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Abstract We study the geometric measure of quantum discord of total Dirac fields in non-
inertial frames. As a comparison, we also calculate the corresponding geometric measure
of entanglement of the same system. We discuss the properties of geometric measure of
quantum discord and geometric measure of entanglement for this system with acceleration
parameter and the parameter describing the entangle degree of the system in detail. Our
results show that from an overall perspective, two geometric measures have similar behav-
ior with the variation of the entangle parameter and the acceleration parameter. We find that
this tripartite system is monogamous for the geometric measure of quantum discord.

Keywords Quantum discord · Entanglement of total Dirac fields · Geometric measure

1 Introduction

In our last paper, we briefly reviewed the research on entanglements shared by inertial
and noninertial observers. We concentrated our attention to studying the entanglements of
Dirac fields in a noninertial frame and mainly investigated three bipartite subsystems of this
tripartite system [1]. The analytical expressions of geometric discord and geometric measure
of entanglement both for every two-qubit system were presented. The behaviors of two
geometric measurements, which we obtained, were discussed in detail and compared with
each other. We also reported some partial conservative relations for concurrence, mutual
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information, geometric discord and geometric measure of entanglement. Researchers who
interested in this subject can refer to Ref. [1] and references therein.

Above work has deepened our understanding of the Dirac fields from the respect of geo-
metric discord, but it is not complete. We know nothing about the correlation properties of
the whole system. However, the correlation properties of the total system are very impor-
tant. Alsing et al. investigated the maximally entangled initial state shared by two observers,
one of which moves with a uniform acceleration. They calculated the entanglement of for-
mation, the logarithmic negativity and the mutual information for three bipartite subsystems
and the residual tangle (or three tangle) for whole tripartite system [2]. Hwang et al. investi-
gated the tripartite entanglement of Greeberger-Horne-Zeilinger (GHZ) state and W state in
a noninertial frame using π -tangle [3]. Wang et al. also studied a GHZ state initially shared
by three persons. They assumed one or two persons stay stationary while other two or one
persons move with uniform accelerations. They calculated all π−tangles for bipartite sub-
systems and the tripartite system [4]. Alsing and Wang obtained contradictory results on
whether entanglements exist only in bipartite systems or tripartite systems. Perhaps the dif-
ferent results come from the factor that they use different measures. To further understand
this problem, we attempt to study this issue from another aspect. We shall use geometric
discord and geometric measure of the entanglement to investigate the whole Dirac fields in
a noninnertial frame.

This paper is arranged as follows. In the next section, we present a short review of
geometric measure of quantum discord and geometric measure of entanglement both from
another respect. In Section 3 we derive the analytic expressions of geometric discord for
total Dirac’s fields in a noninertial frame. Section 4 devotes to calculate the geometric mea-
sure of the entanglement for the same system. Discussions and summary are provided in
Section 5.

2 A Further Brief Review of Geometric Discord and Geometric Measure
of Entanglement from Another Perspective

We have briefly reviewed geometric discord and geometric measure of entanglement in
Ref. [1], but did not mention some details that will be used in this paper. Readers interested
in these two kinds of geometric measures had better refer to our early paper and refer-
ences therein. Here, we replenish some formulas used to calculate geometric discord and
geometric measure of entanglement.

Since Dakić et al. obtained a formula to calculate geometric discord for two-qubit state
[5], Luo and Fu extended Dakić’s result to general bipartite states [6], Rana and Hassan
derived a rigorous lower bound to the geometric discord for any bipartite state, respectively,
which is exact for a 2 × d system (with a measurement on the qubit) [7, 8]. On the other
hand, Tufarelli proposed another formula to calculate geometric discord for a 2 × d system
that is applicable to d → ∞ case [9],

DG(ρAB) = tr(S) − λmax(S), (1)

where S = tr[vvt ], v = trA[ρABσ ], σ are the Pauli matrices and vt stands for the transpose
of v. It is worth noting, first, in order to normalize the maximum value of the geometric
discord for Bell state to 1, Tufarelli added a factor 2 to the original definition. In this paper,
we shall use (1) to calculate the geometric discord, but to consist with our early work,
the results will be divided by 2; second, it is obvious, (1) can be extended to any system
that contains one qubit, on which a measurement makes. For example, for state ρABC with
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subsystem A is a qubit, the definition v may remain unchanged, but S can be modified as
S = trBC[vvt ]. This extension will be illustrated in the next section.

