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Abstract Quantum gravity has exciting peculiarities on the Planck scale.The effect of gen-
eralized uncertainty principle (GUP) to the entangled scalar/fermion particles’ tunneling
from a Schwarzschild black hole immersed in an electromagnetic Universe is investigated
by the help of semi-classical tunneling method. The quantum corrected Hawking tempera-
ture of this black hole with an external parameter “a” modifies the Hawking temperature for
the entangled particles.

Keywords Hawking radiation · Generalized uncertainty principle · Entangled particles

1 Introduction

A breathtaking process like white rabbit and black magic, first theorized by Stephen
Hawking, by which a black hole can emit particles [1]. Hawking originally have used
Bogoliubov’s method [2], however, after that several methods of deriving Hawking radia-
tion appeared. Understanding the Hawking radiation is a subject of long interest and the
tunneling phenomenon has been extensively studied and it is applied on various black holes
and also wormholes [3–21] . Today, one of the main challenges in physics is to merge
quantum theory and the theory of general relativity into a unified framework, which should
be modified with a minimum length scale of the order of the Planck length. So that the
minimal length is developed on a very strong background as a quantum gravity such as
string theory, loop quantum gravity and a non-commutative geometry [22–26]. This length
derived from some different ways such as a generalized uncertainty principle (GUP), an
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extended uncertainty principle (EUP) and a generalized EUP (GEUP) [27–31]. There are
many applications of the GUP to physics such as compact stars, Newtonian gravity, infla-
tionary cosmology, violation of Lorentz invariance and measurable maximum energy and
minimum time interval [32–40]. Furthermore, after Dvali and Gomez [41–43] proposed the
idea of quantum black holes as modeled in Bose-Einstein condensation (BEC) of marginally
bound, self-interacting gravitons, recently one shows that quantization of gravity is possi-
ble by using the Horizon Wave Function (HWF) formalism [44]. Halilsoy et. al. introduced
a new metric of Schwarzschild black hole which is coupled to an external, stationary elec-
trostatic field by using the interpolation of two exact well-known solutions of Einstein’s
equations such as the Schwarzschild (S) metric and a uniform electromagnetic (em) field
solution of Bertotti and Robinson (BR) [45, 46]. We will here address the Hawking radia-
tion of entangled particles as an emission of quanta by using this metric. Furthermore, we
investigate the tunneling effect of entangled particles from such a black hole with the effect
of GUP.

Entanglement which plays a frontier role on quantum information, is an important
resource for different computational tasks such as quantum communication and telepor-
tation. By understanding the entanglement in the frame of black holes, will give us an
important resolution of information paradox of black holes. On this regard, we propose that
two observers, Alice and Bob, share a generically entangled state at the same initial point.
Behind the coincidence point where the particles tunnel, one of them tunnels from event
horizon of black hole, while the other one stays in the extremal black hole (BR space-time).
We focus our attention on the result of one of the entangled state which is also equal to
another one which may be lost in singularity of black hole or can tunnel through another
universe by a wormhole. The semi-classical Hawking temperature is derived by applying
the WKB approximation and the Hamilton-Jacobi method to solve the Klein-Gordon (K-G)
and Dirac Equations for the entangled states.

The structure of this paper is as follows. In Section 2, we briefly give the black hole
solution which will be phrased hereafter as the Schwarzschild-Electromagnetic black hole,
and in Section 3, by using the Hamilton-Jacobi method and suitable entangled ansatz, we
derive the corrected Hawking temperature of entangled scalar particles from the new black
hole. Last but not least, in Section 4 we compute the tunneling rate of entangled fermion
particles from the same black hole. Finally, we will conclude with some comments in
Section 5.

