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Abstract In this paper we investigate the controlled dense coding with the maximal slice
states. Three schemes are presented. Our schemes employ the maximal slice states as quan-
tum channel, which consists of the tripartite entangled state from the first party(Alice),
the second party(Bob), the third party(Cliff). The supervisor(Cliff) can supervises and con-
trols the channel between Alice and Bob via measurement. Through carrying out local
von Neumann measurement, controlled-NOT operation and positive operator-valued mea-
sure(POVM), and introducing an auxiliary particle, we can obtain the success probability of
dense coding. It is shown that the success probability of information transmitted from Alice
to Bob is usually less than one. The average amount of information for each scheme is cal-
culated in detail. These results offer deeper insight into quantum dense coding via quantum
channels of partially entangled states.

Keywords Quantum entanglement · Dense coding · Positive operator-valued measure
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1 Introduction

Quantum dense coding [1] is a simple yet surprising application of elementary quantum
mechanics, which has attracted much attention of many researchers. A variety of theoreti-
cal suggestions and experimental efforts have been made in this realm. It is firstly proposed
by Charles H. Bennett and Stephen J. Wiesner [2]. In the original scheme, one party(Alice),
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prepares an EPR pair and sends one of the particles to another party(Bob) who applies one
of four unitary operators to the particle, and then returns it to Alice. By measuring the two
particles jointly, Alice can reliably learn which operator Bob used. The protocol describes
a way to transmit two bits of classical information through manipulation of only one of
the entangled pair of spin-1/2 particles, while each of the pair individually could carry
only one bit of classical information. Afterward Mattle et al. [3] report the first experimen-
tal realization of quantum communication, verifying the increased capacity of a quantum
information channel by quantum dense coding. Fang et al. [4] have experimentally imple-
mented quantum dense coding by using NMR quantum logic gates and circuits in quantum
computation.

Quantum dense coding deals with efficient information transfer from a sender to a
receiver utilizing an entangled channel between the two. It has been widely studied the-
oretically [5–11] and experimentally [12–15] in the past twenty years. Bose, Lee et al.
[5, 6, 11] and Bose et al. [7, 8, 10] have generalized quantum dense coding between
two parties to multiparties and mixed state dense coding, respectively. Wang et al. [9]
propose a protocol for quantum secure direct communication with quantum superdense cod-
ing. Wang et al. [12, 13] show that an optimal dense coding protocol can be constructed
with pentaqubit entangled state in cavity QED. Some generalizations of dense coding for
continuous variables [16–18] are studied. Chen et al. [19] present a simple scheme for
implementing perfect controlled teleportation and dense coding with the genuine pentaqubit
entangled state.

Hao et al. [20] have firstly studied controlled dense coding using the GHZ state. It is
shown that when using the GHZ state, the success probability of dense coding is controlled
by the measurement basis of the third particle just like the fidelity, depending on the mea-
surement of the third particle in teleportation, and the entanglement and communication
are also controlled in a quantum way. It was experimentally demonstrated by Jing [18] and
Zhang [21] for continuous variables. Subsequently, many researchers generalized the con-
trolled dense coding protocol of the three-particle GHZ quantum channel to the case of a
multi-particle quantum channel, such as a (N+2)-particle GHZ quantum channel via a series
of local measurements [22], a four-particle non-maximally entangled state [23], GHZ-class
state [24, 25], a three-qubit symmetric state [26], a one-dimensional four-particle cluster
state [27], a five-atom cluster state [28], a peculiar tripartite entangled state [33], general-
ized GHZ-Type state [34], extended GHZ-W states [36], a cluster state [37], a four-particle
non-maximally entangled state [38], four-particle entangled state [39]. In cavity QED sys-
tems, controlled dense coding [29–32, 35] are investigated via generalized measurement
and with entanglement concentration.

In quantum dense coding the shared quantum channel between two or more than
two parties is generally considered to be a maximally entangled resource. However, per-
fect entanglement is difficult to preserve. Maximally entangled states usually degrade to
partially entangled ones [40].

