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Abstract We study superdense coding with uniformly accelerated particle in single mode
approximation and beyond single mode approximation. We use four different functions,
the capacity of superdense coding, negativity, discord and the probability of success for
evaluating the final results. In single mode approximation, all the four functions behave as
expected, however in beyond single mode approximation, except the probability of success,
the other three functions represent peculiar behaviors at least for special ranges where the
beyond single mode approximation is strong.

Keywords Superdense coding · Non-inertial frame · Single and beyond single mode
approximation

1 Introduction

Two particles, even being far away from each other, can be correlated as a result of existing
nonclassical correlation and entanglement in between them. Theoretical studies and exper-
imental investigations of entanglement and nonclassical correlation have been main topics
for groups of researchers [1–5]. In the process of so called superdense coding [6] two classi-
cal bits of information are transferred by sending only one quantum bit, qubit. The original
superdense coding process begins with a pair of entangled two-level particles being shared
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between Alice, sender, and Bob, receiver. An EPR pair [7] is used as a maximally entangled
state. We have four orthonormal EPR states which can be written as

|ϕαβ〉AB = 1√
2

{|0〉A|α〉B + (−1)β |1〉A|α〉B
}
, (1)

where α, β = {0, 1}, α = 1 − α and subscripts A and B denote Alice’s qubit and Bob’s
qubit, respectively.

Let us assume, without loss of generality, that Alice and Bob share the state |ϕ00〉AB, α =
β = 0. Alice has a two-bit message that she wants to send it to Bob. The classical two-bit
message can be one of the forms ij = {00, 01, 10, 11}. Alice first operates one of the four
unitary operators Uij = ZjXi on her qubit. X and Z are Pauli operators. Consequently,
the initial EPR pair changes to one of the four orthonormal EPR states, |ϕij 〉, i.e. the orig-
inal EPR state is encoded by the message, ij . Then, Alice sends her manipulated qubit to
Bob, who performs a measurement in the Bell-basis, that yields the classical message, ij .
Superdense coding has been experimentally implemented [8–12].

In this paper, we suppose two particles denoted as Alice and Bob. Alice is accelerated
while Bob stays inertial. Therefore, one can say that Alice has constant acceleration with
respect to Bob in the z-direction. The accelerated observer’s trajectory in Minkowski coor-
dinates is a hyperbola that is indicated in terms of Rindler coordinates (τ, ξ) [13, 14], with
the following form

(z, t) = ±
(

eaξ

a
cosh(aτ),

eaξ

a
sinh(aτ)

)
, (2)

where τ is the Alice’s proper time, a is an arbitrary reference acceleration and eaξ

a
is the

proper acceleration for Alice. The straight lines passing from origin are obtained by the
coordinate constant τ , and hyperbola is obtained by the coordinate ξ as is plotted in Fig. 1.
The horizons H± that are obtained by the light-like asymptotes, z2 = t2, represent proper
times τ = ±∞ in the limit of ξ → −∞. The right half and the left half of Minkowski plane
are two regions that are called Rindler wedges I and II, respectively. Alice and the fictitious
observer, anti-Alice, are constrained to move in the Rindler wedges I and II, respectively, as
these regions are causally disconnected from each other, i.e. no information can propagate
between them.

In a general discussion, we shall study superdense coding with an accelerated particle
in single mode approximation and beyond single mode approximation. We cover the dis-
cussion in a general manner and find the probability of success for superdense coding with
uniformly accelerated particle. We appraise the whole process by means of superdense cod-
ing capacity, with definition given below. For the sake of completeness, we also discuss the
results in terms of existing entanglement and quantum correlation and the corresponding
changes under superdense coding with uniformly accelerated particle.

