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Abstract To improve the slow processing speed of the classical image encryption algo-
rithms and enhance the security of the private color images, a new quantum color image
encryption algorithm based on a hyper-chaotic system is proposed, in which the sequences
generated by the Chen’s hyper-chaotic system are scrambled and diffused with three compo-
nents of the original color image. Sequentially, the quantum Fourier transform is exploited to
fulfill the encryption. Numerical simulations show that the presented quantum color image
encryption algorithm possesses large key space to resist illegal attacks, sensitive depen-
dence on initial keys, uniform distribution of gray values for the encrypted image and weak
correlation between two adjacent pixels in the cipher-image.

Keywords Hyper-chaotic system · Quantum Fourier transform · Quantum color image
encryption

1 Introduction

In recent years, information security has received more and more concerns, and a variety
of digital image encryption methods have been widely applied in secure validation systems
[1, 2]. Chaotic cryptosystems commonly have super-speed with low costs, which makes
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them to be better candidates than many other classical encryption algorithms for multime-
dia data [3]. In 1989, Matthews firstly presented the chaos-based encryption algorithm [4],
and Fridrich firstly introduced chaotic systems into image encryption in 1998 by designing
substitution and diffusion in the spatial domain [5]. The interrelated correlation between
cryptography and chaos was investigated [6]. Patidar et al. proposed a color image encryp-
tion algorithm based on substitution-diffusion framework by adopting chaotic standards
and logistic maps [7]. In particular, logistic map was universally used in the field of image
encryption [8], though it is not secure enough to use one-dimensional chaotic map merely
due to the small key space [9]. Subsequently, a hyper-chaotic system with unfixed parame-
ters for image encryption was investigated [10]. Because of the unique characteristics of the
chaotic system, such as high sensitivity, topological transitivity, non-periodicity and pseudo-
randomness, the image encryption mechanisms based on hyper-chaotic system have been
discussed frequently and a battery of chaos-based image encryption schemes have been
proposed [11–13].

With the rapid development of network technology, internet-based multimedia commu-
nication is of increasing importance. In accordance with random classical computations, M
data needs M steps of loading operations for a single processor [14], which reduces the
computational efficiency and results in the bottleneck of classical computers. Nowadays,
quantum computation is becoming a potentially important and effective tool to meet the
high real-time computational requirements [15, 16]. Based on the principles of quantum
physics, Feynman presented a computation model named quantum computers, which seems
more powerful than classical ones [17]. Shor’s polynomial time scheme for factoring inte-
gers and Grover’s database searching algorithm have indicated the power of future quantum
computers [18]. Additionally, quantum image processing extending classical image process-
ing applications into a quantum computer is a novel and infusive subject among quantum
computation. The image color and position could be encoded into one quantum state by a
flexible representation of quantum image (FRQI) [19], which keeps the classical properties
of color and position. The real ket model was performed on image quartering iteratively
and a balanced quad-tree index was built [20], where each pixel was mapped into a basis
state of a four-dimensional qubit sequence. The qubit lattice model [21, 22] allows peo-
ple to store information without preprocessing with three primary colors, i.e., Red, Green
and Blue. Some classical frequency domain transformations have been extended into their
quantum versions, for example, quantum Fourier transform (QFT) [16]. Undoubtedly, QFT
would play a vital role in quantum computation [23–25]. However, there is another kind of
transforms, which are shown to be a powerful tool in developing quantum algorithms [26,
27]. Due to the quantum chaotic systems could be characterized by the sensitive dependence
on initial values, a new color image encryption algorithm based on quantum chaotic system
was presented [28]. In 2014, Yang et al. proposed a quantum cryptographic algorithm for
color images by combining quantum Fourier transform with double random-phase encoding
[29].

