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Abstract In this paper, we find that the geometric global quantum discord proposed by Xu
and the total quantum correlations proposed by Hassan and Joag are identical. Moreover,
we work out the analytical formulas of the geometric global quantum discord and geometric
quantum discord both for two-qubit X states, respectively. We further illustrate how to use
these formulas to deal with a few particular examples. We also compare the results achieved
by using three kinds of geometric quantum discords. The geometric quantum discord is
verified as a tight lower bound of the geometric global quantum discord for two-qubit X
states.
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1 Introduction

Quantum correlations, as a fundamental character of a multipartite quantum system and
an essential resource for quantum information processing [1], was initially studied in the
entanglement-versus-separability scenario [2–4]. Even though entanglement has attracted
much attention to many authors, it is not a unique characteristic of a quantum system, and
it has no any advantage for some quantum information tasks. In some cases [5–7], although
there is no entanglement, certain quantum information processing tasks can still be done
efficiently by using quantum discord [8–10], which is believed more workable than the
entanglement. The quantum discord (QD), first introduced by Ollivier and Zurek [8] and
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by Henderson and Vedral [9], is a measure of quantum correlations, which extends beyond
entanglement, and a quantum-versus-classical paradigm for correlations [11–13].

Since the calculation of quantum discord involves a difficult optimization procedure,
generally it is not easy to obtain analytical results except for a few typical examples of two-
qubit states [14–22]. Huang has proved that computing quantum discord is NP-complete: the
running time of any algorithm for computing quantum discord is believed to grow exponen-
tially with the dimensions of the Hilbert space. Therefore, computing quantum discord even
with a moderate size is impossible in practice [23]. Recently, some authors have to restrict
their researches to two-qubit X states, which are frequently encountered in condensed mat-
ter systems, quantum dynamics, etc. [20, 22, 24–27] with an interest in the dynamics of
quantum discord [28]. Ali et al. first studied the quantum discord for two-qubit X states
and derived an explicit expression for X states [14, 15], but Lu immediately found a coun-
terexample to his results [29]. After that, Chen pointed out that Ali’s algorithm is only valid
for a class of X states. However, for some family of X states, Ali’s algorithm is not correct
because of the inequivalence between the minimization over positive operator-valued mea-
sures and that over von Neumann measurements [30]. Indeed, Ali’s algorithm is not correct
even if we only consider von Neumann measurements. The main reason for this error is that
Ali did not find all extrema. Soon after, Rau and his co-authors [14, 15] extended the pro-
cedure of calculating discord of two-qubit X-states used in Ref. [14] to so-called extended
X-states with N qubits. They also gave a formula to calculate the geometric measure of
quantum discord for qubit-qudit systems [31]. In this aspect, Huang also found a counterex-
ample to the analytical formula derived in [25], and proposed an analytical formula with a
very small worst-case error [32].

Considering the difficulty in calculating the quantum discord, Dakić et al. [33] intro-
duced a geometric measure of quantum discord1 and obtained an analytic formula for
two-qubit states. Very soon, Luo and Fu generalized GD to an arbitrary bipartite system and
derived an explicit tight lower bound on it [34]. Rana et al. and Hassan et al. also obtained a
rigorous lower bound to GD [35, 36] independently. Girolami et al. got another expression
of GD for qubit-qubit states [37, 38]. Tufarelli et al. proposed an algorithm to calculate GD
for any 2 × d systems, which is valid for d → ∞ case [39].

Because the original definitions of both QD and GD consider a set of local measurements
only on one subsystem, it is not symmetric for two subsystems in the two partite case, Rulli
et al. suggested a symmetric extension of QD named global quantum discord(GQD) [40],
which has been extended to q-global quantum discord [41]. Some analytical expressions of
GQD for some special quantum states have also been found [42]. On the other hand, inspired
by Rulli’s work, Xu generalized the geometric quantum discord to multipartite states and
proposed a geometric global quantum discord (GGQD) [43], which is alternatively known
as symmetric or two-side geometric measure of quantum discord for two-qubit system [44,
45]. Almost at the same time, Hassan and Joag proposed total quantum correlations (TQC)
and presented an algorithm to calculate TQC for a N -partitle quantum state [46]. It is worth
pointing out that GD has attracted considerable attention to many authors, but there existed
some argument on the geometric measure of quantum discord [47]. Piani argued that the
geometric measure of quantum discord is not a good measure for the quantum correlations.
Tafarelli et al. analyzed GD and indicated that it has two fatal weaknesses, i.e., both of them
are related to the Hilbert-Schmidt norm or distance. They further defined a Hilbert space
metric based on the Hilbert-Schmidt norm and proposed the so-called rescaled geometric