Superdense coding capacity is the maximum value of classical information that can be
conveyed for a primary given state being shared between Alice and Bob. When the encod-
ing operator used in the protocol is a unitary operator and the channel is noiseless, then
superdense coding capacity is defined as follow [15–17]

C(A : B) = log2 d + S(ρB) − S(ρAB). (3)

Here, ρB is Bob’s reduced density matrix, ρAB is the initial shared state and d is the dimen-
sion of Alice’s system. S(ρ) is the von Neumann entropy, S(ρ) = − ∑

i λi log2(λi), where
λi’s are the eigenvalues of ρ.
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Fig. 1 Minkowski diagram for Alice and Bob. Bob is stationary and Alice travels with constant acceleration
and is moving along the hyperbola in region I while fictitious observer anti-Alice moving along a corre-
sponding hyperbola in region II. Bob will cross from the horizons H± at his finite Minkowski time tA. After
this time Alice’s signals can just across from H+ and arrives to Bob

Logarithmic negativity [18, 19] that is employed for evaluating entanglement of ρ is
defined as

N(ρ) = log2

∑

i

|λi(ρ
pt)|, (4)

where λi(ρ
pt)’s are the eigenvalues of the partial transpose of ρ.

Quantum discord is evaluated [20–24] for measuring nonclassical correlation and it is
defined as

D(A : B) = I(A : B) − C(A : B), (5)

where I(A : B) is quantum mutual information. It is determined as

I(A : B) = S(ρA) + S(ρB) − S(ρAB). (6)

C(A : B) is the classical correlation given as follow

C(A : B) = max{Bk}
[J{Bk}(A : B)], (7)

where, J is locally accessible mutual information defined as follow

J{Bk}(A : B) = S(ρA) − S{Bk}(A|B). (8)

S{Bk}(A|B) is the quantum conditional entropy defined as follow

S{Bk}(A|B) =
∑

k

pkS(ρA|k), (9)
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where {ρk, pk} is the ensemble of the outcome, after von Neumann measurements {Bk} for
the subsystem B, and ρA|k = TrB(BkρBk)/pk , with pk = Tr(BkρBk). Calculating quantum
discord for a general state can be hard, however for special cases, e.g. where the state is a X-
state, there is a standard approach (see appendix A). The resultant states being studied in the
process of superdense coding with uniformly accelerated particle are X-states. Therefore,
we give precise quantum discord values in addition to logarithmic negativity values and
compare them with superdense coding capacities.

2 Superdense Coding in Single-Mode Approximation

Considering a free Minkowski Dirac field in 1+1 dimensions, we assume all modes of the
field are in vacuum state except two modes that belong to Alice and Bob. The Minkowski
vacuum for Alice can be expanded in terms of the corresponding Rindler vacuum [25], as

|0〉A = cos r|0〉I|0〉II + sin r|1〉I|1〉II, (10)

|1〉A = |1〉I|0〉II, (11)

where |i〉A is the Minkowski particle mode belonging to Alice, |i〉I is the Rindler region I
particle modes and |i〉II is the Rindler region II anti-particle modes.

In single mode approximation, the shared state |ϕ00〉AB can be rewritten by substituting
the relations (10) and (11) in (1) only for Alice, as

|ϕ00〉I,II,B = 1√
2

{cos r|000〉 + sin r|110〉 + |101〉} , (12)

where |abc〉 = |b〉I|c〉II|a〉B . A unitary operator Uij is applied on Alice, the accelerated
qubit. The operator I does not change the state (12), but other operators change the state
into another state, as follow

Uij |ϕ00〉I,II,B = (−1)ij√
2

{
cos r|i00〉 + (−1)j |i01〉 + (−1)j sin r|i10〉

}

= |ϕij 〉I,II,B . (13)

Then, the accelerated particle reaches Bob. If the information to be sent is ij = 00 then the
resultant density matrix is as follow

ρ
I,II,B
00 = 1

2

{
cos2 r|000〉〈000| + sin2 r|110〉〈110| + |101〉〈101| + (

cos r|000〉〈101|
+ cos r sin r|000〉〈110| + sin r|110〉〈101| + h.c.

