator, one
follows the definition given in [14] as T = ZK, with K being a complex conjugation
operator, Z is an unitary matrix which can be chosen as a real matrix with all the diagonal
terms equal to a 2 × 2 Pauli matrix σx and all the off-diagonal terms equal to zero [14],
namely

Z =

⎛

⎜⎜
⎝

σx

.

.

σx

⎞

⎟⎟
⎠ , σx =

(
0 1
1 0

)
. (17)

We have T 2 = 1. It is useful to note that as established [2], the non-Hermitian Hamiltonians
which are invariant under the odd PT -symmetry, admit Kramers degeneracy implemented
by the mathematical structure of quaternions [15]. This degeneracy is expected because the
time-reversal operator is odd (T 2 = −1).

We propose to show in the following that a degeneracy exists also for pseudo-Hermitian
Hamiltonians with even PT -symmetry. In order to show the degeneracy in the eigenvalues
of H , we show that the eigenstates |ψn,a〉 and PT |ψn,a〉 which correspond to the same
eigenvalue En are linearly independent. As shown in [22], any antiunitary operator θ can be
written as θ = UK, where U is an unitary operator and K is the conjugation operator. Here
we have

θ = PT = SZK = UK, (18)

where U = SZ is the unitary operator. Moreover, according to [14], one deduce from the
antiunitary property3 of PT , that pseudo-Hermiticity is consistent with the PT -symmetry
if the metric operator commutes or anticommutes with the PT operator. Thus, as in [14],

2The operator Cσ is denoted by Sσ in reference [10]. See equation (43) of [10] and the propostion 4 just
before this equation.
3The antiunitary property means that for any operator antiunitary denoted θ , we have 〈θx |θy〉 = 〈y |x〉.
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the metric operators are classified into two categories: The first which commutes with PT
and the second which anticommutes with PT .

Now we compute 〈φn,a

∣∣PT ψn,a

〉
, where |ψn,a〉 and |φn,a〉 form a complete biorthonor-

mal eigenbasis (1)–(3). By using the antiunitary property ofPT , with the fact that (PT )2 =
1 and the relations between |ψn,a〉 and |φn,a〉 given in (15), we have

〈φn,a

∣∣PT ψn,a

〉=〈(PT )2ψn,a

∣∣PT φn,a

〉 = 〈ψn,a

∣∣PT φn,a

〉=〈φn,aσ
a
n η−1

σ

∣∣PT σa
n ησ ψn,a

〉

=σa2

n 〈φn,aη
−1
σ

∣∣PT ησ ψn,a

〉 = 〈φn,aη
−1
σ

∣∣PT ησ ψn,a

〉
. (19)

Here we have the term σa2

n which appears in fact in the last step of (19), this term has no

effect since σa2

n = 1. If PT and ησ anticommutes, one finds from the last equation that

〈φn,a

∣∣PT ψn,a

〉 = −〈φn,aη
−1
σ

∣∣ησPT ψn,a

〉
. (20)

The Hermiticity of ησ leads to

〈φn,a

∣∣PT ψn,a

〉 = −〈φn,a

∣∣PT ψn,a

〉
. (21)

We have thereby 〈φn,a

∣∣PT ψn,a

〉 = 0. On the other hand, from (2) we have 〈φn,a

∣∣ψn,a

〉

= 1, so, one deduces that |ψn,a〉 and PT |ψn,a〉 are linearly independent. Consequently, as
in the odd PT -symmetric case [1, 2], we have also two fold degeneracy in the eigenstates
of H although the PT -symmetry is even. Here we point out that the PT doublet |ψn,a〉
and PT |ψn,a〉 are linearly independent but they are not orthogonal as in the odd PT -
symmetric case. Now we show that in the above described scheme the indefiniteness feature
of the metric operator ησ . In this aim, we shall show that the ησ -norm related to the ησ -inner
product 〈. |.〉ησ

= 〈. |ησ .〉 of the eigenstates of H is indefinite [26–29]. Thus we compute
the norms 〈ψn,a

∣∣ψn,a

〉
ησ

and 〈PT ψn,a

∣∣PT ψn,a

〉
ησ
. We have

〈PT ψn,a

∣∣PT ψn,a

〉
ησ

= 〈PT ψn,a

∣∣ησPT ψn,a

〉
. (22)

By using the anticommutation relation between ησ andPT , the antiunitary property of PT
and (PT )2 = 1, the Hermiticity of ησ , one obtains from the last equation that