As for the geometric measure of a entanglement, based on the theorem stating that any
reduced (n − 1)-qubit state uniquely determines the geometric measure of the original n-
qubit pure state [10], for any three-qubit stats �ABC , Tamaryan et al. first rewrote the square
of the entanglement eigenvalues as

�2
max = max

�1�2�3
tr(ρABC�1 ⊗ �2 ⊗ �3) (2)

= max
�1�2

tr(ρABC�1 ⊗ �2). (3)

Then, they derived the following expression [11]

�2
max = 1

4
max

s21=s22=1
(1 + s1 · rμ + s2 · rν + gij s1i s2j ),

{μ, ν} = {A,B}, {B,C}, {A,C}. (4)

where s1 and s2 are two unit Bloch vectors of the density matrices of the single-qubit �1 and
�2 states respectively, which will be determined and

rμ = tr(ρμσ )

rν = tr(ρνσ )

gij = tr(ρμνσi ⊗ σj ). (5)

They finally gave an analytical expression of s1 and s2 under some condition, which we
shall not use. In the Section 4, we are going to optimize (4) directly for our problem.

3 Geometric Discord for Total Dirac Fields in Noninertial Frames

In our early paper [1], we have assumed that Alice and Rob share initially the entangled
state in an inertial frame,

|ψ〉AR = α|0A0R〉 +
√
1 − α2|1A1R〉. (6)

We first derive the geometric discord of the total system in the initial state, that is in an
inertial frame. The density operator can be calculated using (6),

ρ0 = α2|0A0R〉〈0R0A| + (1 − α2)|1A1R〉〈1R1A|
+α

√
1 − α2(|1A1R〉〈0R0A| + |0A0R〉〈1R1A|). (7)

Though generally speaking, the geometric discord is not symmetrical for every subsys-
tem of the system, but we noticed that (6) and (7) are symmetrical for Alice and Rob.
Therefore, doing von Neumann measurements on Alice’s or Rob’s qubit will give the same
results. For example, if we do this measurement on Alice’s qubit, we find

v = {α
√
1 − α2(|1R〉〈0R| + |0R〉〈1R|),

iα
√
1 − α2(|0R〉〈1R| − |1R〉〈0R|),

α2|0R〉〈0R| − (1 − α2)|1R〉〈1R|}. (8)

S =
⎛

⎝
2α2(1 − α2) 0 0

0 2α2(1 − α2) 0
0 0 1 − 2α2 + 2α4

⎞

⎠ . (9)
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Matrix S has tree eigenvalues {2α2(1−α2), 2α2(1−α2), 1−2α2 +2α4} and 1−2α2 +
2α4 ≥ 2α2(1 − α2). We finally obtain

DG(ρ0) = 2α2(1 − α2). (10)

After sharing his own qubit, Rob moves with respect to Alice with a uniform acceleration
a. Using the single-mode approximation, Rob’s vacuum and one-particle states |0R〉 and
|1R〉 in Minkowski space are transformed into [2]

|0R〉 → cos r|0I0II 〉 + sin r|1I1II 〉,
|1R〉 → |1I0II 〉, (11)

where r is the acceleration parameter, which is in the range 0 ≤ r ≤ π/4 for 0 ≤ a ≤ ∞,
|nI 〉 and |nII 〉(n = 0, 1) are the mode decomposition in the two causally disconnected
regions in Rindler space. Using (11), we obtain

|ψ〉A III = α|0A〉 ⊗ (cos r|0I 0II 〉 + sin r|1I1II 〉)
+

√
1 − α2|1A1I 0II 〉, (12)

and corresponding density operator

ρAIII = α2 cos2 r|0A0I0II 〉〈0II0I0A| + α2 sin2 r|0A1I1II 〉〈1II1I0A|
+α

√
1 − α2[(cos r|0A0I0II 〉 + sin r|0A1I1II 〉)〈0II1I1A|

+|1A1I0II 〉(cos r〈0II0I0A| + sin r〈1II1I0A|)]
+α2 cos r sin r(|0A1I1II 〉〈0II0I0A| + |0A0I0II 〉〈1II1I0A|)
+(1 − α2)|1A1I0II 〉〈1A1I0II |. (13)

If we do von Neumann measurements on Alice’s qubit in ρAIII , we would obtain the
same results as (10). In order to test the influence of the Unruh effect [12, 13] on geometric
discord, we must measure the qubit in model I . We can calculate vector v and matrix S

according to above equation, respectively, as follows,

v = {α
√
1 − α2 cos(r)(|1A0II 〉〈0II0A| + |0A0II 〉〈0II1A|)