)}
. (14)

Recall that the Rindler regions I and II are causally disconnected. Alice is constrained to
move in region I, so by tracing out region II, Bob obtains the shared density matrix, as follow

ρ
I,B
00 = 1

2

⎛

⎜
⎜
⎝

cos2r 0 0 cos r

0 0 0 0
0 0 sin2r 0

cos r 0 0 1

⎞

⎟
⎟
⎠ , (15)
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where |ab〉 = |b〉I|a〉B . The density matrix obtained for different cases of ij , the classical
message, can be found as

ρ
I,B
ij = TrII(ρ

I,II,B
ij ) (16)

= 1

2

{
cos2 r|i0〉〈i0| + sin2 r|ī0〉〈ī0| + |ī1〉〈ī1| +(−1)j

(
cos r|i0〉〈ī1| + h.c.

)}
.

Equation (16) represents four distinctive states that are X-states. For decoding the classical
message, a Bell basis measurement is performed to obtain the following results

〈
ϕij |ρI,B

ij |ϕij

〉
= 1

4
(1 + cos r)2,

〈
ϕij̄ |ρI,B

ij |ϕij̄

〉
= 1

4
(1 − cos r)2,

〈
ϕīj |ρI,B

ij |ϕīj

〉
=

〈
ϕīj̄ |ρI,B

ij |ϕīj̄

〉
= 1

4
sin2 r. (17)

Results of this measurement on the density matrix, after tracing out region II, is dependent
on the acceleration parameter, r . In other words, superdense coding is performed with a
probability of r . By letting r = 0, corresponding to a = 0, then superdense coding is
run absolutely in accordance with the original scenario [6]. Figure 2 shows probability of
success for superdense coding, P(ρ

I,B
ij ) = 〈ϕij |ρI,B

ij |ϕij 〉, (17), as a function of acceleration
parameter, r .
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Fig. 2 Probability of success for superdense coding, P , solid line, superdense coding capacity, C(I : B), dot-
dashed line, logarithmic negativity, N , dashed line, and quantum discord, D(I : B), dotted line, as functions
of acceleration parameter, r , for ρ

I,B
00 , in single mode approximation
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In order to evaluate superdense coding capacity and later for quantum discord, we need
to calculate the von Neumann entropies as follows

S(ρI,B) = −1 − cos 2r

4
log2

1 − cos 2r

4
− 3 + cos 2r

4
log2

3 + cos 2r

4
,

S(ρI) = −cos2 r

2
log2

cos2 r

2
− 1 + sin2 r

2
log2

1 + sin2 r

2
,

S(ρB) = 1. (18)

Thus, superdense coding capacity, (3), for the state (15), is obtained as follow

C(I : B) = 2 + 1 − cos 2r

4
log2

1 − cos 2r

4
+ 3 + cos 2r

4
log2

3 + cos 2r

4
. (19)

In Fig. 2, superdense coding capacity, (19), is plotted as a function of acceleration parameter, r .
Logarithmic negativity, (4), is calculated for the entanglement of the state, (15).

Eigenvalues of the partial transpose of the density matrix ρ
I,B
00 , are given by

λ1,2

(
ρ

pt
I,B

)
= 1

2
,

λ3,4

(
ρ

pt
I,B

)
= ±cos2 r

2
. (20)

Thus, logarithmic negativity can be written as follow

N
(
ρ

I,B
00

)
= log2

(
1 + cos2 r

)
. (21)

Figure 2 indicates (21) as a function of r .
Quantum discord is given by (5). For the state of (15), after evaluating the correspond-

ing von Neumann entropies, (18), and employing the approach explained in Refs. [27–29],
quantum discord is calculated for which Fig. 2 shows its behavior as a function of r . It is
clear, that four quantities, probability of success, superdense coding capacity, logarithmic
negativity and quantum discord for superdense coding with accelerated particle, in single
mode approximation, are descending functions of r .

