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Abstract In this paper, we have investigated the thermodynamics of Schwarzschild and
Reissner-Nordström black holes using the symmetric generalised uncertainty principle
which contains correction terms involving momentum and position uncertainty. The mass-
temperature relationship and the heat capacity for these black holes have been computed
using which the critical and remnant masses have been obtained. The entropy is found to sat-
isfy the area law upto leading order logarithmic corrections and corrections of the form A2

(which is a new finding in this paper) from the symmetric generalised uncertainty principle.
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1 Introduction

The understanding of the thermodynamic properties of black holes has been one of the
most remarkable achievements in theoretical physics. Recently, the idea of a minimal length
equal to the Planck length in various theories of quantum gravity [1, 2] have led to a bulk of
investigations in black hole thermodynamics [3–7] and its quantum corrected entropy [8–
18] and quantum gravity corrections in quantum systems, namely, particle in a box, Landau
levels, simple harmonic oscillator, etc. [19–24].
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From rather general and model independent considerations [1, 8, 25, 26], the minimal
length has been introduced by replacing the Heisenberg uncertainty principle by generalised
uncertainty principle (GUP)

δxδp ≥ �

2

{
1 + β2l2p

�2
(δp)2

}
(1)

where lp is the Planck length (∼ 10−35m) and β is a dimensionless constant for which
upperbounds have been estimated by studying the effects of GUP in quantum systems such
as Landau levels and Lamb shift in hydrogen atom [19]. The above relation implies the
existence of a minimum observable length (δx)min = βlp . The result indicates the necessity
of replacing point like particles by extended objects in theories of quantum gravity [25, 26].
It can also be interpreted as a signal of the breaking of our concept of continuum spacetime
at very small length scales [8].

The role of GUP in black hole thermodynamics is as follows. It prevents the total evap-
oration of black holes to photons or other stable quantum particles and is responsible for
remnants to be present [8]. An interesting work in which an expression of a GUP was
obtained is [25, 26]. This was done by analyzing a thought experiment for the measurement
of the area of the horizon of a black hole. The main physical hypothesis of the experiment
is that (Hawking) radiation is emitted from the black hole.

A natural extension of (1) is the symmetric generalised uncertainty principle (SGUP)
[27–29]

δxδp ≥ �

2

{
1 + γ 2

L2
(δx)2 + β2l2p

�2
(δp)2

}
(2)

where γ is a dimensionless constant (for which upper bound estimates can be made by
following the same line of analysis as done for β) and L is a new unknown fundamental
length. The L → ∞ corresponds to the GUP case. In [30], with L = L�, where L� =
(3/�)1/2 is the de Sitter horizon, the temperature of (anti) de Sitter black holes have been
obtained. The motivation for the extension of the GUP to the above form comes from the
fact that the above relation implies the existence of a minimum uncertainty in momentum
(together with a minimum uncertainty in position) which on large scales may give rise to
new possibilities to describe situations where momentum cannot be precisely determined,
such as on curved space [31].

In this paper we will study the thermodynamic properties of Schwarzschild as well as
Reissner-Nordström black holes using the SGUP. We shall first obtain the mass-temperature
relationship from which we compute the heat capacities of these black holes. We then
proceed to calculate the critical and remnant masses in terms of the Planck mass and the con-
stants β and γ appearing in the SGUP (2). Finally we compute the entropy which is found
to yield the well known area law with corrections from the SGUP. Interestingly, we find that
apart from the usual logarithmic corrections, there are an additional corrections of the order
of A2 in both cases and inverse power of A corrections in case of the Reissner-Nordström
black hole.

The paper is organized as follows. In Section 2, we present a brief review of black hole
thermodynamics using the standard (Heisenberg) uncertainty principle. In Sections 3 and 4,
we study the thermodynamics of Schwarzschild and Reissner-Nordström black holes taking
into account the effect of SGUP. Finally, we conclude in Section 5.
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2 A Brief Review of Black Hole Thermodynamics

Let us consider a Schwarzschild black hole of mass M . Then near the event horizon of
the black hole, the momentum uncertainty and the temperature for a massless elementary
particle are related as [8]

T = (δp)c

kB

(3)

where c is the speed of light and kB is the Boltzmann constant. At thermodynamic equi-
librium, the temperature of the black hole will be equal to that of the particle. Also, near
the horizon of the Schwarzschild black hole, the position uncertainty of a particle can be
expressed in terms of the Schwarchild radius [8, 32]