〈PT ψn,a

∣∣PT ψn,a

〉
ησ

= −〈PT ψn,a

∣∣PT ησ ψn,a

〉 = −〈(PT )2ησ ψn,a

∣∣∣(PT )2ψn,a

〉

= −〈ησ ψn,a

∣
∣ψn,a

〉 = −〈ψn,a

∣
∣ησ ψn,a

〉 = −〈ψn,a

∣
∣ψn,a

〉
ησ

. (23)

Thereby, the norms 〈ψn,a

∣∣ψn,a

〉
ησ

and 〈PT ψn,a

∣∣PT ψn,a

〉
ησ

are of opposite signs, which
confirm the indefiniteness feature ησ . Due to this degeneracy behavior, a question arises: Is
thePT -symmetry in the broken or unbroken phase? Traditionally, thePT -broken andPT -
unbroken phases are separated by exceptional points which are non-Hermitian degenerate
points with coalesced eigenvalues and eigenvectors. In our case, we deal with an other kind
of degeneracy different from the exceptional points degeneracy.

In conclusion of this section, we have established that the pseudo-Hermitian Hamiltoni-
ans with evenPT -symmetry admit a degeneracy structure if the operatorPT anticommutes
with the metric operator ησ which is necessarily indefinite.

3 Krein Space Formulation

Let us show how we achieve an unbroken PT -symmetry. The idea is the passage to the
Krein space formulation of the Hilbert space. We recall that in the case of even PT -
symmetry, PT is said to be unbroken if the states

∣∣ψn,a

〉
are invariant under PT , i.e
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PT
∣∣ψn,a

〉 = ∣∣ψn,a

〉
. However, the situation is different here, although thePT -symmetry is

even, the eigenstates
∣∣ψn,a

〉
are not invariant under PT , i.e PT

∣∣ψn,a

〉 �= ∣∣ψn,a

〉
because we

have established previously that the PT doublets |ψn,a〉 and PT |ψn,a〉 are linearly inde-
pendent. Then the PT -symmetry is broken in the Hilbert space spanned by the eigenstates
of H . The way out from this dead end is in fact to introduce the Krein space formulation of
the Hilbert space [24, 25]. Indeed, let us define new eigenstate |χn,a〉 spanned by the PT
doublets |ψn,a〉 and PT |ψn,a〉 as follows,

|χn,a〉 = i√
2

(|ψn,a〉 − PT |ψn,a〉
)
, (24)

with the following properties, (i) the |χn,a〉 are eigenstates of H with the same eigenvalue
En, (ii) the states |χn,a〉 are invariant under PT , i.e

PT |χn,a〉 = − i√
2
PT

(|ψn,a〉 − PT |ψn,a〉
) = |χn,a〉, (25)

we have used the anti-linearity and the involution properties of PT . Now we show that
the Hilbert space K spanned by the states |χn,a〉 is a Krein space [24, 25]. K possess the
following properties: (i) K is endowed with the indefinite inner product 〈. |.〉ησ

defined in
Section 2. (ii) K can be decomposed in a pair of vector subspaces H±, where H+ and
H− are spanned by the PT doublets |ψn,a〉 and PT |ψn,a〉 respectively; K = H+ ⊕
H−, where ⊕ means direct sum which means that for all element f ∈ K there are unique
f± ∈ H± such that f = f+ + f−. (iii) In the purpose of showing that H+ and H− are
orthogonal, we calculate the inner product 〈ψn,a

∣∣PT ψn,a

〉
ησ

for any elements |ψn,a〉 ∈ H+
and PT |ψn,a〉 ∈ H−, we have

〈ψn,a

∣∣PT ψn,a

〉
ησ

= 〈ψn,a

∣∣ησPT ψn,a

〉 = −〈ψn,a

∣∣PT ησ ψn,a

〉 = −〈(PT )2ησ ψn,a

∣∣PT ψn,a

〉

= −〈ησ ψn,a

∣∣PT ψn,a

〉 = −〈ψn,a

∣∣ησPT ψn,a

〉 = −〈ψn,a

∣∣PT ψn,a

〉
ησ

, (26)

thereby 〈ψn,a

∣∣PT ψn,a

〉
η

= 0. This means thatH+ andH− are orthogonal. Here, we have
again used the anticommutation relation between ησ and PT and the antiunitary property
ofPT and (PT )2 = 1. The Hilbert spaceK is therefore a Krein space. It should be noticed
that the condition of unbroken PT -symmetry in the odd case is different to our even PT -
symmetry case. Indeed, in the odd case the PT doublets are assembled in two column
vectors (|ψn,a〉, PT |ψn,a〉) which form a single component column of quaternions [2]. It
is not possible to assemble our PT doublets in two column vectors, because the single
component column obtained is a split-quaternion which possesses a structure different from
the quaternion [14].