However, some of the presented chaos-based image encryption schemes suffer secu-
rity threats [30, 31], such as the way of generating the key stream, relatively small key
space, the required round of encryption times (the trade off between security and the over-
all performance), and etc. Quantum networks, emerging as a branch of quantum physics to
understand the features of quantum information, have some advantages in breaking the clas-
sical computing limits [32]. In particular, quantum image encryption technology has unique
characteristics, such as large capacity, high processing speed, high robustness, natural par-
allelism and high security. The security of the most classical cryptosystems is founded on
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the supposition of computational complexity and might be susceptible to the strong ability
of quantum computation [33]. In this paper, through the combination of hyper chaotic sys-
tems and quantum image encryption technology, it can be seen from the simulation that the
advantages of quantum image encryption is apparently in overcoming the shortcomings of
chaos due to the enlarged key space, the accelerated processing speed, the improved secu-
rity. Therefore, more and more security algorithms, including quantum image encryption
algorithms, were devised based on quantum information and quantum computation [16].

The rest of this paper is arranged as follows. In Section 2, quantum representation for
color images and the Chen’s hyper-chaotic system are related. A color image encryption
scheme is designed in Section 3 while the security analyses are given in Section 4. Finally,
a brief conclusion is drawn in Section 5.

2 Quantum Image Representation and Hyper-Chaotic System

2.1 Quantum Representation for Color Image

Generally, a color image contains information with three colorants of red (R), green (G)

and blue (B), which are described by different grayscales. Visually, the color images
are matched with the approximate spectrum quantitative properties of human eyes. The
quantum representation for color image can be defined as [29]:

|I (θλ)〉 = 1
2n

22n−1∑

m=0
|cm〉 ⊗ |m〉

|cm〉 = |rm〉 |gm〉 |bm〉
(1)

where |rm〉 = cos θ1m |0〉 + sin θ1m |1〉 , |gm〉 = cos θ2m |0〉 + sin θ2m |1〉 , |bm〉 =
cos θ3m |0〉+ sin θ3m |1〉 , θλ ∈ [

0, π
2

]
, λ=1, 2, 3 and m = 0, 1, . . . , 22n − 1. n is the number

of quantum bits required to encode. Quantum states |0〉 and |1〉 are the 2D computational
basis quantum states, θλ is the primary phase encoding information of red, green or blue
vectors, |cm〉 and |m〉 encode color information and the corresponding position of the pixel,
respectively. The preparation of quantum color image is shown in Fig. 1.

The three components of the color image are equivalent to three separate gray
images, respectively. For a gray image, the position qubit |m〉 = |yx〉 = |y〉 |x〉 =
|yn−1yn−2 . . . y0〉 |xn−1xn−2 . . . x0〉 encodes the corresponding position information of the

Fig. 1 Preparation of quantum color image



Int J Theor Phys (2016) 55:5368–5384 5371

quantum images, where |yn−1yn−2 . . . y0〉 encodes the information of the first n-qubit along
the vertical location while |xn−1xn−2 . . . x0〉 encodes the information of the rest n-qubit
along the horizontal location.

2.2 Hyper-Chaotic System

In 1999, the Chen’s system was put forward in a three-dimensional way.

⎧
⎨

⎩

x̄ = a (y − x)

ȳ = cx − ax − xz − cy

z̄ = xy − bz

(2)

If the control parameters a, b, c in (2) are taken 35, 3, 28, respectively, the system would
be chaotic. The Chen’s chaotic system could be used to generate the hyper-chaotic system
state [34].

⎧
⎪⎪⎨

⎪⎪⎩

X̄ = d (y − x)

Ȳ = ex + hy − xz + w

Z̄ = y2 − lz

W̄ = −qx

(3)

where d, e, h, l and q are the parameters of the system. While they take 27.5, 3, 19.3, 2.9,
3.3, respectively, the system would be in a hyper-chaotic state under the conditions of any
given chaotic system state with a set of initial values X̄0, Ȳ0, Z̄0, W̄0. The hyper-chaotic
system is more effective and more appropriate for image encryption than the chaotic system
[13]. With parameters d = 27.5, e = 3, h = 19.3, l = 2.9, q = 3.3, and the hyper-chaos
attractors shown in Fig. 2, the Lyapunov exponents of the hyper-chaos system are 1.6170,
0.1123, 0, −12.8425. Apparently, the hyper-chaos system has two positive Lyapunov expo-
nents, thus the prediction time of a hyper-chaotic system is shorter than that of a chaotic
system [35] and the hyper-chaotic system is better than chaos system for security algorithm.
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Fig. 2 Hyper-chaos attractors of Chen’s hyper-chaotic system with q = 3.3
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3 Quantum Color Image Encryption and Decryption Algorithm