2 Schwarzschild-Electromagnetic Black Hole (SEBH)

The metric for the SEBH in an external electrostatic field in four dimensions is presented
by Halilsoy et al. as [45, 46] 1

ds2 = −f dt2 + 1

f
dr2 + r2(dθ2 + sin2 θdϕ2) (1)

where

f = 1 − 2M

r
+ M2(1 − a2)

r2
, (2)

1The erroneous metric in eq. (15) of ref.[45] is corrected here.
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with the external parameter a (0 < a ≤ 1), where the mass M is coupled to an exter-
nal em-field. Note that a = 0 is the extremal Reissner–Nordstrom (RN) case which is
transformable to the BR metric. The horizon is located for the above metric at

rh = M(1 + a). (3)

Let us note that the radial coordinate r is related to the vacuum (say r̃) coordinate by
r = ar̃ +M(1− a). in which a = 0 is excluded. Clearly r and r̃ are related by a translation
and scaling transformation. Since a ≤ 1 the horizon radius is rh ≤ 2m, which implies that
the em field shrinks the horizon of the Schwarzschild black hole.

Ricci components are

Rt
t = Rr

r = M2(a2 − 1)

r4
, (4)

Rθ
θ = Rϕ

ϕ = −M2(a2 − 1)

r4
. (5)

The Kretschmann scalar which is a quadratic scalar invariant is calculated as

K = RabcdRabcd =
56M2

[
(a2 − 1)2M2 + 12

7 Mr
(
a2 − 1

) + 6r2
7

]

r8
(6)

The Ricci scalar of the SEBH is calculated as zero (since the source is pure)

R = 0. (7)

Hence, it is clear that the Einstein tensors are equal to Ricci tensors (Gμν = Rμν −
1
2Rgμν) as given

Gt
t = Gr

r = M2(a2 − 1)

r4
, (8)

Gθ
θ = Gϕ

ϕ = −M2(a2 − 1)

r4
. (9)

The following energy-momentum tensor according to Einstein’s field equations can be
easily obtained by using Einstein tensors (Gμν = 8πTμν). Furthermore, the action is

S =
∫

d4x
√−gL (10)

where L = R
16π − 1

4FμνF
μν, and constants of G and c are 1. The energy-momentum

tensors for the vector potential

Aμ = (±1

2

M
√
1 − a2

ar
, 0, 0, 0), (11)

are defined as

Tμν = FμαFα
ν − 1

4
gμνFαβFαβ. (12)

The corresponding Hawking temperature is found as

TH =
( −g′

t t

4π
√−gtt grr

)

r=rh

= 1

4π

2a

M(a + 1)2
. (13)

One easily observes that for a = 1 we recover the Schwarzschild result. For a = 0
which we have already excluded we obtain TH = 0, which is analogous to the extremal RN
geometry.
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3 Entangled Scalar Particles Tunneling from SEBH with GUP

The modified commutation relation

[xi, pj ] = i�(1 + αp2)δij (14)

is used to derive GUP [31, 47–49] which is given by

	x	p ≥ �

2

{
1 + α(	p)2

}
, (15)

where α = α0/(m
2
p) = α0l

2
p/�2 is a small value, mp is the Planck mass, lp is the Planck

length (∼ 10−35m) and α0 < 1034 is a dimensionless parameter.
By using the effect of quantum gravity, we define the generalized commutation relation

to modify KG equation for scalar particles, so to account for the effects from quantum grav-
ity. The position, momentum, energy and frequency operators are modified respectively as
[31, 48]

xi = xoi, (16)

pi = p0i (1 + αp2), (17)

ε = E(1 + α2E2), (18)

and
ω̄ = E(1 − αE2), (19)

with the energy operator E = i�∂0.
The square of momentum operators up to order α2 is calculated by

p2 = −�
2[1 − α2

�
2∂j ∂

j ]∂i[1 − α2
�
2∂j ∂

j ]∂i

= −�
2[∂i∂

i − 2α2
�
2(∂j ∂

j )(∂k∂
k)] + (α4). (20)

where in the last step, we only keep the leading order term of α.
Using the generalized Klein-Gordon equation for scalar field in Planck scale, the gener-

alized K-G equation under the effect of minimum length having the wave function Ψ can
be written as

− (i�)2∂t ∂tΨ =
[
(i�)2∂i∂i + m2

p

] [
1 − 2α

(
(i�)2∂i∂i + m2

p

)]
Ψ. (21)

Herein, using the SEBH metric (1) as a background we determine the entangled scalar
particle motion. An important point in this paper is the entanglement between the infalling
and outgoing Hawking particles. The difficulty of this entanglement is to observe inner
and outer sides of the black hole horizon. Entangled states can be described by Ψ . After
substituting the chosen entangled ansatz of Ψ [53–56],