In real experimental setups, it is always a challenge to obtain a multiqubit maximally
entangled resource [41]. Therefore, it is important to identify multiqubit entangled sys-
tems which are partially entangled but can be efficiently used as a resource in quantum
information processing with optimal success.

In 2008 Gao et al. [42] found that certain partially entangled states called maximal slice
(MS) states [43] can also be used for controlled teleportation. The controlled teleportation
scheme employing the MS states has 100 % success probability and fidelity of teleportation,
which is the same as the GHZ scheme [44]. Later, Kumar et al. [45] propose a three-
qubit partially entangled set of states as a shared resource for optimal and faithful quantum
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information processing. Cai, Li et al. [46, 47] have studied some application of partially
entangled states.

Mo et al. [48] have proposed a controlled teleportation scheme which communicates an
arbitrary ququart state via two sets of partially entangled GHZ state. The necessary mea-
surements and operations are given detailedly. Although a lot of work has been devoted
to studying controlled teleportation and dense coding, very little has been discussed the
controlled dense coding with a maximal slice state as communication channel. We show
in this paper that the success probability of information transmitted from Alice to Bob is
usually less than one. The average amount of information for each scheme is computed in
detail. These results offer deeper insight into quantum dense coding via quantum channels
of partially entangled states.

2 Controlled Dense Coding with the Maximal Slice States

We review the quantum dense coding scheme. Let us assume that Alice and Bob initially
share the Bell state |�〉+. Locally operating on her qubit, Alice obtains one of the four
orthogonal Bell states I |�〉+ = |�〉+, σX|�〉+ = |�〉+, −iσY |�〉+ = |�〉−, σZ|�〉+ =
|�〉−. Alice then sends her qubit to Bob. By making a Bell measurement, Bob is able to
obtain two bits of classical information. The four Bell states are defined by

|�〉± = 1/
√
2(|00〉 ± |11〉), |�〉± = 1/

√
2(|01〉 ± |10〉). (1)

The three-qubit partially entangled set of maximal slice (MS) states that we characterize
in this paper can be represented as

|�〉123 = 1/
√
2[|000〉 + cosα|110〉 + sinα|111〉], (2)

where qubit 1 is hold by Alice, qubit 2 by Bob and qubit 3 by Cliff respectively. It is the
so called maximal slice state. In order to control the quantum channel between Alice and
Bob and the amount of information transmitted from Alice to Bob, Cliff performs a von
Neumann measurement on his qubit 3 under the basis

|+〉3 = cosβ|0〉 + sinβ|1〉, |−〉3 = sinβ|0〉 − cosβ|1〉. (3)

(β is a measured angle with the region 0 ≤ β ≤ π/4). The MS states can be rewritten as

|�〉123 = |ϕ12〉|+〉3 + |ψ12〉|−〉3, (4)

where
|ϕ12〉 = 1/

√
2[cosβ|00〉 + cosβ cosα|11〉 + sinβ sinα|11〉], (5)

|ψ12〉 = 1/
√
2[sinβ|00〉 + sinβ cosα|11〉 − cosβ sinα|11〉], (6)

Obviously, the von Neumann measurement of qubit 3 gives the readout |+〉3 or |−〉3;
each occurs with equal probability 1/2. Now let us analyze here the case in which Cliff’s
measurement gives |+〉3 and the state of qubits 1 and 2 collapses to |ϕ12〉; the case of |−〉3
can be treated in a similar fashion. Generally, |ϕ12〉 is not maximally entangled and the
success probability of dense coding with |ϕ12〉 is less than 1.

Two schemes of dense coding with the MS state are shown below.