+α2 sin(r) cos(r)(|0A1II 〉〈0II0A| + |0A0II 〉〈1II0A|),
i[α

√
1 − α2 cos(r)(|0A0II 〉〈0II1A| − |1A0II 〉〈0II0A|)

+α2 sin(r) cos(r)(|0A0II 〉〈1II0A| − |0A1II 〉〈0II0A|)],
α2 cos2(r)|0A0II 〉〈0II0A| − α2 sin2(r)|0A1II 〉〈1II0A|
−(1 − α2)|1A0II 〉〈0II1A|
−α

√
1 − α2 sin(r)(|0A1II 〉〈0II1A| + |1A0II 〉〈1II0A|)} (14)

s =
⎛

⎜
⎝

2α2 cos2(r)
[
1 − α2 cos2(r)

]
0 0

0 2α2 cos2(r)
[
1 − α2 cos2(r)

]
0

0 0 1
2

[(
1 − 2α2 cos2(r)

)2 + 1
]

⎞

⎟
⎠ (15)

Because

1

2

[(
1 − 2α2 cos2(r)

)2 + 1

]
− 2α2 cos2(r)

[
1 − α2 cos2(r)

]

=
(
1 − 2α2 cos2(r)

)2 ≥ 0, (16)
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the maximum value of the eigenvalues of S is

λmax = 1

2

[(
1 − 2α2 cos2(r)

)2 + 1

]
. (17)

We finally obtain

DG(ρAIII ) = 2α2 cos2(r)
[
1 − α2 cos2(r)

]
. (18)

We notice when r = 0, (18) is reduced to (10). We plot DG(ρAIII ) as functions of α and
r in Fig. 1.

Getting geometric discord of the state ρA III enables us to study the monogamy of
this state. The monogamy is an important property of a tripartite system. A correlation
measure Q is monogamous if and only if the following Coffman-Kundu-Wootters (CKW)
monogamy inequality

QA|BC ≥ QAB + QAC (19)

holds for any tripartite state ρABC [14]. Recalling we have calculated in Ref.[1]

DG(I |II ) = DG(ρIII ) =

⎧
⎪⎪⎨

⎪⎪⎩

2α4 sin2(r) cos2(r),
α2[5α2 − 2(1 − α2) cos(2r) + α2 cos(4r) − 6] + 2 ≥ 0;
1
2

[
3α4 − 3α2 − (

1 − α2
)
α2 cos(2r) + 1

]
,

othewise.

(20)

we now need to get DG(I |A). Using (1) or procedures used to calculate DG(ρIII ) in Ref.
[1], we obtain

DG(I |A) =

⎧
⎪⎪⎨

⎪⎪⎩

2α2
(
1 − α2

)
cos2(r),

α2[5α2 − 2(1 − α2) cos(2r) + α2 cos(4r) − 6] + 2 ≥ 0;
1
2 {1 − α2[2 sin(r)2 + α2 cos(2r)(1 − cos(2r))]},
othewise.

(21)

Fig. 1 (Color online) Plots of geometric measure of quantum discord DG(ρAIII ) as functions of α and r
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Using (18), (21) and (20) and doing some simplification, we finally obtain

DG(I |AII) − DG(I |A) − DG(I |II ) (22)

=
{

0, 2 − α2
[
6 − 5α2 − α2 cos(4r) + 2

(
1 − α2

)
cos(2r)

] ≥ 0;
− 1

2

{
2 − α2

[
6 − 5α2 − α2 cos(4r) + 2

(
1 − α2

)
cos(2r)

]}
> 0, othewise.

(22) shows the inequality DG(I |AII) ≥ DG(I |A) + DG(I |II ) ≥ 0 holds in the present
situation. On the other hand, as we have pointed out if we do geometric measurements
of quantum discord on Alice’s qubit, we would obtain DG(A|III ) = DG(ρ0) as (10). In
addition, from Ref. [1] we know,

DG(A|I ) = DG(ρAI ) =

⎧
⎪⎪⎨

⎪⎪⎩

2α2
(
1 − α2

)
cos2(r),

4 + α4[15 + cos(4r)] ≥ 16α2;
1
8

{
4 + α4[7 + cos(4r)] − 8α2[1 − (1 − α2) cos(2r)]} ,

othewise.

