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Abstract The nine-component positive vector optical tomographic probability portrait of
quantum state of spin-1 particles containing full spatial and spin information about the state
without redundancy is constructed. Also the suggested approach is expanded to symplec-
tic tomography representation and to representations with quasidistributions like Wigner
function, Husimi Q−function, and Glauber-Sudarshan P−function. The evolution equa-
tions for constructed vector optical and symplectic tomograms and vector quasidistributions
for arbitrary Hamiltonian are found. The evolution equations are also obtained in special
case of the quantum system of charged spin-1 particle in arbitrary electro-magnetic field,
which are analogs of non-relativistic Proca equation in appropriate representations. The
generalization of proposed approach to the cases of arbitrary spin is discussed. The pos-
sibility of formulation of quantum mechanics of the systems with spins in terms of joint
probability distributions without the use of wave functions or density matrices is explicitly
demonstrated.

Keywords Quantum tomography · Spin tomography · Evolution equation · Proca
equation · Non-negative vector portrait of state

1 Introduction

The proposition of optical tomographic description of states of spinless quantum systems
was formulated in [1, 2]. Generalising the optical tomography technique the symplectic
tomography was suggested, and evolution equation for symplectic tomograms of spinless
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quantum systems was found in [3, 4] providing a bridge between classical and quantum
worlds (for review see [5]). Evolution equations for optical tomograms of spinless quantum
systems were obtained in Refs. [6, 7].

In Ref. [8] the spin density matrix for particles of arbitrary intrinsic angular momentum
is explicitly expressed in terms of directly measurable expectation values of components
of multipole moments, or the relative weights of partial beams split-up by a Stern-Gerlach
apparatus.

Extending the tomographic approach in Ref. [9] the spin tomography was formulated
based on the description of spin states with the help of positive distribution functions
depending on continuous variables like Euler’s angles, a spin state reconstruction procedure
similar to the symplectic tomography was considered, and quantum evolution equation of
spin dynamics was found for continuous spin tomogram.

In Ref. [10] spin dynamics was expressed for expectation values of spin projections along
a discrete set of fixed directions. The spin tomography was also studied in [11–19] and in
other papers.

The first attempt of tomographic formulation of the Pauli equation simultaneously
describing both spatial and spin dynamics, apparently, was done in [20]. The evolution equa-
tion obtained is extremely complicated, because it uses redundant tomogram depending on
continuous Euler’s angles and on symplectic variables.

In our resent paper [21] we introduced the positive vector optical tomogram fully describ-
ing both spatial and spin characteristics of the quantum state of spin-1/2 particle without
any redundancy. We obtained the evolution equation for this vector optical tomogram and
considered examples of evolution of quantum systems in proposed representation. Also we
discussed the expansion of our approach to representations of Wigner and Husimi quasidis-
tributions (and pointed out the possibility of dissemination of the discussed scheme to the
Glauber-Sudarshan representation).

The aim of our work is the construction of spin-1 particle quantum state vector tomogra-
phy without redundancy of information representing the joint vector distribution for space
coordinates and spin projections; and derivation of the evolution equation for such distribu-
tion, which would be an analogue of non-relativistic Proca equation. The latter will allow to
explicitly demonstrate the possibility of formulation of quantum mechanics of the systems
with spins in terms of joint probability distributions without application of wave functions
or density matrices.

The paper is organized as follows. In Section 2 we give basic formulas of tomographic
and quasiprobability representations of quantum mechanics for spinless particles. In Sec-
tion 3 we introduce a positive nine-component vector probability and quasiprobability
description of spin-1 particles and give the evolution equations for such vector-portraits of
quantum state with arbitrary Hamiltonian. In Section 4 charged spin-1 in arbitrary electro-
magnetic field is considered in proposed representations, and evolution equations, which are
analogs of nonrelativistic limit of Proca equation, are obtained. The conclusion is presented
in Section 5.

2 Probability Representation and Evolution of spinless Quantum Systems

Let us review the constructions of tomographyc or quasidistribution representations in
general case for spinless systems.

If the state of the quantum system is described by the density matrix ρ̂ normalized by the
condition Trρ̂ = 1, then in accordance with general scheme the tomographic distribution
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function or quasidistribution w(x, η) is related with the density matrix as follows
(see [22]):

w(x, η, t) = Tr{ρ̂(t)Û (x, η)}, ρ̂(t) =
∫

w(x, η, t)D̂(x, η)dx dη, (1)

where x is a set of distribution (quasidistribution) variables, η is a set of parameters of
corresponding tomography, and Û (x, η), D̂(x, η) are dequantizer and quantizer operators
for appropriate tomographic scheme or corresponding quasidistribution representation.