3.1 Quantum Color Image Encryption Based on the Hyper-Chaotic System

Assume the quantum original image is |I (θλ)〉 = 1
2n

22n−1∑

m=0
|cm〉 ⊗ |m〉, where |cm〉 =

|rm〉 |gm〉 |bm〉,m = 0, 1, . . . , 22n−1, |rm〉 = cos θ1m |0〉+sin θ1m |1〉, |gm〉 = cos θ2m |0〉+
sin θ2m |1〉, |bm〉 = cos θ3m |0〉 + sin θ3m |1〉, θλ ∈ [

0, π
2

]
, λ=1, 2, 3. The three color com-

ponents of the original image have 2n × 2n pixels, respectively. Thus, 22n iterations are
involved to produce 22n numbers for XOR operations. The whole process of the proposed
encryption algorithm is as follows.

Step. 1 By choosing the initial parameters X̄0, Ȳ0, Z̄0 and W̄0, four sequences X̄m, Ȳm,
Z̄m and W̄m are generated by the fourth order Runge Kutta algorithm with 22n iterations.
Step 2 X̄m, Ȳm, Z̄m and W̄m are discretized with (4), then the four corresponding integer
sequences Tm (T takes X, Y , Z and W , respectively.) could be obtained.

Tm = ∣
∣f (Tm − f (Tm))

∣
∣ × 1015 mod 256 (4)

where f (x) rounds x to the nearest integer less than or equal to x and mod returns the
remainder after division.
Step. 3 Start from the first pixel of the plaintext, each pixel is decomposed into three
gray components, and each cipher-text arm, agm or abm could be obtained with XOR
operation ⊕.

⎧
⎨

⎩

arm = rm ⊕ (Xm mod 256)
agm = gm ⊕ (2Ym mod 256)
abm = bm ⊕ (3Zm mod 256)

(5)

Step. 4 Based on the integer sequencesXm, Ym, Zm andWm of the hyper-chaotic system,
three of them are formed as a combination QL.

L = mod (Xm,4) , m = 0, 1, . . . , 22n − 1. (6)

where Xm is the integer sequence of the hyper-chaotic system. In order to scramble
the pixel values better and enhance the sensitivity of the keys, from Table 1, the corre-
sponding state variable combination QL is used to perform XOR operation with each
cipher-text arm, agm or abm.

⎧
⎨

⎩

Arm = arm ⊕ QL

Agm = agm ⊕ QL

Abm = abm ⊕ QL

(7)

Table 1 Combination rule of the
hyper-chaotic sequences Serial numbers (L) State variable combinations (QL)

0 (Xm, Ym,Zm)

1 (Xm, Ym,Wm)

2 (Xm,Zm,Wm)

3 (Ym,Zm,Wm)
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Step 5 Image data matrices |P 〉 are achieved by compounding Arm, Agm and Abm from
(7).

|P 〉 = 1

2n

22n−1∑

m=0

|Arm〉 ∣
∣Agm

〉 |Abm〉 |m〉 (8)

where |Arm〉 = cos θ ′
1m |0〉 + sin θ ′

1m |1〉, ∣
∣Agm

〉 = cos θ ′
2m |0〉 + sin θ ′

2m |1〉, |Abm〉 =
cos θ ′

3m |0〉 + sin θ ′
3m |1〉, m = 0, 1, . . . , 22n − 1.

Step. 6 Set quantum rotation gateR (ξm,ψm, ζm) = TX (ξm)⊗TY (ψm)⊗TZ (ζm), where
ξm, ψm and ζm represent the rotation angles around x, y, z axes, respectively.