Ψ = κe
i
�

SA(t,r,θ,ϕ) +
√
1 − κ2e

i
�

SB(t,r,θ,ϕ) (22)

where SA is for Alice and SB is for Bob. Note that κ is some real number which satisfies
|κ| ∈ (0, 1), so that κ and

√
1 − κ2 are normalized partners. The fate of the Alice and

Bob depends on the value of κ . The discussion of Alice state is the same as that of the
Bob state. Here, the entanglement can then be observed with only one observation for each
member of the ensemble so that we just consider the Alice case. To illustrate the idea, we
consider the Alice and Bob shares entangled state at the same point in the BR spacetime.
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Whenever, Alice falls in toward a SEBH and locate near the event horizon of SEBH, as noted
here particle state is unentangled when the Hawking temperature is zero and approaches a
maximally entangled Bell state as known the black hole evaporates completely [57, 58]. We
investigate the fate of this particle by choosing the specific case of κ = 1, which provides
us to calculate by using the Alice of entangled ansatz of Ψ inside the K-G solutions for the
SEBH, which is obtained by [49] as follows

1

f
(∂tSA)2 = f (∂rSA)2 + 1

r2
(∂θSA)2 + 1

r2 sin2 θ
(∂ϕSA)2 + m2

p

×
[
1 − 2α

(
f (∂rSA)2 + 1

r2
(∂θSA)2 + 1

r2 sin2 θ
(∂ϕSA)2 + m2

p

)]
(23)

After it is expanded into the lowest order of � to find the solution of K-G equation we
use the method of separation of variables as follows:

SA(t, r, θ, ϕ) = −Et + W(r) + j (θ, φ) + C, (24)

where C, E and j are the complex constant, energy and angular momentum of the scalar
particles, respectively.

After substituting (24) into (23), taking only the radial part yields

1

f
E2 = f (∂rW)2 + m2

p ×
[
1 − 2α

(
f (∂rW)2 + m2

p

)]
(25)

and solving for the W(r), it is found that

W± = ±
∫

dr
1

f

√
E2 − m2

p(1 − 2αm2
p)f

√
1 − 2αm2

p

. (26)

The positive “+” signature is for outgoing entangled Alice scalar particles and the solu-
tion with negative “−” signature for the ingoing Alice scalar particles. Calculating the
above integral around the pole at the horizon by expanding the metric function f about rh ;
f (rh) ≈ f ′(rh)(r − rh) , where prime “′” denotes a derivative respect to r, gives

W± = ± iπEM(1 + a)2

2a
√
1 − 2αm2

p

(27)

While computing the imaginary part of the action, we note that it is same for both the
incoming and outgoing solutions. Herein, a factor two problem is arisen when calculating
the tunneling rate [50], however this problem can be resolved by different method found by
Akhmedova et al. [51, 52]. In this paper we use the most common solution that if we set the
probability of ingoing particles to 100 % (i.e., P− 	 e−2ImW− = 1)

Thus, the ingoing and outgoing imaginary action solution is derived as

ImS− = ImW− + ImC = 0, (28)

and
ImS+ = ImW+ + ImC (29)

which result in ImC = −ImW−. Contrariwise W+ = −W− in order that the probabilities
of radiating particles are obtained as

P+ = e−2ImS 	 e−4ImW+ . (30)
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Now, the probability of particles tunneling from inside to outside the horizon is given by

� = P+
P−

	 e(−4ImW+) (31)

� = e
− 4iπEM(1+a)2

2a
√

1−2αm2
p (32)

and the Hawking temperature for the scalar particles with the effect of minimum length is
obtained as

TH =
2a

√
1 − 2αm2

p

4πEM(1 + a)2
. (33)

Since (0 < a ≤ 1) it is observed that the electromagnetic field increases both the tunnel-
ing rate (32) and the Hawking temperature (33). When the minimum length effect parameter
α = 0, it is equal to the original result of Hawking Temperature. The effect of the external
parameter is shown in Fig. 1.