(23)

DG(A|II ) = DG(ρAII ) =

⎧
⎪⎪⎨

⎪⎪⎩

2α2(1 − α2) cos2(r),
4 + α4[15 + cos(4r)] ≥ 16α2;

1
8 {4 + α4[7 + cos(4r)] − 8α2[1 + (1 − α2) cos(2r)]},
othewise.

(24)

Substituting (10), (23) and (24) into (19) gives

DG(A|III ) − DG(A|I ) − DG(A|II ) =

⎧
⎪⎪⎨

⎪⎪⎩

0,
4 + α4[15 + cos(4r)] ≥ 16α2;

4α2 − 1
4

{
(4 + α4[15 + cos(4r)]} ≥ 0,

othewise.

(25)

Above equation shows that geometric measurements of quantum discord on Alice’s qubit
also satisfy CKW monogamy inequality. Combining (22) and (25), we conclude that the
system ρAIII is monogamous for the geometric discord.

4 Geometric Measure for Total Dirac Fields in Noninertial Frames

We first calculate the geometric measure of the initial state |ψ〉AR . According to (7), we can
easily obtain the density matrix of the initial state |ψ〉AR .

ρ0 = ρAR =

⎛

⎜⎜
⎝

α2 0 0 α
√
1 − α2

0 0 0 0
0 0 0 0

α
√
1 − α2 0 0 1 − α2

⎞

⎟⎟
⎠ , (26)

which is an X state. Its concurrence can be easily obtained C0 = 2α
√
1 − α2. Substituting

it into (9) of Ref. [1], we obtain

Eg(|ψ〉AR) = max(α2, 1 − α2). (27)

We now calculate the geometric measure of the total system. We have derived rμ, rν and
matrix g for ρ

AI
, ρ

AII
and ρ

III
, and list the results in Table 1.

Generally speaking, we can use any one of ρ
AI

, ρ
AII

and ρ
I II

to calculate the geometric
measure of entanglement of the total system. Here, in order to get an intuitive perception,
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we first numerically optimize 4�2 = 1 + s1 · rμ + s2 · rν + gij s1i s2j for ρ
AI
. For this end,

we let

s1 = {sin(θ1) cos(ϕ1), sin(θ1) sin(φ1), cos(θ1)},
s2 = {sin(θ2) cos(φ2), sin(θ2) sin(φ2), cos(θ2)}, (28)

and obtain

4�2 = (cos(θA) − 1)(cos(θ1) − 1)

+2α
√
1 − α2 cos(r) sin(θ1) sin(θA) cos(φA1)

+2α2
(
cos(θA) + cos(θ1)

(
cos2(r) − cos(θA) sin2(r)

))
, (29)

where φA1 = φA + φ1. We can now maximize 4�2 for a given set of {α, r} and obtain
Eg = 1 − �2

max numerically. We visualize our result Eg in Fig. 2. In fact, we have also
maximized 4�2 for a given set of {α, r} according to ρ

A II
and ρ

I II
, respectively. The

corresponding plots of Eg = 1 − �2
max are exactly the same as Fig. 2.

Next, we work out the analytic expression of Eg(ρA I II
). Because 0 ≤ α2 ≤ 1 and

0 ≤ r ≤ π/4, min(r
II 3) = 1−2α2 sin(π/4)2 ≥ 1−α2 ≥ 0, r

II 3 = 1−2α2 sin(π/4)2 ≥ 0.
Further more, since rA3 − g33 = 2α2 sin(α)2 ≥ 0, therefore, if g33 ≥ 0, then rA3 ≥ 0;
if rA3 ≤ 0, then −g33 ≥ 0. In the following, for simplicity, we let ω = g11 = g22 =
2α

√
1 − α2 sin(r) and r3 = −g33 = 1− 2α2 cos(r)2. Then, there are only three cases need

to be considered: (1) rA3, rII3 and r3 are all not negative; (2) only rA3 ≤ 0; (3) only r3 ≤ 0.
We noticed that ρ

AII
is similar to W-TYPE state in Ref. [11]. Hence, any vector along z axis

is an eigenvector with eigenvalue −r3; any vector perpendicular to z axis is an eigenvector
with eigenvalue ω. These let us denote s1 and s2 as:

s1 = sin(θ1)m + cos(θ1)n,

s2 = sin(θ2)m + cos(θ2)n. (30)

Fig. 2 (Color online) Plots of geometric measure of Eg(ρAIII ) as functions of α and r
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where unit vectors n and m are along with and perpendicular to z direction, respectively.
Substituting rA, rII , s1, s2, and g into 4�2 = 1 + s1 · rμ + s2 · rν + gij s1i s2j , we obtain