For Wigner [23], Husimi [24], and Glauber-Sudarshan [25, 26] quasidistributions the
corresponding dequantizers Û (x) and quantizers D̂(x) depend only on the sets of quasidis-
tributions variables x and do not depend on the sets of parameters η. Therefore, for these
representations the letter η vanishes in all of the formulas and the integration over dη is
omitted in the second formula in (1) and in subsequent (3), (16), (17).

Notion of quantizer and dequantizer is related to star product quantization schemes (see
recent review [27]).

Quantizer and dequantizer are constrained by the duality relation

Tr{Û (x, η)D̂(x ′, η′)} = δ(x − x′)δ(η − η′).

The von-Neumann equation without interaction with the environment

i�
∂

∂t
ρ̂ = [Ĥ , ρ̂] (2)

with the help of maps of type (1) transforms to evolution equations for tomograms [7], or
to Moyal equation [28] for the Wigner function [23], or to evolution equation for other
quasidistribution

∂tw(x, η, t) = 2

�

∫
Im
[
Tr
{
Ĥ (t)D̂(x′, η′)Û(x, η)

}]
w(x′, η′, t)dx′dη′ . (3)

If we have spinless quantum system in the N−dimensional space, then dequantizer and
quantizer for optical tomography equal

Ûw(X, θ) = |X, θ 〉〈X, θ | =
N∏

σ=1

δ

(
Xσ − q̂σ cos θσ − p̂σ

sin θσ

mσ ωσ

)
, (4)

D̂w(X, θ) =
∫ N∏

σ=1

�|ησ |
2πmσ ωσ

exp

{
iησ

(
Xσ − q̂σ cos θσ − p̂σ

sin θσ

mσ ωσ

)}
dNη, (5)

where mσ and ωσ are constants that have the dimensions of mass and frequency and are
chosen for reasons of convenience for the Hamiltonian of a quantum system under study,
|X, θ 〉 [22] is an eigenfunction of the operator X̂(θ) with components X̂σ = q̂σ cos θσ +
(p̂σ sin θσ )/(mσ ωσ ) corresponding to the eigenvalue X, where q̂σ and p̂σ are the canonical
position and momentum operators.

For symplectic tomography quantizer and dequantizer can be written as

ÛM(X, μ, ν) = |X, μ, ν 〉〈X, μ, ν | =
N∏

σ=1

δ(Xσ − q̂σ μσ − p̂σ νσ ), (6)

D̂M(X, μ, ν) =
N∏

σ=1

mσ ωσ

2π
exp

{
i

√
mσ ωσ

�

(
Xσ − q̂σ μσ − p̂σ νσ

)}
, (7)
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where |X, μ, ν 〉 is an eigenfunction of the operator X̂(μ, ν)with components X̂σ = μσ q̂σ +
νσ p̂σ corresponding to the eigenvalue X.

For Wigner representation we have

ÛW (q, p) = 1

(2π�)N

∫
|q − u/2〉 exp(−ipu/�)〈q + u/2| dNu, (8)

D̂W (q, p) = 2N

∫
dNu exp(2ipu/�)|q + u〉〈q − u| ; (9)

for Husimi representation (see [29, 30])

ÛQ(q, p) = (2π�)−N |α〉〈α|, α = 1√
2

(√
mω

�
q + i√

�mω
p
)

, (10)

where |q〉 is an eigenvalue of the position operator, |α〉 is a standard boson coherent state,

D̂Q(q, p) =
(mω

π�

)N/2
∫

dNxdNy

{
|x〉〈y| exp

(mω

2�
(x − y)2

)

× exp

[
−mω

�

(
q − x + y

2

)2

− mω

�
(x − y)2 + i

�
p(x − y)

]

×
N∏

σ=1

⎡
⎣ ∞∑

nσ =0

(−1)nσ

nσ !2nσ
H2nσ

(√
mω

�
qσ − mω

2�
(xσ + yσ )2

)⎤
⎦
}
. (11)

Likewise, the Glauber-Sudarshan P-function [25, 26] (see, also [31]) can be introduced with
the help of corresponding dequantizer and quantizer

ÛP (α) =
(

e|α|2

π2N

∫
|β〉〈−β|e|β|2 − βα∗ + β∗αd2Nβ

)
, D̂P (α) = |α〉〈α| , (12)

and so on for the other tomographic schemes.

