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Abstract By using the effective non-Markovian measure (Breuer et al., Phys. Rev. Lett.
103, 210401 2009) we investigate non-Markovian dynamics of a pair of two-level atoms
(TLAs) system, each of which interacting with a local reservoir. We show that subsys-
tem dynamics can be controlled by manipulating the coupling between TLAs, temperature
and relaxation rate of the atoms. Moreover, the correlation between non-Markovianity of
subsystem and entanglement between the subsystem and the structured bath is investi-
gated, the results show that the emergence of non-Markovianity has a negative effect on the
entanglement.

Keywords Non-Markovian · Local reservoir · Subsystem-structured bath · Entanglement

1 Introduction

A quantum dynamical semigroup usually is utilized to define the archetype of a Markovian
process in an open quantum system, i.e., by the solutions of a master equation for the
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reduced density matrix with Lindblad structure [1, 2]. However, in complex quantum sys-
tems one often encounters dynamical processes which sharply deviate from the relatively
simple behavior predicted by a Markovian time evolution [3], in this case the assumption
of a Markovian dynamics might be confronted with failure due to strong-coupling, finite-
size environments or small time scales. Memory effects then become important, and the
dynamics in this case is said to be non-Markovian.

The non-Markovianity was found to be usually associated with the occurrence of
revivals, non-exponential relaxation, or negative decay rates in the dynamics. Recently,
much effort has been devoted to the analysis of non-Markovian quantum evolution [4–16],
many different measures of non-Markovianity have been proposed in the literatures to quan-
tify memory effects in open systems, based on, for example, the quantum channels [17],
the non-monotonic behaviors of distinguishability [18–21], entanglement [22, 23], Fisher
information [24], correlation [25], the volume of states [26], capacity [27], the breakdown
of divisibility [22, 28, 29], the negative fidelity difference [30], the non-zero quantum dis-
cord [31], the negative decay rates [32], and the notion of non-Markovian degree [33]. The
criterion proposed by Breuer et al. [18] employs the trace distance between quantum states
as a measure of non-Markovianity, which has been applied in experimental investigation of
the non-Markovian behavior [34]. Even without knowing the properties of environment or
the structure of the system-environment interaction, the scheme above is allowed to explore
non-Markovianity experimentally.

In this paper, we consider a composite system: a two-qubit (depicted by two TLAs)
system only coupled individually to their local thermal reservoirs besides the interaction
between the two TLAs. One of the atom is assigned as the subsystem and the other atom
as an auxiliary qubit, and then the subsystem we focus on can be recognized to be inter-
acted with a structured bath (auxiliary atom + thermal reservoirs). How one could control
the non-Markovian nature of the subsystem dynamics (single atom) by exploiting the fea-
tures of being a part of the composite system is an intriguing issue. It is feasible to alter
the properties of the subsystem dynamics, enabling one to induce a transition from Marko-
vian to non-Markovian dynamics, by changing the atom-atom couplings, mean occupation
number of the reservoir or the spontaneous emission rate of the atom. Moreover, we study
how entanglement between the subsystem and the structured bath (auxiliary atom + thermal
reservoirs) evolve at the critical border, where the subsystem undergoes a transition from
Markovianity to non-Markovianity. In this sense, we show that mean occupation number of
the reservoir has much stronger effect on entanglement than spontaneous emission rate of
the atom in the critical region.

2 The Model and Solutions

We consider two TLAs 1 and 2 that present a two-qubit system and coupling with their local
thermal reservoirs, besides direct interaction between the atoms. The Hamiltonian can be
written as (we set � = 1) [35]:
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where ω0, υ0, g0 and � are constants and σ z denotes the usual diagonal Pauli matrix,
1
2υ0

∑2
i=1 σz

i is the Hamiltonian of the two atoms Hat , the first term in right side of
(1) is the two cavities (also considered as environments) Hcav and the remaining are
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interactions (atom-cavity interaction and atom-atom interaction) Hint . The depiction of the
time evolution of the qubits system is provided by the following master equation [2, 36]

dρ
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where γ (γ> 0) is the relaxation rate which is supposed to be the same for both qubits, and
σ±

i (i = 1; 2) are the rasing (+) and lowering (−) operators of atom i, defined as σ+
i =

|1〉〈0|i , σ−
i = |0〉〈1|i ., m is the mean occupation number which also is assumed to be the

same for both reservoirs and � is coupling strength between the two atoms. On the right
hand side of (2), the first term describes the depopulation of the atoms due to simulated
and spontaneous emission, while the second term corresponds to the re-excitations caused
by the finite temperature.