(1) Cliff sends the information of measurement basis and result |+〉3 to Alice.
Alice has the information that she shares the general entangled state |ϕ12〉 with
Bob, whereas Bob does not know this. To obtain the maximal probability Alice
introduces an auxiliary qubit |0〉aux and performs a unitary operation on her
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qubit 1 and the auxiliary qubit(which is a collective operation under the basis
|0〉1|0〉aux, |0〉1|1〉aux, |1〉1|0〉aux, |1〉1|1〉aux),

U1 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0

0 0 cosβ
cos(β−α)

√
1 − (

cosβ
cos(β−α)

)2

0 0
√
1 − (

cosβ
cos(β−α)

)2 − cosβ
cos(β−α)

⎞
⎟⎟⎟⎟⎠

(7)

The collective unitary operation U1 ⊗ I2 transforms the state (|ϕ12〉 ⊗ |0〉aux) to

|ξ〉 = cosβ[1/√2(|00〉 + |11〉)] ⊗ |0〉aux

+1/
√
2 cos(β − α)

√
1 − (

cosβ

cos(β − α)
)2|11〉 ⊗ |1〉aux (8)

Then Alice performs a von Neumann measurement on the auxiliary qubit under the
basis |0〉aux, |1〉aux and informs Bob of the result. If she obtains {|0〉aux}, qubits 1 and
2 are maximally entangled. Alice can perform one of the four unitary transformations
I, σX, iσY , σZ on qubit 1 and send it to Bob. Then Bob knows he has two qubits in
one of the four Bell states resulted from Alice’s transformation. By performing a Bell-
basis measurement, Bob can discriminate Alice’s unitary transformation on qubit 1,
so 2 bits of information are transmitted. If Alice obtains |1〉aux , qubits 1 and 2 are
unentangled. Bob can extract only 1 bit of information. So, on average

Itrans = 3/2 cos2 β + 1/2 cos2(β − α) (9)

bits of information are transmitted from Alice to Bob.
(2) Cliff sends his measurement result |+〉3 to Bob. Bob has the information of the shared

state, but Alice does not. Under this condition Bob performs the unitary operation.
Alice performs one operation of I, σX, iσY , σZ on qubit 1 and transmits it to Bob.
Then Bob’s two-qubit state is one of {cosβ|00〉12 ± cos(β − α)|11〉12, cosβ|10〉12 ±
cos(β − α)|01〉12} corresponding to Alice’s operation {I, σZ; σX, iσY }, respectively.
Bob performs a CNOT operation (Bob’s original qubit 2 is target and the qubit sent
by Alice is the controller). The states evolve into unentangled states after the CNOT
operation

cosβ|00〉12 ± cos(β − α)|11〉12 → (cosβ|0〉1 ± cos(β − α)|1〉1) ⊗ |0〉2, (10)

cosβ|10〉12 ± cos(β − α)|01〉12 → (cosβ|1〉1 ± cos(β − α)|0〉1) ⊗ |1〉2 (11)

Bob uses a von Neumann measurement on the qubit 2 to get the parity bit. If the
result is |0〉2, Bob knows that Alice performs I , or σZ; if the result is |1〉2, he knows
Alice performs σX ,or σY . He can discriminate the two subsets of Alice operations:
{I, σZ}; or {σX, σY }. Through this measurement Bob gets the parity bit. What Bob
needs to do next is to discriminate the two nonorthogonal states {cosβ|0〉1 ± cos(β −
α)|1〉〉1} or {cosβ|1〉1 ± cos(β −α)|0〉1}. Bob introduces an auxiliary qubit |0〉aux and
performs the unitary operation on the qubit 1 and the auxiliary qubit which transforms
1/

√
2{(cosβ|0〉1 ± cos(β − α)|1〉1) ⊗ |0〉aux} to

cosβ[1/√2(|0〉1±|1〉1)]⊗|0〉aux+1/
√
2 cos(β−α)

√
1 − (

cosβ

cos(β − α)
)2|1〉1⊗|1〉aux.