TX(ξm) =
⎛

⎝
1 0 0
0 cos ξm − sin ξm

0 sin ξm cos ξm

⎞

⎠ (9a)

TY (ψm) =
⎛

⎝
cosψm 0 sinψm

0 1 0
− sinψm 0 cosψm

⎞

⎠ (9b)

TZ(ζm) =
⎛

⎝
cos ζm − sin ζm 0
sin ζm cos ζm 0
0 0 1

⎞

⎠ (9c)

R (ξm, ψm, ζm) is applied to rotate the corresponding Arm, Agm and Abm in the spatial
domain. ⎡

⎣
Ar ′m
Ag′m
Ab′m

⎤

⎦ = R (ξm,ψm, ζm)

⎡

⎣
Arm

Agm

Abm

⎤

⎦ (10)

|P1〉 = 1
2n

22n−1∑

m=0
|Ar ′m〉 ∣

∣Ag′m
〉 |Ab′m〉 ⊗ |m〉 could be obtained from (10), and |Ar ′m〉 =

cos (θ ′
1m +ξm) |0〉+sin (θ ′

1m +ξm) |1〉, ∣∣Ag′m
〉 = cos (θ ′

2m +ψm) |0〉+sin (θ ′
2m +ψm) |1〉,

|Ab′m〉 = cos (θ ′
3m + ζm) |0〉 + sin (θ ′

3m + ζm) |1〉.

3.2 Quantum Fourier Transform

The quantum Fourier transform was concluded from the traditional discrete Fourier
transform [16](Fig. 3).

QFT : UQFT |t〉 = 1√
N

N−1∑

k=0

e2π ikt/N |k〉 (11)

where UQFT is defined to be a linear operator with the following action on the orthonor-
mal basis states |0〉 , . . . , |N − 1〉, QFT is a 2n unitary transformation for a single state
into superposition, k and t represent two integers ranging from 0 to N − 1. So far, the
QFT has been demonstrated experimentally by using the quantum Hadamard gates and the
conditional phase gates [16, 36].

A controlled phase rotation gate ρ
′
w(CROT) [37] used in the QFT is defined as

ρ
′
w |H 〉u |J 〉v =

{ |H 〉u ejρw |J 〉v , |H 〉u = |1〉 = |J 〉v ;
|H 〉u |J 〉v , else.

(12)

where qubit number u acts as the control qubit |H 〉u ∈ {|0〉 , |1〉}, and qubit number v acts
as the target qubit |J 〉v ∈ {|0〉 , |1〉}, w = |f �u − v	| is the integer distance between qubit
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Fig. 3 Circuit for quantum Fourier transform

numbers u and v, where f �x	 rounds x to the nearest integer less than or equal to x, integer
distance represents integer absolute value of f �u − v	. Moreover, in the case of the exact
QFT,

ρw = π

2w
(13)

Equation 13 defines an exponential hierarchical structure of phase rotation angles, the base
of the exponential in (13) relates directly to the base-2 arithmetic used in transcribing the
abstract QFT unitary transformation into a realization with qubits of two possible states.
Due to the number-theoretical relationships, the qubit-based QFT will be executed per-
fectly in this way, while the desired reinforcements (quantum interference) and amplitude
cancellations will be precisely taken place [37].

Assume R channel |I (θ)〉 is extracted from the color image |I (θλ)〉 to generate a
representation of image in quantum states, it could be defined as [38],

|I (θ)〉 = 1

2n

22n−1∑

m=0

hm ⊗ |m〉 (14)

hm=
1

2n

22n−1∑

m=0

(
|0〉+ejθm |1〉

)
|m〉 (15)

where, m = 0, 1, . . . , 22n − 1, there is a 2n + 1 qubits unitary transform Eκ that turns
the color angle θm corresponding to the position |m〉 of the quantum image |I (θ)〉 into a
color angle σm. Given the angles θm and σm, there exists angle φm=σm − θm; thus, we can
construct a 2n + 1 qubits-based unitary transform Eκ as:

Eκ =
⎛

⎝I0 ⊗
22n−1∑

m=0,m 
=κ

|m〉 〈m|
⎞

⎠ + Fκ ⊗ |κ〉 〈κ| (16)

Fκ =
(
1 0
0 φ′

κ |H 〉u |J 〉v
)

(17)

Fκ is a phase gate, the controlled phase matrix Eκ is a unitary matrix, EκE∗
κ = I⊗2n+1

0 ,
where E∗

κ is the Hermitian conjugate of Eκ , I0 is a two-dimensional identity matrix,
φ

′
κ |H 〉u |J 〉v matches the corresponding values in (12). Sequences of controlled phase

matrices in (16) are designed to change every angle encoding color without destroying that
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of the other positions. Thus, the angles encoding colors θm = (
θ1, θ2, . . . , θ22n−1

)
can be

transformed.

EηEκ |I (θ)〉
= 1

2n

[
22n−1∑

m=0,m 
=κ,η

(|0〉+ejθm |1〉) |m〉+ (|0〉+ej(θκ+φκ ) |1〉) |κ〉+
(
|0〉+ej(θη+φη) |1〉

)
|η〉

]

= 1
2n

[
22n−1∑

m=0,m 
=κ,η

(|0〉+ejθm |1〉) |m〉+ (|0〉+ejσκ |1〉) |κ〉+ (|0〉+ejση |1〉) |η〉
]

(18)
From (18), it is clear that

E |I (θ)〉 =
22n−1∏

j=0
Ej |I (θ)〉

= 1
2n

22n−1∑

m=0
(|0〉 + ej(θm+φm) |1〉) |m〉

= 1
2n

22n−1∑

m=0
(|0〉 + ejσm |1〉) |m〉

(19)

Likewise, the similar operations E′ and E′′ could implement on the G and B channels also.

E′ ∣∣I (θ ′)
〉 = 1

2n

22n−1∑

m=0

(|0〉 + ejσ
′
m |1〉) |m〉 (20)

E′′ ∣∣I (θ ′′)
〉 = 1

2n

22n−1∑

m=0

(|0〉 + ejσ
′′
m |1〉) |m〉 (21)

Step 7: The new image |P2〉 is obtained by implementing quantum Fourier transform,
and then quantum random phase operation in the Fourier transform domain is performed
[39].

|P2〉 = QFT |P1〉
= QFT

(

1
2n

22n−1∑

m=0
|Ar ′m〉 ∣

∣Ag′m
〉 |Ab′m〉 |m〉

)
(22)

|P3〉 = (E′′ ⊗ E′ ⊗ E) |P2〉

= (E′′ ⊗ E′ ⊗ E)

⎛

⎝QFT

⎛

⎝ 1

2n

22n−1∑

m=0

|Ar ′m〉 ∣
∣Ag′m 〉 |Ab′m〉 |m 〉

⎞

⎠

⎞

⎠ (23)

Step 8: Execute the inverse quantum Fourier transform on |P3〉 to obtain the final
encrypted image |P4〉.

|P4〉 = IQFT(|P3〉)

= IQFT

⎛

⎝(E′′ ⊗ E′ ⊗ E)

⎛

⎝QFT

⎛

⎝ 1

2n

22n−1∑

m=0

|Ar ′m〉 ∣
∣Ag′m 〉 |Ab′m〉 |m〉

⎞

⎠

⎞

⎠

⎞

⎠(24)

3.3 Quantum Color Image Decryption Process

The encryption process is completely reversible, so the decryption process is similar to the
encryption process.
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Step1: Perform quantum Fourier transform on |P4〉.
QFT (|P4〉) = QFT(IQFT(|P3〉)) = |P3〉 (25)

Step 2: |P2〉 is obtained by applying calculation of random phase conjugate on |P3〉,
(E′′ ⊗ E′ ⊗ E)∗ |P3〉
= (E′′ ⊗ E′ ⊗ E)∗((E′′ ⊗ E′ ⊗ E) |P2〉) (26)

= ((E′′)∗ ⊗ (E′)∗ ⊗ E∗)((E′′ ⊗ E′ ⊗ E) |P2〉) = |P2〉
then the inverse quantum Fourier transform is performed.