The dynamics of the two-qubit (S1S2) system would fall in the paradigm of quantum
Markov processes [18, 22] under the above circumstance. What we focus on is whether
or not a subsystem (single qubit) dissipative dynamics could achieve transformation from
Markovian to non-Markovian. The qubit S1 can be treated as the subsystem and S2 as
the auxiliary qubit since the two qubits are identical according to (1) and ζ also can rep-
resents the environments. So it is deserved to draw more attention to the dissipative nature
of the quantum dynamics of subsystem S1. Generally, it is not easy to predict that qubit
S1 coupled to a structured bath (auxiliary qubit S2+ environments ζ ), which represents an
effective bath, would create peculiar characteristics of the dissipative process. In this sense,
the variation of the properties of such structured bath, by changing the qubit-qubit coupling
or the other parameters, would be meaningful for the current research.

We assume that our system is initially in an “X state” described by the following density
matrix:

ρ(t) =

⎛

⎜⎜⎝

a (t) 0 0 w(t)

0 b (t) z(t) 0
0 z∗(t) c (t) 0

w∗(t) 0 0 d (t)

⎞

⎟⎟⎠ . (3)

Substituting (3) into (2), we obtain the following first-order coupled differential
equation:

ȧ (t) = γ [−2 (m + 1) a (t) + mb (t) + mc(t)] ,

ḃ (t) = γ [(m + 1) a (t) − (2m + 1)b (t) + md(t)] + i�[z (t) − z∗(t)],
ċ (t) = γ [(m + 1) a (t) − (2m + 1)c (t) + md(t)] − i�[z (t) − z∗(t)],

ḋ (t) = γ [(m + 1) b (t) + (m + 1) c (t) − 2md(t)] ,

ż (t) = γ [− (2m + 1) z (t)] + i�[b (t) − c(t)],
ẇ (t) = γ [− (2m + 1) w (t)] . (4)

These may be solved to yield the following expressions:
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where X=e−γ (1+2m)t , a0 = a(0), etc.

3 The Measure of Non-Markovianity

The trace distance between two quantum states ρ (t) and τ (t) is a significant mean utilized
for the measuremenf of the distinguishability of quantum states. A Markovian evolution,
depicted by a dynamical semigroup of completely positive trace preserving (CPTP) maps
whose nature induce the shrinkage of the trace distance between any fixed pair of initial
states ρ (0) and τ (0), can never augment the trace distance. An outflow of information from
the system to the environment is a symbol of the reduction of trace distance which manifests
the decrease of distinguishability between the two states. So a backflow of information into
the system that interests us is interpreted by the contrary of shrinkage condition. In this
scenario, a measure of non-Markovianity can be defined as in [18] by

N = max
ρ(0)τ (0)

∫

σ>0
dt σ (t, ρ (0) , τ (0)). (6)

Here, σ (t, ρ (0) , τ (0)) = d
dt

D (ρ (t) , τ (t)) is the rate of change of the trace distance,
and

D (ρ (t) , τ (t)) = 1

2
T r |ρ (t) − τ (t)| , (7)

where |A| = √
AA+ is the positive square root of AA+ [37]. Therefore, the total increase

of distinguishability during the total time evolution, i.e., the whole amount of information
flowing back to the system which we are interested in, is represented by N . Under the
circumstances, non-Markovian dynamics process would occur if and only if N> 0. In other
words, an evolution is Markovian if and only if the trace distance of any two initial states
decreases monotonically.
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4 Non-Markovian Dynamics of Subsystem

In our case, we choose the system initial states |10〉 and |00〉, which means b0 = 1 and d0 =
1, otherwise ρi,j (0) = 0. Focusing on the single qubit reduced density matrix ρS1 (t) =
T rS2 [ρS1S2 ], where T rS2 [ρS1S2 ] implies the trace of the auxiliary qubit degrees of freedom.
So ρS1 (t) can be written analytically as