4 Illustration

In this section we illustrate the above general results with an example. We consider the
four-level model described by the following non-Hermitian Hamiltonian:

H =
(

a ib

ic −a

)
, (27)
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where b = b0σ0 + b1σx + b2σy − ib3σz and c = b0σ0 − b1σx − b2σy + ib3σz are real
split-quaternions4, and a = a0σ0 is the real split-quaternion proportional to the identity, the
σk (k = x, y, z) are the Pauli matrices. By setting A = b1 + ib2 and B = b0 + ib3, this
Hamiltonian H can also be written as a four-level Hamiltonian as follows:

H =

⎛

⎜⎜
⎝

a0 0 iB∗ iA∗
0 a0 iA iB

iB −iA∗ −a0 0
−iA iB∗ 0 −a0

⎞

⎟⎟
⎠ , (28)

where A∗ and B∗ are complex conjugates of A and B respectively. The Hamiltonian H ,
in (28), satisfies the following properties: (i) H is pseudo-Hermitian, this means that H

satisfies the relation H † = ηHη−1, (ii) H is invariant under the even PT -symmetry, i.e[
H,PT

] = 0, with P2 = 1,T 2 = 1, where P and T are given in the case of the four-level
system by [2, 16],

P =
(

I2 0
0 −I2

)
,T =

(
σx 0
0 σx

)
K , (29)

where I2 is the 2 × 2 identity matrix, σx is Pauli matrix, K being the complex conjugation
operator. Moreover, H admits an indefinite metric operator ησ which anticommutes with
PT , ησ is given explicitly by,

ησ =
(

σz 0
0 −σz

)
. (30)

The igenvalues of H are

E± = ±	, with 	 =
√

a20 + |A|2 − |B|2.
This eigenvalues are indeed twofold degenerate. The Hamiltonian H represents a new class
of even PT -symmetric Hamiltonians with degeneracy. We remark that H is asymmetric.
We deal with real eigenvalues, i.e.

a20 + |A|2 > |B|2 . (31)

The PT doublets (|ψ−+〉 , |ψ−−〉) and (|ψ++〉 , |ψ+−〉) associated to the negative and
positive eigenvalues respectively are given as follows:

For the negative eigenvalue E− = −	:

|ψ−+〉 = k

⎛

⎜⎜
⎝

iA∗
iB

0
−(	 + a0)

⎞

⎟⎟
⎠ , |ψ−−〉 = PT |ψ−+〉 = k

⎛

⎜⎜
⎝

−iB∗
−iA

(	 + a0)

0

⎞

⎟⎟
⎠ , (32)

For the positive eigenvalue E+ = 	:

|ψ++〉 = k

⎛

⎜
⎜
⎝

(	 + a0)

0
iB

−iA

⎞

⎟⎟
⎠ , |ψ+−〉 = PT |ψ++〉 = k

⎛

⎜
⎜
⎝

0
	 + a0
−iA∗
iB∗

⎞

⎟⎟
⎠ . (33)

4The split-quaternion algebra is generated by the 2×2 unit matrix σ0 and the pure imaginary complex number
i multiplied by the SU(1,1) Pauli matrices (−σx,−σy, iσz).
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The eigenstates (|φ−+〉 , |φ−−〉) and (|φ++〉 , |φ+−〉) associated to H † are obtained by the
action of ησ given in (30) to the eigenstates of H , they are given for the negative eigenvalue
E− = −	 by:

|φ−+〉 = k

⎛

⎜⎜
⎝

iA∗
−iB

0
−(	 + a0)

⎞

⎟⎟
⎠ , |φ−−〉 = k

⎛

⎜⎜
⎝

−iB∗
iA

−(	 + a0)

0

⎞

⎟⎟
⎠ , (34)

and for the positive eigenvalue E+ = 	 by:

|φ++〉 = k

⎛

⎜⎜
⎝

	 + a0
0

−iB

−iA

⎞

⎟⎟
⎠ , |φ+−〉 = k

⎛

⎜⎜
⎝

0
−(	 + a0)

iA∗
iB∗

⎞

⎟⎟
⎠ , (35)

where k is the normalization constant fixed by the requirement that:

2	( 	 + a0) |k|2 = 1. (36)

These states satisfy the abnormal relations which is a consequence of the indefinite metric
ησ given in (30),