IQFT |P2〉 = IQFT(QFT |P1〉) = |P1〉 (27)

Step 3: Execute the decrypted operation on |P1〉 with the key R−1 (ξ, ψ, ζ ).

R−1 (ξ, ψ, ζ ) |P1〉 = (TX(ξ) ⊗ TY (ψ) ⊗ TZ(ζ ))−1 |P1〉

= T −1
X (ξ) ⊗ T −1

Y (ψ) ⊗ T −1
z (ζ )

⎛

⎝ 1

2n

22n−1∑

m=0

|Ar ′m〉 ∣
∣Ag′m 〉 |Ab′m〉 |m〉

⎞

⎠

= T −1
X (ξ) ⊗ T −1

Y (ψ) ⊗ T −1
Z (ζ )

⎛

⎝TX(ξ) ⊗ TY (ψ) ⊗ TZ(ζ )

⎛

⎝ 1

2n

22n−1∑

m=0

|Arm〉 ∣
∣Agm 〉 |Abm〉 |m〉

⎞

⎠

⎞

⎠

= 1

2n

22n−1∑

m=0

|Arm〉 ∣
∣Agm 〉 |Abm〉 |m〉 (28)

Step 4: The keys involved in the whole encryption process are the initial parameters X̄0,
Ȳ0, Z̄0 and W̄0. The solutions are based on X̄0, Ȳ0, Z̄0 and W̄0, and it could be successful
to restore the original image in turn.

4 Security Analysis

4.1 Theoretical Analyses and Experimental Simulation

Traditional encryption technology is widely used in real life, which can protect the classic
data from unauthorized modification and interception, but once the classic data suffer the
brute-force attacks, there is no irreversible change. Infer from the quantum Uncertainty
principle and No-cloning theorem, if an illegal attacker wants to obtain information from
the unknown quantum state, the quantum state must be first measured, it would lead to
the quantum state collapsing randomly into an eigenstate of the measurement operators
irreversibly [40], moreover, unknown quantum state couldn’t be reproduced.

Since a practical and useful quantum computer is still unavailable, the experiments are
limited to classical simulations on a classical computer with MATLAB. The 200×200
color image “Lena” is chosen as the original image, which is shown in Fig. 4a. X̄0=0.146,
Ȳ0= − 0.329, W̄0=1.000 are set as the initial parameters of the hyper-chaotic system. The
encrypted image is given in Fig. 4b. The encrypted image does not show any information of
the original image visually.
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Fig. 4 Results of test images: (a) the original image (b) the encrypted image

4.2 Statistical Analysis

(1) Information entropy
The information entropy is often used to measure the randomness of the cipher images.

The entropy H (m) of a message source S is:

H(m) =
2N−1∑

m=0

p(sm) log2
1

p(sm)
(29)

where p (sm) represents the probability of symbol sm and the entropy is expressed in
bits. After encrypting a message, the ideal entropy of the encrypted image should be
approaching 8 bits [41]. If the entropy is close to 8 bits, then it means the encryption
system could resist the brute-force attack. With the proposed image encryption algo-
rithm, counting times of each pixel in three primary colors (R, G, and B) and calculating
the corresponding probability, three colors corresponding to the information entropy are
shown in Table 2. From the results of statistics, the loss in the processing of information
encryption is completely weak, thus the proposed scheme is stable and secure against
entropy attack (Fig. 5).