3 Superdense Coding in Beyond Single-Mode Approximation

In beyond single mode approximation, an accelerated detector can detect a mode in both
Rindler wedges I and II, therefore there are different right and left components for the
single-particle state denoted as Alice [26],

|0〉A = cos r|0〉I|0〉II + sin r|1〉I|1〉II,

|1〉A = ql |0〉I|1〉II + qr |1〉I|0〉II, (22)

where ql and qr are complex numbers that satisfy q2
l + q2

r = 1. For simplicity, we only
consider the cases that ql and qr are real. The single mode approximation is found by letting
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qr = 1 in the general form (22). The shared state |ϕ00〉AB can be rewritten by substituting
the relations (10) and (22) for Alice in (1), in beyond single mode approximation, as

|ϕ00〉I,II,B = 1√
2

{cos r|000〉 + sin r|110〉 +ql |011〉 + qr |101〉} . (23)

Alice applies a unitary operator Uij on her qubit. Like the previous section, operator I does
not change the state (23), but others do change the state into another state, as follows

Uij |ϕ00〉I,II,B = (−1)ij√
2

{
cos r|i00〉 + (−1)j sin r|i10〉 + ql |i11〉 + (−1)j qr |i01〉

}

= |ϕij 〉I,II,B . (24)

Now, the state in Bob’s possession, after he receives the accelerated particle is
∣∣ϕij

〉
I,II,B .

For the case ij = 00, the resultant density matrix is given by

ρ
I,II,B
00 = 1

2

{
cos2 r|000〉〈000| + sin2 r|110〉〈110| + q2

l |011〉〈011| + q2
r |101〉〈101|

+
(

cos r sin r|000〉〈110| + ql sin r|110〉〈011| + qr cos r|000〉〈101|
+ql cos r|000〉〈011| + qr sin r|110〉〈101| + qlqr |011〉〈101| + h.c.

)}
. (25)

The density matrix that is given by tracing out region II, is given by

ρ
I,B
00 = TrII(ρ

I,II,B
00 ) = 1

2

⎛

⎜⎜
⎝

cos2r 0 0 qr cos r

0 q2
l ql sin r 0

0 ql sin r sin2r 0
qr cos r 0 0 q2

r

⎞

⎟⎟
⎠ . (26)

For other cases for the classical message ij , the density matrix can be obtained as follow

ρ
I,B
ij = TrII

(
ρ

I,II,B
ij

)

= 1

2

{
cos2 r|i0〉〈i0| + sin2 r|ī0〉〈ī0| + q2

l |i1〉〈i1| + q2
r |ī1〉〈ī1| + (−1)j

×
(
qr cos r|i0〉〈ī1| + ql sin r|ī0〉〈i1| + h.c.

)}
, (27)

which represents four distinctive matrices that are X-forms. Thus, measurement in Bell basis
by Bob yields

〈
ϕij |ρI,B

ij |ϕij

〉
= 1

4
(qr + cos r)2,

〈
ϕij̄ |ρI,B

ij |ϕij̄

〉
= 1

4
(qr − cos r)2,

〈
ϕīj |ρI,B

ij |ϕīj

〉
= 1

4
(ql + sin r)2,

〈
ϕīj̄ |ρI,B

ij |ϕīj̄

〉
= 1

4
(ql − sin r)2. (28)

These results show the probability of success, P
(
ρ

I,B
ij

)
, is 1

4 (qr+cos r)2, and it is illustrated

in Figs. 3, 7 and 8. Therefore, measurement by Bob depends on the acceleration parameter,
r . If r = 0 and qr = 1, corresponding to a = 0 and ql = 0, respectively, then the original
superdense coding scenario is given [6].
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Fig. 3 Probability of success in terms of acceleration parameter, r , and presence possibility of the particle
in region II of Rindler region, ql

For the state (26), the von Neumann entropies are given as follows

S(ρI,B) = −−1+2q2
l −cos 2r

4
log2

−1+2q2
l −cos 2r

4
− 3−2q2

l +cos 2r

4
log2

3 − 2q2
l +cos 2r

4
,

S(ρI) = −1 − q2
l + sin2 r

2
log2

1 − q2
l + sin2 r

2
− q2

l + cos2 r

2
log2

q2
l + cos2 r

2
,

S(ρB) = 1. (29)

Thus, superdense coding capacity C(I : B), (3), is calculated as follow

C(I :B)=2+ 3−2q2
l +cos 2r

4
log2

3−2q2
l +cos 2r

4
+ 1+2q2

l − cos 2r

4
log2

1+2q2
l − cos 2r

4
.