3 Probability Description of Spin-1 Particles

In general case the evolution of charged spin-1 particle in the external electro-magnetic
field is determined by Proca equation [32, 33]. This is a relativistic wave equation of four-
component wave function (ϕ0, ϕ1, ϕ2, ϕ3). But in the case of weak relativism it can be
reduced to the Schrödinger type equation with the Hermitian Hamiltonian [34, 35] for the
three-component spinor wave function (ψ1, ψ2, ψ3).

For quantum system of charged spin-1 particles without electrical quadrupole moment,
with charge e and mass m in the electro-magnetic field with vector and scalar potentials
A(q, t), ϕ(q, t) this Hamiltonian has the form:

Ĥ = 1

2m

(
p̂ − e

c
A
)2 + eϕ − κ

s
ŝ H = Ĥ0 − κ

s
ŝ H, (13)

where Ĥ0 is an independent on spin part of Hamiltonian, H = rotA is a magnetic field, and
κ is a magnetic moment of the particle.

The wave function satisfy by the normalization condition∫
(|ψ1(q)|2 + |ψ2(q)|2 + |ψ3(q)|2)d3q = 1.
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So, mixed states are described by the density matrix ρ̂ij with dimension 3 × 3, which is
actually defined by nine real scalar components.

Analogously with the case of spin-1/2 particles [21], to construct the vector portrait of
such density matrix we must solve the state reconstruction problem, i.e., we have to find
the inverse map, which transforms the set of expectation values of observables constituting
a quorum to the density matrix.

For this purpose we should choose nine spin-1 states |σβ, nβ〉 with definite spin pro-

jections σβ along the directions nβ , which define nine-component dequantizer vector Û of

3× 3 spin matrices with components Ûβ = |σβ, nβ〉〈σβ,nβ | and quantizer 3× 3 matrix D̂
of nine-component vectors so, that

Trkl

{
Uβ(kl)D(kl)β ′

} =
2s+1∑
k,l=1

Uβ(kl)D(kl)β ′ = δββ ′ ,
(2s+1)2∑

β=1

Uβ(kl)D(k′l′)β = δkk′δll′ . (14)

Here greek letters β, β ′ = 1, 2, ..., 9 are the indexes of numbers of the components of the
nine-component vectors, and roman letters with parentheses (kl) are the indexes of 3 × 3
matrices. It is obvious that the set of matrices {Ûβ} must be linearly independent. With the

help of Û the nine-component vector tomogram or quasidistribution is defined as

w(x, η, t) = Tr
{
ρ̂(t)

[
Û (x, η) ⊗ Û

]}
, (15)

where the trace is calculated also over spin indexes, and Û (x, η) is defined by formula
(4), (6), (8), (10), or (12). Here w(x, η, t) is the aggregate designation of the vector optical
w(X, θ , t) or symplectic M(X, μ, ν, t) tomogram, vector Wigner function W(q,p, t), vec-
tor Husimi function Q(q, p, t), or vector Glauber-Sudarshan function P(α, t). For optical
and symplectic vector tomograms and for the Husimi vector quasidistribution each of the
function wβ(x, η, t) is the probability distribution of the operator x̂(η) at time t under the
condition that the particle has the corresponding value of spin projection along the appro-
priate direction. Consequently, the components of the vector 	w(x, η, t) must be integrable
over dx and must satisfy the inequalities

0 ≤ wβ(x, η, t) ≤ 1, 0 ≤
∫

wβ(x, η, t)dx ≤ 1, β = 1, ..., 9.

The components of the constructed vector Wigner function and vector Glauber-Sudarshan
function corresponding definite spin projection along the appropriate direction are not
obligatory non-negative, but definition (15) guarantee that they are definitely real.

Such a definition (15) for our vector Wigner and Husimi functions differs from those
usually given in literature by many authors, when the Wigner function Wjk(q, p, t) and
Husimi function Qjk(q, p, t) become (2s + 1) × (2s + 1) matrices dependent on position
and momentum, but their non-diagonal elements over the spin indexes are not surely real.
So, the main advantage of such quasidistributions with respect to density matrix disappears.