ρS1 (t) =
(

p± 0
0 q±

)
, (8)

where p+ and q+, p− and q− represent the nonzero matrix elements of ρS1 (t) for the initial
states |10〉 and |00〉 , respectively, which can be expressed as follows

p+ = 2m + [1 + (1 + 2m) cos(2�t)]X
2(1 + 2m)

,

p− = m − mX

1 + 2m
,

q+ = 1 − p+, q− = 1 − p−. (9)

For the states (8), the trace distance can be obviously determined by

D(ρS1 (t) ,ρ′
S1

(t))=1

2
(|p+ − p−| + |q+ − q−|). (10)

The trace distance D
(
ρS1 (t) ,ρ′

S1
(t)

)
utilized to interpret the dissipative character of the

subsystem dynamics. In Fig. 1, we show the trace distance between two quantum states of
subsystem S1 as a function of the qubit-qubit coupling strength� and time twhere the initial
states of the two qubits are |10〉 and |00〉 . As shown in Fig. 1, according to the criterion
whether the trace distance for the single-qubit states is monotonic or not, the region where
the red line locates may be a transition district from Markovian to non-Markovian.

Markovian process occurs when the trace distance for the single-qubit states is mono-
tonic, in this case � is small as portrayed in the graph. As � increases, the trace distance
for the single-qubit states becomes non-monotonic, which indicates that now there is a
backflow of information from the structured bath (auxiliary qubit S2 + environments) to

Fig. 1 The trace distance between two quantum states of the subsystem S1 as a function of the qubit-qubit
coupling strength � and time t , where the initial states of two qubits are |10〉 and |00〉 . The other parameters
γ = 0.2 and m= 0.5
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Fig. 2 The trace distance between two quantum states of the subsystem S1 versus time t with different
spontaneous emission rate of the atom γ , where the initial states of two qubits are |10〉 and |00〉 . The left
plot: � = 0.1 while the right plot: � = 0.8. For both the plots m= 0.5

the subsystem S1, and the dynamics of qubit S1 is non-Markovian. So it is feasible to
induce a transition from Markov to non-Markov behavior for the subsystem by changing
the qubit-qubit coupling � for a fixed γ and m.

The effects of the parameter γ and m on the subsystem dynamical behaviors are another
some intriguing problems, which is portrayed explicitly in Figs. 2 and 3. We can see that
spontaneous emission rate of the atom γ and the mean occupation number of the reservoir
m have the similar influence on the subsystem dynamics if the value of � is given. In the
left plots of Figs. 2 and 3, the qubit-qubit coupling � = 0.1, and the trace distance for
the single-qubit states is monotonic no matter what the variable value of γ or m is, which
implies non-Markovian dynamics is not available for a weak coupling �. While the right
plots of Figs. 2 and 3 shows that the qubit-qubit coupling � = 0.8, the trace distance of the
single-qubit reduced density matrix becomes non-monotonic with smaller value of γ or m,
which indicates that one can make a transition between the Markovian and non-Markovian
dynamics for the subsystem by means of changing m (or γ ) when the qubit-qubit coupling
� is large. Another interesting finding is that the time at which non-Markovian occurs is the
same for a given � regardless of γ and m.

From the discussion above, � plays a more important role in judging whether the
subsystem undergoes non-Markovian dynamics or not.
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Fig. 3 The trace distance between two quantum states of the subsystem S1 versus time t with different mean
occupation number of the reservoir m, where the initial states of two qubits are |10〉 and |00〉 . The left plot:
� = 0.1 while the right plot: � = 0.8. For both the plots γ= 0.2
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5 The Entanglement and Non-Markovianity

Since the critical region between Markovian and non-Markovian regime is untraceable,
what we want to explore is how the entanglement between the subsystem and the structured
bath (ES1(S2ζ )) evolve at the critical district.

Mathematically, for a bipartite SS′ system, entanglement can be measured by its entropy
of entanglement [37],

E (ρSS′) = S (ρS) = S(ρS′), (11)

where, S (ρ) = −Trρlog2ρ is the von Neumann entropy. In our case, as mentioned above
the initial state for two independent environments are vacuum state, we choose the two-
qubit system being prepared initially in the separable initial state |10〉 . Thus the whole
‘SS′ζ system’ is described by an initial pure state (|ψ〉 S1S2ζ

= |10〉 S1S2
|00〉 ζ1ζ2

), so we
can calculate the entanglement between the subsystem S1 and the structured bath (S2 + ζ )
directly from the entropy