Fig. 1 The variation of Hawking Temperature against the constant a for M = E = mp = 1
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4 Entangled Fermion Particles Tunneling from SEBH with GUP

This section makes use of the generalized Dirac equation for fermions [40, 59–61] on the
background of SEBH [45]. The generalized Dirac equation under the effect of minimum
length can be written as

−iγ t ∂tψ = (iγ i∂i − 1

2
γ μgαβ�α

μνJαα + mp

�
)
[
1 + α

(
�
2∂i∂i − m2

p

)]
ψ ;i = r, θ, ϕ (34)

where the γ matrices are expressed in terms of the Pauli matrices σ i as follows

γ t = 1√
f

(
i 0
0 −i

)
, γ r = √

g

(
0 σ 3

σ 3 0

)
,

γ θ = 1

r

(
0 σ 1

σ 1 0

)
, γ ϕ = 1

r sin θ

(
0 σ 2

σ 2 0

)
, (35)

and

Jαα = i

4

[
γ α, γ β

]
, {γ μ, γ ν} = 2gμν, (36)

�r
tt = f ′f

2
, �t

tr = f ′

2f
. (37)

Consequently, the generalized Dirac equation can be written as [61]

iγ t ∂t + iγ i∂i

(
1 − αm2

p

)
+ iγ iα�2

(
∂j ∂

j
)

∂i + mp

�

(
1 + α�2∂j ∂

j − αm2
p

)

+ iγ μ�μ

(
1 + α�2∂j ∂

j − αm2
p

)
ψ = 0. (38)

By using the ansatz for the entangled spin-up ψ and only the r direction, one obtains

ψ↑ = κ

(
c0
c2

)
e

i
�

SA(t,r) +
√
1 − κ2

(
c4
c6

)
e

i
�

S
B

(t,r,θ,ϕ), (39)

with constant spinor components ci , i = 0, 2, 4, 6.
Upon choosing the specific case of κ = 1 (the Alice case) of entangled ansatz of Ψ and

solve the generalized Dirac equation on the background of SEBH, taking the lowest order
of � , it is obtained that the set of equations for the form depending only on the radial part
of SA(t, r) = Et + W(r) are [49]

α2f 4(∂rW)6 + αf 3(3m2
pα − 2)(∂rW)4 + f 2[(1 − αm2

p)2 − α(2m2
p − 2m4

pα)](∂rW)2

+ m2
pf (1 − αm2

p)2 − E2 = 0 (40)

To analyze the solution of W(r), by neglecting the higher order terms of α, the solution
for W(r) is calculated as

W± = ±
∫

dr
1

f

√
E2 − m2

p(1 − 2αm2
p)f

√
1 − 2αm2

p

. (41)

W± = ± iπEM(1 + a)2

2a
√
1 − 2αm2

p

(42)
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Now, using the same procedure in (28)–(30), the probability of the particles going out of
horizon from inside is written as

� = P+
P−

	 e(−4ImW+) (43)

� = e
− 4iπEM(1+a)2

2a
√

1−2αm2
p (44)

and the corresponding Hawking temperature is

TH =
2a

√
1 − 2αm2

p

4πEM(1 + a)2
. (45)

5 Conclusion

In summary, by using the modified Klein-Gordon and Dirac equations under the effect of
quantum gravity, we have examined the entangled scalar/fermion particle’s tunneling from
SEBH. The generalized uncertainty principle and application on the fields are used to derive
corrected Hawking radiation with the help of Hamilton-Jacobi method. Entangled particles
such as Alice and Bob particles can tunnel from the black hole with an equivalent energy.
Charge, mass and energy of the tunneled entangled particles are only properties. Further-
more, it is easy to conclude that during the evaporation, temperature increase is decelerated
by the effect of GUP. Hence, it is understood that the two effects will be canceled at some
point in the radiation and remnants are left. In addition, the external parameter of SEBH
“a” can be chosen as the value of (0 < a ≤ 1) to change the Hawking temperature. This
is how the Hawking temperature modifies when the Schwarzschild black hole is immersed
in a uniform external electromagnetic field specified by the parameter “a”. All our results
reduce to that of Schwarzschild case whenever we set a = 1.
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