The inverse map of (15) is written by means of spin quantizer D̂ as follows

ρ̂jk(t) =
∫

D̂(x, η) ⊗ D(jk)w(x, η, t)dxdη. (16)
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Generalizing (17) to the case of spin particles we can write the evolution equation for the
components of the tomogram or vector quasidistribution

∂twβ(x, η, t) = 2

�

(2s+1)2∑
β ′=1

∫
Im
[
Tr
{
Û (x, η) ⊗ ÛβĤ D̂(x′, η′ ) ⊗ D̂β ′

}]

×wβ ′(x′, η′, t)dx′dη′ , β = 1, 2, ..., (2s + 1)2, (17)

where the designation “Im” signifies the imaginary part of the subsequent expression. Thus,
(17) is real-valued equation for the nine-component real vector-function w(x, η, t).

Let us point out that the scheme proposed admits a generalization to the case of arbi-
trary spin s. If we have the evolution equation of the quantum system with spin s for the
nonnegative, hermitian, and normalized density matrix, then we can introduce (2s + 1)2-
component vector of (2s+1)×(2s+1) matrices dequantizer Û and dual (2s+1)×(2s+1)
matrix of (2s + 1)2-component vectors D̂, which are related by conditions (14). After
that we can define (2s + 1)2-component vector tomogram (or quasidistribution) in accor-
dance with analog of (15), and with the help of the formula analogous to (16) we can
write the evolution equation of type (17) for the (2s + 1)2-component vector tomogram or
quasidistribution.

4 Example of Vector Tomography Representation for Spin-1 Particle

To determine the dequantizer Û we should choose nine positive projections of the quantum
state, which completely define the density matrix. Let us choose such spin projectors as
follows:

Û =
(

|sz = 1〉〈sz = 1|, |sz = 0〉〈sz = 0|, |sz = −1〉〈sz = −1|,
|sx = 1〉〈sx = 1|, |sx = 0〉〈sx = 0|, |sxy = 1〉〈sxy = 1|,
|sxy = 0〉〈sxy = 0|, |syz = 0〉〈syz = 0|, |sxz = 0〉〈sxz = 0|

)
, (18)

where |sj = ±1, 0〉 is an eigenfunction of the projection of spin operator to the direction
j corresponding to the eigenvalue ±1 or 0, and |sxy〉, |syz〉, |sxz〉 are eigenfunctions of pro-
jections of spin operator to directions 	exy = (1/

√
2, 1/

√
2, 0), 	eyz = (0, 1/

√
2, 1/

√
2),

	exz = (1/
√
2, 0, 1/

√
2) respectively.

Choose the spin representation, in which components of spin operator are defined as
follows:

ŝx = 1√
2

⎡
⎣ 0 1 0
1 0 1
0 1 0

⎤
⎦ , ŝy = i√

2

⎡
⎣ 0 −1 0
1 0 −1
0 1 0

⎤
⎦ , ŝz =

⎡
⎣ 1 0 0
0 0 0
0 0 −1

⎤
⎦ .
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After calculations in matrix notations for dequantizer Û we have

Û =
{
Ûβ(kl)

}
=
⎛
⎝
⎡
⎣ 1 0 0
0 0 0
0 0 0

⎤
⎦ ,

⎡
⎣ 0 0 0
0 1 0
0 0 0

⎤
⎦ ,

⎡
⎣ 0 0 0
0 0 0
0 0 1

⎤
⎦ ,

1

4

⎡
⎣ 1

√
2 1√

2 2
√
2

1
√
2 1

⎤
⎦ ,

1

2

⎡
⎣ 1 0 −1

0 0 0
−1 0 1

⎤
⎦ ,

1

4

⎡
⎣ 1 1 − i −i

i + 1 2 1 − i

i 1 + i 1

⎤
⎦ ,

1

2

⎡
⎣ 1 0 i

0 0 0
−i 0 1

⎤
⎦ ,

1

4

⎡
⎣ 1 i

√
2 1

−i
√
2 2 −i

√
2

1 i
√
2 1

⎤
⎦ ,

1

4

⎡
⎣ 1 −√

2 −1
−√

2 2
√
2

−1
√
2 1

⎤
⎦
⎞
⎠ . (19)

From duality relation (14) after some calculations we obtain spin quantizer D̂, which is a
3 × 3 matrix of nine-component vectors

D̂ =
{
D̂(jk)β

}
=
⎡
⎢⎣
D̂(11) D̂(12) D̂(13)

D̂(21) D̂(22) D̂(23)

D̂(31) D̂(32) D̂(33)

⎤
⎥⎦ , (20)

where (jk) are the indexes of 3×3 matrix and β = 1, 2, ..., 9 is the index of the component
of nine-component vector