ES1(S2ζ ) = S
(
ρS1

) = S(ρS2ζ ), (12)

As we said before, we can obtain the analytical results of the nonzero matrix elements of
ρS1S2 for this initial state |10〉 , then we get the matrix of the subsystem by tracing over the
auxiliary qubit degrees of freedom ρS1 (t) = T rS2 [ρS1S2 ], hence we have

ES1(S2ζ ) = −p+log2p+ − p−log2p− (13)

It can be seen in Fig. 4 that at t = 0, ES1(S2ζ ) equals zero because of the separabil-
ity of the initial bipartite (S1 and S2ζ ) state. By comparing evolution of the trace distance
D(ρS1ρ

′
S1

) and the entanglement ES1(S2ζ ), it is exciting to see that ES1(S2ζ ) drops to mini-
mal value when monotonicity of D(ρS1ρ

′
S1

) becomes broken, which indicates the transition
from Markovian to non-Markovian regime does harm to the dynamic process of the entan-
glement between the subsystem S1 and the structured bath (S2 + ζ ). In other words, if the
quantum dynamics of the subsystem S1 changes, there is an inevitable effect acted on
the entanglement between the subsystem and the structured bath.

Moreover, what we want to address now is that the effect of spontaneous emission rate
of the atom γ and mean occupation number of the reservoir m on the entanglement between
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Fig. 4 Time evolution of the quantum entanglement between the subsystem S1 and the structured bath
(S2 + ζ ) and the trace distance between two quantum states of the subsystem S1. The left plot : �= 0.5, right
plot: � = 0.8. For both the plots γ = 0.2 and m = 0.5
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Fig. 5 The quantum entanglement between the subsystem S1 and the structured bath (S2 + ζ ) versus time t

with different spontaneous emission rate of the atom γ for the critical line, i.e. �t = π/2 where a transition
from Markovian to non-Markovian regime happens

the subsystem and the structured bath for the critical line. In Fig. 5, we see that ES1(S2ζ )

achieves a steady value in the long-time limit and the steady value has close relation with
the parameter m, while the other factor γ only influences the time when approach the steady
value rather than the magnitude of the steady value.

6 Conclusions

In summary, we have proposed a composite system: a pair of two-level systems, each of
which is interacting with a reservoir. In this composite system, we have taken one qubit as
the subsystem and the other qubit as an auxiliary qubit, and then the subsystem we have
focused would be coupled to a structured bath (auxiliary qubit + environments). We have
shown the feasibility of manipulating the non-Markovianity of the subsystem of interest,
i.e., we have illustrated how the subsystem achieves a transition from Markovian to non-
Markovian dynamics by changing the qubit-qubit coupling � or the parameter γ and m,
both γ and m make parallel yet limited contribution to the transition.

On the other hand, we have studied that the correlation between non-Markovian dynam-
ics of the subsystem and the entanglement dynamics between the subsystem and the
structured bath and shown that the entanglement dynamics, which can be influenced in
several different ways, counts on the mean occupation number of the reservoir m and
spontaneous emission rate of the atom γ . It has been also shown that the emergence of
non-Markovianity has the negative ef ect on the entanglement and finally the entanglement
between the subsystem and the structured bath tends a steady value. In this sense, mean
occupation number of the reservoir m has the stronger effect rather than spontaneous emis-
sion rate of the atom γ for obtaining a large-steady entanglement between the subsystem
and the structured bath in our model.

Acknowledgments This work is supported by the National Natural Science Foundation of China (Grant
No. 11574022 and 11174024) and the Open Project Program of State Key Laboratory of Low-Dimensional
Quantum Physics (Tsinghua University) grants Nos. KF201407.



914 Int J Theor Phys (2017) 56:906–915

References

1. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level
systems. J. Math. Phys. (N.Y.) 17, 821 (1976)

2. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119
(1976)

3. Breuer, H.P., Petruccione, F.: The theory of open quantum systems, Oxford University Press. Oxford
(2007)

4. Chru´sci´nski, D., Kossakowski, A.: Non-Markovian quantum dynamics: local versus nonlocal. Phys.
Rev. Lett. 104, 070406 (2010)

5. Jing, J., Yu, T.: Non-Markovian relaxation of a three-level system: quantum trajectory approach. Phys.
Rev. Lett. 105, 240403 (2010)
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