4�2 = f (θ1, θ2) = 1 + rA3 cos(θ1) + r
II 3 cos(θ2)

+ω sin(θ1) sin(θ2) − r3 cos(θ1) cos(θ2). (31)

Solving equations

∂f (θ1, θ2)

∂θ1
= 0, (32a)

∂f (θ1, θ2)

∂θ2
= 0, (32b)

sin(θ1)
2 + cos(θ1)

2 = 1, (32c)

sin(θ2)
2 + cos(θ2)

2 = 1. (32d)

for sin(θ1), cos(θ1), sin(θ2), cos(θ2), we obtain eight group formulas of
sin(θ1), cos(θ1), sin(θ2), cos(θ2). Substituting them into f (θ1, θ2), we get six distinct for-
mulas of 4�2, the first and third of which are {1 − rII3 − r3 − rA3, 1 − rII3 + r3 + rA3}
that do not give the maximum of 4�2 because rII3 ≥ 0. Therefore, there are only four
formulas, which may give the maximum of 4�2.

1 + rII3 + r3 − rA3, (33a)

1 + rII3 − r3 + rA3, (33b)

1 + sgn(rA3rII3r3) (R + |rA3rII3r3|)
r23 − ω2

, (33c)

1 − sgn(rA3rII3r3) (R − |rA3rII3r3|)
r23 − ω2

, (33d)

with

R = |ω|
√(

r2II3 − r23 + ω2
) (

r2A3 − r23 + ω2
)
. (34)

From (33c, 33d) we can see

4�2
max =

⎧
⎨

⎩

1 + R+|rA3rII3r3|
r23−ω2 , r23 − ω2 ≥ 0 ∧ rA3 ≥ 0 ∧ r3 ≥ 0;

1 − R−|rA3rII3r3|
r23−ω2 , r23 − ω2 < 0 ∧ rA3 ≥ 0 ∧ r3 ≥ 0.

(35)

On the other hand,

4�2
max =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max[1 + |rA3| + rII3 + |r3|, 1 + R−|rA3rII3r3|
r23−ω2 ],

r23 − ω2 ≥ 0 ∧ (rA3 ≤ 0
∨

r3 ≤ 0);
max[1 + |rA3| + rII3 + |r3|, 1 − R+|rA3rII3r3|

r23−ω2 ],
r23 − ω2 < 0 ∧ (rA3 ≤ 0

∨
r3 ≤ 0).

(36)
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Substituting rA3, rII3, r3 and ω into (35, 36), we finally obtain

4�2
max =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, r23 − ω2 ≥ 0 ∧ rA3 ≥ 0 ∧ r3 ≥ 0;
8α4(α2−1

)
sin2(2r)

7α4−8α2+α4 cos(4r)+2
,

r23 − ω2 ≤ 0 ∧ rA3 ≥ 0 ∧ r3 ≥ 0;
max[ 8α4

(
α2−1

)
sin2(2r)

7α4−8α2+α4 cos(4r)+2
,

4
(
1 − α2

)
, 4α2 cos2(r)],

r23 − ω2 ≥ 0 ∧ (rA3 ≤ 0
∨

r3 ≤ 0);
max[0, 4 (

1 − α2
)
, 4α2 cos2(r)],

r23 − ω2 ≤ 0 ∧ (rA3 ≤ 0
∨

r3 ≤ 0);

(37)

The plot of Eg = 1 − �2
max according to (37) is the same as Fig. 2. For initial state, r = 0,

(37) gives Eg = 1 − �2
max = max(1 − α2, α2), which coincides with (27).

5 Discussion and Summary

We have analytically worked out the geometric discord DG and geometric measure of
entanglement Eg for total Dirac fields in the noninertial frames. We now give three useful
remarks.