D̂(11) =
(
1, 0, 0, 0, 0, 0, 0, 0, 0

)
,

D̂(12) =
(

− 1

2
√
2

+ i
1 − √

2

2
, i

1 − √
2

2
, − 1

2
√
2

+ i
1 − √

2

2
,
1 + i√

2
,

1 + i√
2

, −i, − i

2
,

i√
2
, − 1√

2

)
,

D̂(13) =
(1 − i

2
, 0,

1 − i

2
, 0, −1, 0, i, 0, 0

)
,

D̂(22) =
(
0, 1, 0, 0, 0, 0, 0, 0, 0

)
,

D̂(23) =
(

− 1

2
√
2

+ i

2
, − 1√

2
+ i

2
, − 1

2
√
2

+ i

2
,
1 + i√

2
, 0, −i, − i

2
, − i√

2
,

1√
2

)
,

D̂(33) =
(
0, 0, 1, 0, 0, 0, 0, 0, 0

)
,

D̂(21) = D̂∗
(12), D̂(31) = D̂∗

(13), D̂(32) = D̂∗
(23).

Obviously that for such of definition (18) of dequantizer Û , three components of the vector
w(x, η, t) are normalized by the condition

∫
w1(x, η, t)dx +

∫
w2(x, η, t)dx +

∫
w3(x, η, t)dx = 1. (21)
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For Hamiltonian (13) the evolution (17) of the optical vector tomogram is written as
follows (see [7]):

∂tw(X, θ , t) = M̂w(X, θ , t)w(X, θ , t) + Ŝw(X, θ , t)w(X, θ , t), (22)

where

M̂w(X, θ , t) = 2

�
Im Ĥ0

([q̂]w(X, θ ), [p̂]w(X, θ ), t
)

(23)

is a real operator depending on position [q̂]w and momentum [p̂]w operators in the optical
tomographic representation [22]

[q̂σ ]w(X, θ) = sin θσ

∂

∂θσ

[
∂

∂Xσ

]−1

+ Xσ cos θσ + i
� sin θσ

2mσ ωσ

∂

∂Xσ

, (24)

[p̂σ ]w(X, θ) = mωσ

(
− cos θσ

[
∂

∂Xσ

]−1
∂

∂θσ

+ Xσ sin θσ

)
− i�

2
cos θσ

∂

∂Xσ

, (25)

and Ŝw(X, θ , t) is a real 9 × 9 matrix operator, responsible for the interaction of spin with
the magnetic field

Ŝw(X, θ , t) = −2κ

�s
Im

⎧⎨
⎩

2s+1∑
l,m,m′=1

Uβ(lm)

[
ŝ H

([q̂]w(X, θ )
)]

(mm′) D(m′l)β ′

⎫⎬
⎭ . (26)

With omitted arguments and introduced designations

[Âj ]w = Aj

([q̂]w(X, θ ), t
)
, H̃j = [Ĥj ]w = Hj

([q̂]w(X, θ ), t
)
,

[
∇qÂ

]
w

= ∇qA
(
q → [q̂]w(X, θ), t

)

the explicit form of M̂w in general case of time-dependent and non-homogeneous electro-
magnetic field is written as

M̂w(X, θ , t) =
3∑

n=1

ωn

[
cos2 θn

∂

∂θn

− 1

2
sin 2θn

{
1 + Xn

∂

∂Xn

}]
+ 2e

�
Im [ϕ̂]w

+ e2

mc2�
Im[Â]2w − 2e

mc�
Im
[
Âp̂
]
w

+ e

mc
Re
[∇qA

]
w

, (27)

where the designation “Re” signifies the real part of the subsequent expression.
For symplectic vector tomography we can find the evolution equation

∂tM(X, μ, ν, t) = M̂M(X, μ, ν, t)M(X,μ, ν, t) + ŜM(X, μ, ν, t)M(X, μ, ν, t), (28)

where the real operator M̂M(X, μ, ν, t) corresponds to spinless part Ĥ0 of the Hamiltonian
(13)

M̂M(X, μ, ν, t) = 2

�
Im Ĥ0

([p̂]M(X, μ, ν), [q̂]M(Xμ, ν), t
) = μ

m

∂

∂	ν + 2e

�
Im [ϕ̂]M

+ e2

mc2�
Im[Â]2M − 2e

mc�
Im
[
Âp̂
]
M

+ e

mc
Re
[∇qA

]
M

, (29)

where
[Âj ]M = Aj

([q̂]M(X, μ, ν ), t
)
, [ϕ̂]M = ϕ

([q̂]M(X, μ, ν ), t
)
,

[∇qA]M = ∇qA
(
q → [q̂]M(X, μ, ν ), t

)
,



Int J Theor Phys (2016) 55:4885–4895 4893

and [q̂]M , [p̂]M are position and momentum operators (30) in the symplectic representation
(see [6])