(12)
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After that Bob measures the auxiliary qubit. If the outcome is |0〉aux , the two states
of qubit 1 are orthogonal and he can discriminate the states {cosβ|0〉1±cos(β−α)|1〉1}
with certainty and the phase bit is obtained. If the outcome is |1〉aux , the state of qubit
1 is |1〉1 and he cannot discriminate {cosβ|0〉1 ± cos(β − α)|1〉1} and he gets nothing.
We sum all the information transmitted in this procedure

Itrans = 3/2 cos2 β + 1/2 cos2(β − α). (13)

3 Controlled Dense Coding via POVM

In this section, we first consider the case of Cliff’s measurement is |+〉3, and the other case
can be deduced similarly. After receiving the measurement result, Alice directly performs
one of the four unitary operators I, σX, iσY , σZ , and maps the joint shared state between
her and Bob to the four nonorthogonal states respectively:

|ζ1〉12 = 1/
√
2[cosβ|00〉 + cos(β − α)|11〉], (14)

|ζ2〉12 = 1/
√
2[cosβ|10〉 + cos(β − α)|01〉], (15)

|ζ3〉12 = 1/
√
2[− cosβ|10〉 + cos(β − α)|01〉], (16)

|ζ4〉12 = 1/
√
2[cosβ|00〉 − cos(β − α)|11〉]. (17)

Then Alice sends qubit 1 to Bob, and now Bob has at his disposal two qubits which could
be in any one of the four possible states {|ζ1〉12, |ζ2〉12, |ζ3〉12, |ζ4〉12}. By performing local
unitary transformations, Alice can send only 1-bit information to Bob. However, the above
four states are not mutually orthogonal. According to quantum theory, it is obvious that
these four non-orthogonal states cannot be distinguished with certainty. But it is known
that a set of nonorthogonal states which are linearly independent can be distinguished with
some probability of success. In fact, it is easy to find that the above set is actually linearly
independent. Therefore Bob can conclusively distinguish these states with some probability
of success.

To distinguish the above set, first Bob performs a projection onto the subspaces spanned
by the basis states {|00〉, |11〉} and {|01〉, |10〉} with corresponding projective operators are
P1 = |00〉〈00| + |11〉〈11| and P2 = |01〉〈01| + |10〉〈10| respectively. Obviously, P1 and
P2 are mutually orthogonal, and Bob can discriminate the two subsets of Alice’s operators:
{I, σZ}; and {σX, iσY }. If Bob obtains P1, then he knows that the state will be either |ζ1〉12,
or |ζ4〉12. Similarly, if he obtains P2, the state will be either |ζ2〉12 or |ζ3〉12. After this pro-
jective measurement he gets 1 bit of information. Now we suppose Bob obtains P1, then he
performs a generalized measurement on his two qubit states. In the case, the corresponding
positive operator valued measure (POVM) elements in the subspace {|00〉, |11〉} are

M1 = 1

2

(
cos2 β

cos2(β−α)

cosβ
cos(β−α)

cosβ
cos(β−α)

1

)
(18)

M2 = 1

2

(
cos2 β

cos2(β−α)
− cosβ

cos(β−α)

− cosβ
cos(β−α)

1

)
(19)

M3 =
(
1 − cos2 β

cos2(β−α)
0

0 0

)
(20)

Obviously the condition M1 + M2 + M3 = I2 is satisfied.
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The generalized measurement has three outcomes. If Bob gets M1 then the state is |ζ1〉12,
if he getsM2 then the state is |ζ4〉12. However if he getsM3 the state is completely indecisive
and Bob cannot obtain any information. The success probability of distinguishing |ζ1〉12
and |ζ4〉12 is 2 cos2 β

cos2 β+cos2(β−α)
, which is also the probability that Bob obtains another 1 bit of

information. Similar procedure can be applied for the case of P2, one can easily check that
the relevant POVM elements and the success probability are the same. So, in this case, the
average amount of information transmitted from Alice to Bob should be expressed as

Itrans = 3/2 cos2 β + 1/2 cos2(β − α) (21)
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