δx = εrs ; rs = 2GM

c2
(4)

where ε is a calibration factor, rs is the radius of Schwarzschild black hole andG is the New-
ton’s universal gravitational constant. Using the saturated form of the standard (Heisenberg)
uncertainty principle

δxδp = �

2
(5)

the mass temperature relation can be expressed as

M = M2
pc2

4εkBT
. (6)

Comparing this with the semi-classical Hawking temperature T = M2
pc2

8πMkB
[3, 4], yields the

value of ε = 2π . Hence mass-temperature relation can be written as

M = M2
pc2

8πkBT
. (7)

Now by definition, the heat capacity of the black hole is given by

C = c2
dM

dT
. (8)

Using (7), the heat capacity is therefore given by

C = − kB

8π

(
MP c2

kBT

)2

. (9)

Hence the entropy can be calculated by using the first law of black hole thermodynamics as

S =
∫

c2
dM

T
=

∫
C

dT

T
. (10)

Using (9) and (7), this yields the famous area theorem [5–7]

S

kB

≡ SBH

kB

= A

4l2p
(11)

where SBH

kB
is the semi-classical Bekenstein-Hawking entropy for the Schwarzschild black

hole and A = 4πr2s = 16π G2M2

c4
= 4πM2

M2
p

is the horizon area of the black hole.



Int J Theor Phys (2016) 55:2746–2754 2749

3 Thermodynamics of Schwarzchild Black Holes

In this section, we shall study the thermodynamic properties of Schwarzschild black holes
incorporating the effect of the SGUP (2).

To relate the temperature with the mass of the black hole in this case, once again the
SGUP (2) has to be saturated

δxδp = �

2

{
1 + γ 2

L2
(δx)2 + β2l2p

�2
(δp)2

}
. (12)

Using (3, 4), the above relation can be put in the following form

M = M2
pc2

4ε

{
1

kBT
+ 1

kBT

γ 2

L2

(
2εM

Mp

)2 (
�

Mpc

)2

+ β2

(Mpc2)2
kBT

}
(13)

where the relations c�
lp

= Mpc2 and Mp = c2lp
G

(Mp being the Planck mass) has been used.
Following the procedure in the previous section for determining the value of the calibration
factor ε, leads to the mass-temperature relationship for the black hole

M = M2
pc2

8π

{
1

kBT
+ 1

kBT

γ 2

4L2

(
8πM

Mp

)2 (
�

Mpc

)2

+ β2

(Mpc2)2
kBT

}
. (14)

Now by using (8), the heat capacity of the black hole (using (14)) will be

C = kB

8π

⎡
⎢⎣−

(
Mpc2

kBT

)2
+ β2 − γ 2

4L2

(
�

Mpc

)2 (
8πM
Mp

)2 (
Mpc2

kBT

)2
1 − γ 2

2L2

(
�

Mpc

)2 (
8πM
Mp

) (
Mpc2

kBT

)
⎤
⎥⎦ . (15)

To get the remnant mass (where the radiation process stops), we set C = 0 and this leads to

Mrem = β

4π
Mp

√√√√ 1

1 − β2γ 2�2

L2M2
pc4

. (16)

The condition that remnant mass is real and does not diverge leads to the following
inequality involving the constants γ and β

β2γ 2
�
2

L2M2
pc4

< 1. (17)

From the mass-temperature relation (14), we can express the temperature in terms of the
mass as

T = 8π

kB

Mc2

2β2

⎡
⎣1 −

√
1 − β2γ 2

L2

(
�

Mpc

)2

− β2
Mp

2

16π2M2

⎤
⎦ (18)

where the negative sign before the square root has been taken to reproduce (7) in the γ, β →
0 limit. The above relation easily leads to the existence of a critical mass below which the
temperature becomes a complex quantity

Mcr = β

4π
Mp

√√√√ 1

1 − β2γ 2�2

L2M2
pc4

. (19)



2750 Int J Theor Phys (2016) 55:2746–2754

Equations (16) and (19) imply that the remnant and critical masses are equal and for both
the masses, the condition in (17) applies. Also, in the limit γ → 0, both the results reduce
to those found in [11].