[p̂σ ]M =
(

−
[

∂

∂Xσ

]−1
∂

∂νσ

− i
μσ�

2

∂

∂Xσ

)
,

[q̂σ ]M =
(

−
[

∂

∂Xσ

]−1
∂

∂μσ

+ i
νσ�

2

∂

∂Xσ

)
. (30)

The 9× 9 real matrix operator ŜM(X, μ, ν, t) is defined by the similar formula (26), where
the operators of components of the magnetic field H̃j must be replaced with corresponding
operators in the symplectic tomography representation [Ĥj ]M = Hj

([q̂]M(X, μ, ν ), t
)
.

Making similar calculation we can obtain such evolution equation for our vector Wigner
function, which is a generalization of the Moyal equation [28]

∂

∂t
W(q, p, t) =

[
− p

m

∂

∂q
+ 2e

�
Imϕ

(
q + i�

2

∂

∂p
, t

)
+ e2

mc2�
ImA2

(
q + i�

2

∂

∂p
, t

)

+ − 2e

mc�
Im

{
A
(
q + i�

2

∂

∂p
, t

)(
p − i�

2

∂

∂q

)}

+ e

mc
Re∇qA

(
q → q + i�

2

∂

∂p
, t

)
+ ŜW (q, p, t)

]
W(q, p, t), (31)

where 9 × 9 real matrix operator ŜW (q, p, t) is defined by the same formula (26), where
the operators of components of the magnetic field H̃j must be replaced with corresponding

operators in the Wigner representation Hj

(
q + i�

2
∂
∂p , t

)
.

The corresponding generalization of the evolution equation of the Husimi function [36]
to the case of vector quasidistribution has the form (for simplicity we choose the system of
measurements so that m = ω = � = 1):

∂

∂t
Q(q, p, t) =

[
−p

∂

∂q
− 1

2

∂

∂q
∂

∂p
+ 2e

�
Imϕ

(
q + 1

2

∂

∂q
+ i

2

∂

∂p
, t

)

+ e2

c2
ImA2

(
q + 1

2

∂

∂q
+ i

2

∂

∂p
, t

)

− 2e

c
Im

{
A
(
q + 1

2

∂

∂q
+ i

2

∂

∂p
, t

)(
p + 1

2

∂

∂p
− i

2

∂

∂q

)}

+ e

c
Re∇qA

(
q → q + 1

2

∂

∂q
+ i

2

∂

∂p
, t

)
+ ŜQ(q, p, t)

]
Q(q, p, t),

(32)

where 9 × 9 matrix operator ŜQ(q, p, t) is defined by (26) in which components of the

magnetic field H̃j are replaced with Hj

(
q + 1

2
∂
∂q + i

2
∂
∂p , t

)
.

5 Conclusion

To resume we point out the main results of our paper. We have constructed the nine-
component positive vector optical tomographic probability portrait of quantum state of
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spin-1 particles, which contains full spatial and spin information about state without redun-
dancy. We have expanded suggested approach to symplectic tomography representation and
to representations with quasidistributions. All of the components of the constructed vec-
tor Wigner function are real, and all of the components of the vector Husimi function are
non-negative.

We found the real-valued evolution equations for such vector optical and symplec-
tic tomograms and vector quasidistributions for arbitrary Hamiltonian and obtained these
equations in special case of the quantum system of charged spin-1 particle in arbitrary
electro-magnetic field, which are analogs of non-relativistic Proca equation in appropri-
ate representations. Also we discussed the generalization of our approach to the cases of
arbitrary spin.

The general equations obtained are relatively complicated, but in many special cases they
are much simpler and could allow for the possibility of analytical and numerical solutions.

The results of the paper explicitly demonstrate the possibility of formulation of quan-
tum mechanics of the systems with spins in terms of joint probability distributions without
application of wave functions or density matrices.

Note that in relativistic (contrary to non-relativistic) quantum mechanics due to the speed
limit c there are additional uncertainties in the measurement of the momentum and position
[37]

pt ∼ �/c, q ∼ �/mc.

This fact, in general, leads to the impossibility of constructing in this theory of time-
dependent dynamic function of the probability distribution of positions or momentums (and
observables, which are functions of positions and / or momentums). Therefore, the ques-
tion of a possible extension of tomographic probability representation to the relativistic case
demands supplementary investigations.
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