Table 2 The information entropy of image Lena

Image channels Information Entropy (bits)

Original image Encrypted image

Lena (R) 7.3137 7.9950

Lena (G) 7.5880 7.9953

Lena (B) 7.1151 7.9955

Splash (R) 6.9197 7.9959

Splash (G) 6.8978 7.9951

Splash (B) 6.0673 7.9957

Beans (R) 5.2691 7.9949

Beans (G) 5.7069 7.9957

Beans (B) 6.5544 7.9957
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Fig. 5 a original image Lena (b) original image Splash (c) original image Beans

(2) Histogram
A good image encryption scheme should always generate a uniform histogram of the

cipher-image for any plain-image. Figure 6a, Fig. 7a and Fig. 8a are the histograms of
three primary colors of the original image while Fig. 6b, Fig. 7b and Fig. 8b are those of
their corresponding encrypted image. It can be seen that the histograms of the original
image ”Lena” are not evenly distributed and their shape difference is distinctly, while
the histograms of the encrypted image tend to be a similar shape. It demonstrates that
an attacker can hardly launch any effective statistical attack since the gray values are
distributed uniformly.

(3) Correlation between adjacent pixels
A color image is divided into three channels, i.e., R, G and B, and each channel is

regarded as a gray-scale image. In ordinary images with definite visual content, each
pixel is highly correlated with its adjacent pixels. A desirable encryption scheme should
generate an encrypted image with rather weak correlation between adjacent pixels. The
horizontal pixels correlation coefficient is:

ρxy = cov (x, y)√
D (x) D (y)

(30)
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Fig. 6 Histograms of R channel: (a) Lena, (b) encrypted Lena
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Fig. 7 Histograms of G channel: (a) Lena, (b) encrypted Lena

The covariance cov(x, y) and the variance D (x) can be expressed respectively:

cov (x, y)=
1

n

n∑

i=1

(
xi − x

) (
yi − y

)
(31)

D (x)=
1

n

n∑

j=1

(
xj − x

)2 (32)

where x = 1
n

n∑

i=1
xi , y = 1

n

n∑

i=1
yi . Similarly, the correlation coefficients of the vertical

and diagonal directions could be obtained also. The correlation coefficients of three
primary colors in horizontal, vertical and diagonal directions are shown in Table 3.
Figs. 9, 10 and 11 show the correlation distributions between two adjacent pixels of R

channel in the horizontal, vertical and diagonal directions.
Based on the data and figures above, three primary colors (RGB) of the original image

in all directions between the adjacent pixels have close correlation. The correlation coef-
ficients of the encrypted image are much little, which shows that the information was
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Fig. 8 Histograms of B channel: (a) Lena, (b) encrypted Lena
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Table 3 Correlation coefficients between adjacent pixels

Correlation coefficient Horizontal Vertical Diagonal

Original Lena (R) 0.9535 0.9151 0.8791

Encrypted Lena (R) 0.0224 −0.0195 0.0211

Original Lena (G) 0.9610 0.9208 0.8938

Encrypted Lena (G) −0.0122 0.0088 −0.0074

Original Lena (B) 0.9159 0.8500 0.7961

Encrypted Lena (B) −0.0129 0.0129 0.0020

Original Beans (R) 0.9624 0.9600 0.9259

Encrypted Beans (R) 0.0134 −0.0122 −0.0009

Original Beans (G) 0.9730 0.9701 0.9413

Encrypted Beans (G) 0.0100 −0.0002 0.0128

Original Beans (B) 0.9837 0.9889 0.9742

Encrypted Beans (B) 0.0019 −0.0107 −0.0098

excellently hidden after the original image being encrypted. Thus the attacker cannot
implement any statistical attack from the aspect of correlation.