We now move to calculate the entropy from the first law of black hole thermodynamics
(10). Substituting (18) in (10) and carrying out the integration expansion keeping terms up
to leading order in γ 2 and β2 yields

S

kB

= 4πM2

M2
p

− β2

8π
ln

(
8πM

Mp

)
− γ 2

�
2

128πM2
pc2L2

(
8πM

Mp

)4

= SBH

kB

− β2

16π
ln

(
SBH

kB

)
− β2

16π
ln(16π) − 2πγ 2l2p

L2

(
SBH

kB

)2

(20)

where SBH

kB
= 4πM2

M2
p

is the semi-classical Bekenstein-Hawking entropy for the

Schwarzschild black holes, which is mentioned before. In terms of the area of the horizon
A, (20) can be recast in the following form

S

kB

= A

4l2p
− β2

16π
ln

(
A

4l2p

)
− β2

16π
ln(16π) − 2πγ 2l2p

L2

(
A

4l2p

)2

(21)

which is the famous area law [5–7] with corrections from the SGUP. Interestingly, we obtain
corrections quadratic in the horizon area of the black hole apart from the well known loga-
rithmic corrections [33, 34]. It can be easily seen that the quadratic corrections in the horizon
area owes its origin to the position uncertainty term in the right hand side of the SGUP.
Further, it is evident that this correction would be smaller than the logarithmic corrections
(even for a large horizon area A) since it is accompanied by the square of the Planck length
and square of L which is a number greater than unity.

It is to be noted that there are no inverse power of A corrections when computations are
carried out uptoO(β2). However keeping terms uptoO(β4) leads to

S

kB

= Ã

4l2p
− β2

16π
ln

(
Ã

4l2p

)
− β2

16π
ln(16π) + 3β4

64π2

(
l2p

Ã

)
− 2πγ 2l2p

L2

(
Ã

4l2p

)2

(22)

where the new variable Ã is given by

Ã = A − β2

2π
l2p. (23)

With this we conclude our study of the thermodynamics of Schwarzschild black holes and
in the subsequent section we shall investigate the same for Reissner-Nordström black holes.

4 Thermodynamics of Reissner-Nordström Black Holes

In this section, we consider a Reissner-Nordström black hole of mass M and charge Q and
study the effect of the SGUP on the thermodynamics of this black hole. For RN black hole,
the position uncertainty of a particle near the horizon can be written as

δx = εrh

rh = Gr0

c2

r0 = M +
√

M2 − Q2 (24)
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where rh is the radius of the horizon of the RN black hole. The momentum uncertainty for
this remains the same as (3). Following the analysis in [11, 12] using (2), we get the relation
between the mass, charge and temperature of this black hole to be(

πr20

r0 − M

)(
kBT

Mpc2

)
= Mp

2

⎡
⎣1 + γ 2l2p

L2M2
p

(
πr20

r0 − M

)2

+ β2
(

kBT

Mpc2

)2
⎤
⎦ (25)

where we have used the identity

r0

(Mr0 − Q2)
= 1

(r0 − M)
. (26)

For the sake of simplicity we will write (25) as

u(r0)

(
kBT

Mpc2

)
= Mp

2

[
1 + g2 {u(r0)}2 + β2T ′2] (27)

where

u(r0) = πr20

r0 − M
; g2 = γ 2l2p

L2M2
p

. (28)

The heat capacity for the black hole can be obtained using (8, 27):

C = kB

(
β2 kBT

Mpc2
− 1

Mp

πr20
r0−M

) (
π2r40

)
(

πr20
r0−M

)3 (
kBT

Mpc2
− Mpg2 πr20

r0−M

)
(2r0 − 3M)

. (29)

From the mass-temperature relation (27), we can find out the solution for T as

T = c2

kBβ2

[
u(r0) −

√
{u(r0)}2 − M2

pβ2[1 + g2{u(r0)}2]
]
. (30)

Here negative sign has been taken to reproduce (18) in the Q → 0 limit.
Now for this solution to be real

{u(r0)}2 − M2
pβ2[1 + g2{u(r0)}2] ≥ 0. (31)

Taking the equality sign in this condition leads to the following cubic equation for the
critical mass below which the temperature becomes a complex quantity

4bM3
cr − b2M2

cr − 4bMcrQ
2 + Q4 + b2Q2 = 0 ; b = βMp

π

√
1 − γ 2β2l2p

L2

. (32)

Solving the above equation we get the expression for critical mass as

Mcr = b

12

[
1 + b2 + 48Q2

D
1
3

+ D
1
3

b2

]
(33)

where

D = b6 − 144b4Q2 − 216b2Q4 + 12
√
3b2

√
−b6Q2 + 31b4Q4 − 112b2Q6 + 108Q8.