〈ψ++ |φ++〉 = 1, 〈ψ+− |φ+−〉 = −1, 〈ψ−+ |φ−+〉 = 1, 〈ψ−− |φ−−〉 = −1,

〈ψmα |φm α〉 = 0, 〈ψmα |φm α〉 = 0, 〈ψmα |φm α〉 = 0. (37)

where α = ±, m = ± , m and α are the opposite signs of m and α respectively. These states
satisfy also the relations

|ψ++〉〈φ++| − |ψ+−〉〈φ+−| + |ψ−+〉〈φ−+| − |ψ−−〉〈φ−− | = 1. (38)

The (indefinite) ησ -norms of the PT doublets are given by

〈ψ++|ψ++〉ησ = 〈ψ++|φ++〉 = 1, 〈ψ+−|ψ+−〉ησ = 〈ψ+−|φ+−〉 = −1, (39)

〈ψ−+
∣∣ψ−+

〉
ησ

= 〈ψ−+
∣∣φ−+

〉 = 1, 〈ψ−−
∣∣ψ−−

〉
ησ

= 〈ψ−−
∣∣φ−−

〉 = −1. (40)

We see that the eigenstates
∣∣ψn,a

〉
are not invariant under PT , i.e PT

∣∣ψn,a

〉 �= ∣∣ψn,a

〉
,

the PT -symmetry is therefore broken. In order to restore an unbroken PT -symmetry,
one introduces the Krein space formulation of the Hilbert space. The Krein space K is
spanned by the states |χ−+〉 and |χ++〉 which are linear combination of the The PT dou-
blets (|ψ−+〉 ,PT ||ψ−+〉) and (|ψ++〉 ,PT |ψ++〉) associated to the negative and positive
eigenvalue respectively. Thus, in the Krein space K, the eigenstates are given by,

For the negative eigenvalue E = −	:

|χ−+〉 = i√
2

(|ψ−+〉 − PT |ψ−+〉) , (41)

for the positive eigenvalue E+ = 	:

|χ++〉 = i√
2

(|ψ++〉 − PT |ψ++〉) . (42)

We see that states |χ−+〉 and |χ++〉 are invariant under PT , i.e

PT |χ−+〉 = − i√
2
PT (|ψ−+〉 − PT |ψ−+〉) = |χ−+〉, (43)

and

PT |χ++〉 = − i√
2
PT (|ψ++〉 − PT |ψ++〉) = |χ++〉. (44)
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One has therefore achieved an unbroken PT -symmetry in the Krein space K.

5 Conclusion and Outlook

We have established in the present paper a new kind of degeneracy structure which is due
to the non-Hermitian behavior of the system. We have shown that the pseudo-Hermitian
Hamiltonians with real eigenvalues and even PT -symmetry admit a degeneracy structure if
the operator PT anticommutes with the metric operator ησ which is necessarily indefinite.
We have also shown that the Krein space formulation of the Hilbert space is the conve-
nient framework for the implementation of unbroken PT -symmetry for our system. Let us
discuss some implications and outlook of our analysis.

• (1): It is useful to point out that the PT -symmetric four-level Hamiltonian H given
in (27) represents a new class of PT -symmetric Hamiltonians written in split-
quaternionic form which represent the most general traceless Hamiltonian matrix in
the case of even PT -symmetry by generalizing the time reversal operator to include a
matrix multiplying the complex conjugation operator. The study of further features of
this Hamiltonian will be interesting. For instance the construction of the CPT inner
product in the form of Mostafazadeh η+ inner product [30], with η+ ≡ PC.

• (2): The generalization to evenPT -symmetry of thePT - and CPT -symmetric repre-
sentations of fermionic algebras developed by Bender [31] and one of the actual authors
[23] in the odd PT -symmetric case, will be also a part of our future investigations.

• (3): It is useful to point out that the graded time-reversal operator in fermion Fock space
is also an interesting outlook. In this case, the Hilbert space is neither even nor odd
with respect to time-reversal symmetry but rather has a graded structure with regard to
time reversal. The action of time reversal operator T may as usual be represented by
T ϕ = Lϕ∗, where the unitary operator has however a block diagonal structure

L =
(

L+ 0
0 L−

)
, (45)

with L2+ = 1, L2− = −1. Thus time-reversal is even in the bosonic subspace; it is odd in
the fermionic subspace. It is a general feature of the graded Fock space of fermions that
decomposes into two subspaces which are even and odd with respect to time-reversal.
Thus it will be interesting to extend our analysis and all the works in the literature which
deal with time-reversal symmetry to the case of time-reversal symmetry in Fock space
of fermions with a graded form which can be a subject of interest for PT community.
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