(4) Key space and key sensitivity Key space should be large enough to resist the brute-
force attack, and it is also an important indicator of a security encryption algorithm.
It is recommended that the ideal key space should be larger than 2100 while consid-
ering the current computer computation speed [42]. The time complexity for color
image decryption in our presented algorithm is computed by: C

(
X̄0, Ȳ0, Z̄0, W̄0

) =


(
X̄0 × Ȳ0 × Z̄0 × W̄0

)
, where X̄0, Ȳ0, Z̄0 and W̄0 are the initial keys of the hyper-

chaotic system. Considering that the calculation precision is 10−15, the size of key space
for initial parameters would be approximately 2200. Moreover, the quantum rotation gate
R (ξm, ψm, ζm) and random phase gates E, E′ and E′′ could be also used as the secret
keys, which are more than 2100, thus the encryption algorithm has high security.
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Fig. 9 Correlation distributions between two horizontal adjacent pixels in R channel: (a) original image
Lena and (b) encrypted image
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Fig. 10 Correlation distributions between two vertical adjacent pixels in R channel: (a) original image Lena
and (b) encrypted image

Key is the secret parameters of the encryption schemes. A good encryption scheme
must have enough sensitivity to the key, i.e., the deciphered results are significantly dif-
ferent even if only the key is changed slightly. To detect the sensitivity of the key, the
key could be changed little deviation to observe the effect of the decrypted image. As
all of the secret keys are right, the image is shown in Fig. 12a; The decrypted image is
shown in Fig. 12b with the wrong keys X̄0+10−15; Similarly, if Ȳ0, Z̄0, W̄0 deviate 10−15

respectively, while all of the other three keys are correct, the corresponding decrypted
images are shown in Figs. 12c, d and e. It is convinced that the correct image could be
reconstructed if the decryption keys and the domain positions match accurately, which
ensures high security of the image encryption algorithm.

(5) Computational complexity
Assume the original image is divided into three gray components and each compo-

nent is represented by a channel. The channel can be viewed as a 2n × 2n gray image.
According to the parallel characteristics of quantum computing, the gray-scale informa-
tion for each pixel of the quantum image is performed with the quantum XOR operation
⊕, which is realized by using a 2n − CNOT gate. It is understood that each n − CNOT
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Fig. 11 Correlation distributions between two diagonal adjacent pixels in R channel: (a) original image Lena
and (b) encrypted image
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Fig. 12 Decrypted images with: (a) correct keys, (b) incorrect X̄0+10−15, (c) incorrect Ȳ0+10−15, (d)
incorrect Z̄0+10−15, (e) incorrect W̄0+10−15

gate can be decomposed into 4n−8 Toffoli gates, and the Toffoli gate can be realized by
six Controlled-NOT gates [40]. In the proposed image encryption algorithm, the hyper-
chaotic sequences are scrambled and diffused by the XOR operation, and the mix of three
components involves six times of CNOT gate operations, thus the quantum image XOR
operation needs 128n − 256 basic gates. Consequently, the computational complexity
of the quantum image XOR operation is O (n). The complexity of quantum random-
phase operation for a quantum image is O (n), thus the random phase operation and
rotation operation are of the same computational complexity. For an n-qubit input, the
computation time of quantum Fourier transform is O

(
n2

)
[43]. Consequently, the total

computational complexity is O
(
n2

)
by neglecting the small complexity. The classical

image XOR operations could be accomplished by performing 6 × 22n XOR operations,
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and the classical random-phase encoding could be realized by 22n multiplication oper-
ations, thus the computational complexity of XOR operation is O

(
22n

)
. Consequently,

the computational complexity of the classical Fourier transform operation is O
(
n22n

)
.

As a result, the whole computational complexity O
(
n22n

)
of the classical encryption

algorithm is required. In brief, the computational complexity of the presented quantum
color image encryption algorithm is lower than that of its classical counterparts.

5 Conclusion

The measurement principle and superposition of quantum states are utilized to establish
the interaction among image pixels. A new quantum color image encryption and decryp-
tion scheme based on a hyper-chaotic system is proposed, which exploits the interesting
properties of a hyper-chaotic system. The initial parameters of the hyper-chaotic system are
applied into the quantum color image encryption scheme to increase the number of keys
and enlarge the key space. Consecutively, the positions in an image could be divided into
groups with the same color. Theoretical analyses and experimental results indicate that the
proposed scheme possesses the advantages of acceptable encryption speed, large key space
and high level of security, and could be implemented efficiently.
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