First, Though DG and Eg are not equal, Figs. 1 and 2 shows that from an overall perspec-
tive, they have similar behavior with the variation of entangle parameter α and acceleration
parameter r . From (18) and (37), we see that DG and Eg are symmetry about α = 0. Recall
0 ≤ r ≤ π/4 and 0 ≤ α2 ≤ 1 as well as ∂DG(α, r)/∂r = 2α2 sin(2r)

(
2α2 cos2(r) − 1

)
,

we see for a given entangle parameter α, DG increases with the increase of the acceler-
ation parameter r when cos(r) > 1√

2|α| ; otherwise, it decrease with the increase of the

acceleration parameter r; Similarly, because ∂DG(α, r)/∂α2 = 2 cos2(r)[1− 2α2 cos2(r)],
we know for a given acceleration parameter r , DG increases with the increase of α2 when
α2 < 1

2 cos2(r)
; otherwise, it decrease with the increase of α2; DG takes the maximum value

1/2 when 2α2 cos2(r) = 1. On the other hand, we know ∂Eg/∂r ≥ 0 for all cases from
(37), therefore, Eg never decrease with the increase of the acceleration parameter r , but Eg

increase from 0 to its maximum values, then decrease to 0 when α2 increases from 0 to 1
for a given r . Eg has a remarkable character, which different from Dg , when α2 varies from
0 to 1. Eg independent of r , but DG dependent, when 0 ≤ α2 ≤ 1/2. This feature is owing
to when rA3 ≤ 0, rA = −n and r2 = n,�2

max = 1 − α2, then Eg = α2. We plot DG and
Eg as functions of the acceleration parameter r for some typical values of α2 in Fig. 3; DG

and Eg as functions of parameter α2 for some typical values of the acceleration parameter
r in Fig. 4, respectively.

Second, for the special case of α = ±1/
√
2, our results are different from that of other

authors. Alsing et al. investigated the maximally entangled initial state shared by Alice
and Rob. They calculated the entanglement of formation, the logarithmic negativity and
the mutual information for bipartite subsystems ρAI , ρAII and ρIII [2]. They also studied
the whole tripartite system using the residual tangle (or three tangle). They found the three
tangle τA,I,II = 0 and concluded that there are no tripartite correlations for any value of
the acceleration rate and any entanglements can only exist in the bipartite subsystem. From
(18) it is easy to obtain DG(ρAIII ) = cos2(r)(1 − cos2(r)/2); using Eg = 1 − �2

max
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Fig. 3 (Color online) Plots of geometric measure of quantum discord D(ρA III ) and geometric measure of
entanglement Eg(ρA III ) as functions of r for |α| = 0 (thick and black); |α| = 0.25 (dashed and blue);
|α| = 0.5 (dotted and red); |α| = 0.75 (dot-dashed and brown); |α| = 1.0 (thick and green)

with (37) we also get Eg = 1/2, both for α = ±1/
√
2. These two formulas show even

for maximally entangled initial state, the tripartite correlation is always existed. On the
other hand, Wang et al. studied a Greeberger-Horne-Zeilinger (GHZ) initially shared by
Alice, Bob and Charlie. Then they assume Alice stays stationary while Bob and Charlie
move with uniform accelerations. They calculated all π−tangles for bipartite subsystems
and the tripartite system. They found when either one or two subsystems of the tripartite
state accelerated there is no bipartite entanglement and all the entanglement of this system
is in the form of tripartite entanglement. The results of [1] and present paper demonstrate
both bipartite and tripartite correlations are existed in the system.

Third, from Section 3, we know DG(A|III ) �= DG(I |AII), which is owing to geometric
discord only consider a set of local measurements on one subsystem of the whole system,
it is not symmetrical for every subsystems of the system. Our results reveal a deeper and
essential property: geometric discord is dependent on the observer. This is natural from the
view point of relativistic theory. So we can say that the geometric measurements of quantum
discord happened to coincide with the theory of relativity on this point.

In summary, we have derived analytical expressions of the geometric discord and the
geometric measurement of the entanglement both for the whole Dirac fields in a noninertial
system. Our results show an interesting phenomenon that even though two geometric mea-
surements of the total system are not completely coincided with each other in detail, they
have similar evolutionary trends with Rob’s acceleration parameter and the entanglement
parameter of the initial state. In addition, we showed the geometric discord of Dirac fields
in a noninertial system satisfy CKW inequality. It means that Dirac fields in a noninertial
system are monogamy for the geometric discord. Furthermore, we revealed that bipartite
system and whole tripartite system of the Dirac fields have correlations. Our research is only
a small part of this respect. We hope this work could attract much researcher’s attention to
study the global quantum properties of various quantum systems in a noninertial system.
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Fig. 4 (Color online) Plots of geometric measure of quantum discord D(ρA III ) and geometric measure
of entanglement Eg(A III) as functions of α2 for acceleration parameter r = 0 (thick and black); r =
π/12 (dashed and Blue); r = π/6 (dotted and red); r = π/4 (dot-dashed and brown)
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