(30)

Figures 4, 7 and 8 show the behavior of (30) as a function of r and ql , respectively.
The entanglement of (26) is evaluated by logarithmic negativity, (4). Eigenvalues of the

partial transpose of the density matrix ρ
I,B
00 , are given by

λ1,2

(
ρ

pt
I,B

)
= 1

2
,

λ3,4

(
ρ

pt
I,B

)
= ±1

2

(
cos2 r − ql

2
)

. (31)
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Fig. 4 Capacity of superdense coding in terms of acceleration parameter, r , and presence possibility of the
particle in region II of Rindler region, ql

Thus, logarithmic negativity is calculated as follow

N
(
ρ

I,B
00

)
= log2

(
1 +

∣∣∣cos2 r − q2
l

∣∣∣
)

. (32)

Fig. 5 Logarithmic negativity in terms of acceleration parameter, r , and presence possibility of the particle
in region II of Rindler region, ql
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Figures 5, 7 and 8 show the behavior of (3) as a function of r and ql , respectively.
Quantum discord, (5), is derived by considering the corresponding von Neumann

entropies, (29), and following the approach in Refs. [27–29]. Figures 6, 7 and 8 show
nonclassical correlation in terms of r and ql , respectively.

4 Generality of Discussions for all α, β = {0, 1}, (1)
Generally, the initial shared state |ϕαβ〉A,B can be rewritten by substituting the relations (10)
and (22) in beyond single mode approximation, as

|ϕαβ〉I,II,B = 1√
2

{
cos r|00α〉 + sin r|11α〉 + (−1)βql |01ᾱ〉 + (−1)βqr |10ᾱ〉} .

(33)

A unitary operator Uij is applied on the accelerated particle. Then the resultant state is sent
to Bob. The operator I does not change the state (33), but others do change the state into
another state, as follow

Uij |ϕαβ〉I,II,B = (−1)ij√
2

{
cos r|i0α〉+(−1)βql |i1ᾱ〉+(−1)j sin r|i1α〉+(−1)β+j qr |i0ᾱ〉

}
.

(34)

Fig. 6 Quantum discord in terms of acceleration parameter, r , and presence possibility of the particle in
region II of Rindler region, ql
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Fig. 7 Probability of success for superdense coding, P , solid lines, superdense coding capacity, C(I : B),
dotdashed lines, logarithmic negativity, N , dashed lines, and quantum discord, D(I : B), dotted lines, for
ql = 1√

2
, thin lines, and ql = 1, thick lines, as functions of r , for ρ

I,B
00 , in beyond single mode approximation

This is the state in Bob’s possession. The resultant density matrix for superdense coding
beyond single mode approximation is given by tracing out region II, as follow

ρI,B = TrII(ρ
I,II,B) (35)

= 1

2

{
cos2 r|iα〉〈iα| + sin2 r|īα〉〈īα| + q2

l |iᾱ〉〈iᾱ| + q2
r |īᾱ〉〈īᾱ|

+(−1)β+j
(
qr cos r|iα〉〈īᾱ| + ql sin r|īα〉〈iᾱ| + h.c.

) }
,

which represents X-form matrices for all cases of α, β, i, j .
Therefore, our initial assumption of α = β = 0 for the shared entanglement, (1), does

not affect the generality of discussions for single mode approximation and beyond single
mode approximation. For both of the cases, the resultant states from superdense coding with
uniformly accelerated particle can be evaluated for their probabilities of success, superdense
coding capacities, negativity values and discord values. The final states, for all four choices
of α and β, are X-form states. Therefore, quantum discord can be calculated following the
approach discussed in Refs. [27–29].
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Fig. 8 Probability of success for superdense coding, P , solid lines, superdense coding capacity, C(I : B),
dotdashed lines, logarithmic negativity, N , dashed lines, and quantum discord, D(I : B), dotted lines, for
r = 0, thin lines, and r = π

4 , thick lines, as functions of ql , for ρ
I,B
00 , in beyond single mode approximation

5 Discussions and Conclusion

We studied superdense coding with uniformly accelerated particle in single mode approx-
imation and beyond single mode approximation. In single mode approximation, qr = 1
(or equally ql = 0), measurement by Bob on the density matrix after tracing out region II
is dependent on the acceleration parameter, r . By letting r = 0, corresponding to a = 0,
superdense coding is performed with absolute probability, (17), in accordance with the
original superdense coding [6]. As illustrated in Fig. 2, probability of success, superdense
coding capacity, logarithmic negativity and quantum discord are all descending functions of
acceleration parameter, r .