(34)
The above expression for the critical mass reduces to the critical mass for the Schwarzschild
black hole (19) in the Q → 0 limit.

To obtain the remnant mass at which the radiation process terminates, we set C = 0
which yields the same cubic equation for the remnant mass as that for the critical mass (32).
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Hence, the remnant mass is once again equal to the critical mass (for the RN black hole)
similar to the Schwarzschild black hole.

Finally we compute the entropy using the expression of temperature (30) and definition
of entropy (10) keeping terms up to leading order in γ 2 and β2 which yields

S

kB

= πr2h

l2p
− 2πγ 2l2p

L2

(
πr2h

l2p

)2

− 8π2γ 2l2pQ2

M2
pL2

(
πr2h

l2p

)
− 12π3γ 2l2pQ4

M4
pL2

ln

(
r2h

l2p
− Q2

M2
p

)

− β2

8π
ln

(
rh

lp

)
− β2Q2

8π

l2p

M2
pr2h

− β2Q4

32π

l4p

M4
pr4h

= SBH

kB

− β2

16π
ln

(
SBH

kB

)
− β2

16π
ln (16π) − 2πγ 2l2p

L2

(
SBH

kB

)2

− 8π2γ 2l2pQ2

M2
pL2

(
SBH

kB

)

−12π3γ 2l2pQ4

M4
pL2

ln

(
SBH

kB

− πQ2

M2
p

)
− β2Q2

8M2
p

kB

SBH

− πβ2Q4

32M4
p

(
kB

SBH

)2

(35)

where SBH

kB
= πr2h

l2p
is the semi-classical Bekenstein-Hawking entropy for the RN black hole.

In terms of the area of the horizon A = 4πr2h = 4l2p
SBH

kB
, the above equation can be recast as

S

kB

=
(
1 − 8π2γ 2l2pQ2

M2
pL2

)(
A

4l2p

)
− 2πγ 2l2p

L2

(
A

4l2p

)2

− β2

16π
ln

(
A

4l2p

)
− β2

16π
ln (16π)

−12π3γ 2l2pQ4

M4
pL2

ln

(
A

4l2p
− πQ2

M2
p

)
− β2Q2

8M2
p

4l2p
A

− πβ2Q4

32M4
p

(
4l2p
A

)2

. (36)

Now introducing a new variable A′ defined as

A′ =
(
1 − 8π2γ 2l2pQ2

M2
pL2

)
A (37)

one can rewrite (36) as

S

kB

= A′

4l2p
− 2πγ 2l2p

L2

(
A′

4l2p

)2

− β2

16π
ln

(
A′

4l2p

)
− β2

16π
ln (16π)

−12π3γ 2l2pQ4

M4
pL2

ln

(
A′

4l2p
− πQ2

M2
p

)
− β2Q2

8M2
p

4l2p
A′ − πβ2Q4

32M4
p

(
4l2p
A′

)2

(38)

which is the area theorem with corrections for the RN black hole. This expression reduces
to (21) in the Q → 0 limit.

5 Conclusion

We finally conclude by summarizing our findings. In this paper, we study the effect of
the SGUP in the thermodynamics of Schwarzschild and Reissner-Nordström black holes.
The mass-temperature relation and the heat capacity for these black holes are obtained.
These relations are then used to compute the critical and remnant masses which are found
to be equal and are consistent with our earlier findings [11] in the γ → 0 limit. From
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the expression for the critical mass of the Schwarzschild black hole, we also obtain an
inequality involving the constants γ and β. Finally, we compute the entropy and obtain the
area theorem [5–7] with the SGUP corrections. Interestingly we observe in both cases that
apart from the logarithmic and inverse power of A corrections in the entropy, the SGUP
leads to a correction term of the form A2. This quadratic correction term in the horizon area
has not been reported earlier in the literature and is a new finding in this paper.

To place our results in the proper perspective, we would like to mention that the existence
of remnants in black hole thermodynamics have also been found in rainbow gravity [35–
38]. Rainbow gravity owes its origin to a modified dispersion relation proposed in [39, 40]
and the proposal that the spacetime for a test particle depends on its energy. So instead of a
single metric describing spacetime, there is a rainbow of metrics depending upon the energy
of the test particles. This model is also used in investigating the thermal stability of black
holes [41–43], black hole information loss paradox [44–47], etc.
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