In beyond single mode approximation, the situation is more intricate. Figure 7 (Fig. 8)
is to show behaviors of probability of success, superdense coding capacity, negativity and
quantum discord for the resultant state of superdense coding with uniformly accelerated
particle, for distinct values of ql (r), as functions of r (ql). ql is in interval [0,1]. Figure 7
shows the functions for ql maximum that is ql = 1, and for ql = 1√

2
. Entanglement and

nonclassical correlation are zero for ql = 1√
2

, with r = π
4 . In Fig. 8, the four functions are

shown for r minimum, that is r = 0, and for r = π
4 , that is when quantum correlations are

zero at ql = 1√
2

.

Recall that single mode approximation is a special case for beyond single mode approxi-
mation for when ql = 0. From Fig. 8, we can see that for ql = 0, and two cases of r = 0 and
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r = π
4 , the evaluated functions values exactly coincide with the corresponding ones being

represented in Fig. 2.
In Fig. 7, when ql = 1, the maximum value for ql , the maximum probability of suc-

cess, P , is for r = 0, (28). P is decreasing with increasing r . We would expect similar
behaviors for entanglement, nonclassical correlation and the capacity, however negativity
and discord, as well as the capacity, are representing increasing behaviors. In beyond single
mode approximation, (22), if the accelerated object starts from |1〉, there is some distinct
probability for the state to change to |0〉, and this probability is equal to 1 specifically for
when ql = 1, the case illustrated in Fig. 7 with thick lines. Indeed, we do not evaluate the
entanglement, nor nonclassical correlation of the original shared entangled state by nega-
tivity and discord, and what is illustrated is actually the negativity and discord for the state
|ψīj 〉, but not the original state |ψij 〉. The same discussion is applied to explain the capac-
ity of superdense coding since this function is evaluated using nonclassical correlations.
We, therefore, conclude that the probability of success is the best means for evaluating the
process of superdense coding with accelerated particle, specially for a large ql , i.e. when
beyond single mode approximation is strongly used.

In Fig. 7, when ql = 1√
2

, since ql is not very large, i.e. even in beyond single mode

approximation, the initial state of the accelerated particle only changes to an unbiased super-
position of |0〉 and |1〉, (22). Therefore, we do not see any peculiar behavior from the studied
functions, as the previous paragraph. Here, the capacity of superdense coding, entanglement,
discord and the probability of success are all decreasing functions with regard to r .

In Fig. 8, when r = 0, with an increase in ql , the four evaluated functions decrease,
which is the expected behavior, consulting the corresponding equations, and specifically
(22). In the same figure, when r = π

4 , with an increase in ql , entanglement and nonclassical
correlation decrease until they reach the minimum value 1√

2
. From this point, the behav-

iors of these two functions are changed. They represent increasing behaviors, which can be
explained again by (22), since the state |ψij 〉 changes to |ψīj 〉. Correspondingly, the capac-
ity of superdense coding is showing similar peculiar behavior. The capacity of superdense
coding generally follows the behavior of quantum correlations, however the relationship is
not as simple to give an exact form. The probability of success is presenting behavior as the
expectation.

In relativistic regimes, superdense coding with an accelerated particle and its probabil-
ity of success can be reliably used for evaluating the involved quantum states in terms of
their capabilities for being employed and manipulated for quantum information process-
ing purposes. In this regard, negativity, discord and superdense coding capacity definitions
are shown to have obstacles at least for specific ranges of acceleration and in a general
form where one investigates the process in a general manner, i.e. in beyond single mode
approximation.
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