1It is also named geometric discord (GD).
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discord (RGD) [48]. A detailed discussion about this issue is out of the scope of this paper.
Nevertheless, we will compare the GGQD, GD and RGD of the same states. Compared with
QD and GD, obviously, the study of GQD and GGQD as well as TQC is not yet enough.
Hence, in this paper we first prove that GGQD and TQC are identical and then restrict
ourselves to the study of GGQD. We attempt to derive an explicit analytical expression of
GGQD for two-qubit X states.

This paper is organized as follows. In the next section, we give a brief review of GD,
GGQD and TQC as well as RGD. We will prove that GGQD and TQC are identical. We
derive the analytical formulas of GGQD and GD of two-qubit X states in Section 3. Some
particular examples are given in Section 4. A related discussion is presented in Section 5
and we give concluding remarks in the last section.

2 Brief Review of Geometric Measure of Quantum Discord
and Geometric Global Quantum Discord

We start with a brief review of QD, GD, GGQD and TQC as well as RGD. The QD of a
bipartite state ρ on a system Ha ⊗ Hb with marginals ρa and ρb can be expressed as

Q(ρ) = min
�a

{
I (ρ) − I (�a(ρ))

}
. (1)

Here the minimum is over von Neumann measurements �a = {�a
k } on subsystem a, and

�a(ρ) =
∑

k

(
�a

k ⊗ I b)ρ(�a
k ⊗ I b

)
(2)

is the resulting state after the measurement. I (ρ) = S(ρa) + S(ρb) − S(ρ) is the quantum
mutual information, S(ρ) = −trρ ln ρ is the von Neumann entropy, and I b is the identity
operator on Hb. The GD for a state ρ is defined as [33]:

D(ρ) = min
χ

‖ρ − χ‖2, (3)

where the minimum is over the set of zero-discord states (i.e., Q(χ) = 0) and ‖ρ − χ‖2 :=
tr(ρ − χ)2 is the square of Hilbert-Schmidt norm of Hermitian operators. The GD of any
two-qubit state is evaluated as

D(ρ) = 1

4

(
‖x‖2 + ‖T‖2 − kmax

)
, (4)

where x := (x1, x2, x3)
t is a column vector, ‖x‖2 := ∑

i x2
i , xi = tr(ρ(σi ⊗ Ib)), T := (tij )

is a matrix and tij = tr(ρ(σi ⊗ σj )), kmax is the largest eigenvalue of matrix xxt + TTt .
Since Dakić et al. proposed the GD, many authors extended Dakić’s results to the general

bipartite states. Luo and Fu evaluated the GD for an arbitrary state ρ and obtained an explicit
formula

D(ρ) = tr(CCt ) − max
A

tr(ACCtAt ), (5)

where C = (cij ) is a m2 ×n2 matrix, given by the expansion ρ = ∑
cijXi ⊗Yj in terms of

orthonormal operators Xi ∈ L(Ha), Yj ∈ L(Hb) and A = (aki) is an m × m2 matrix given
by aki = tr|k〉〈k|Xi = 〈k|Xi |k〉 for any orthonormal basis |k〉 of Ha . They also gave a tight
lower bound for GD of arbitrary bipartite states [34]. Recently, a different tight lower bound
for GD of arbitrary bipartite states was given by Rana et al. [35], and Hassan et al. [36]
independently. Other explicit expressions of GD for two-qubit system and 2 ⊗ d systems
are also found [37–39].
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On the other hand, in order to overcome the weaknesses of the GD, Tafarelli et al. defined
the distance of two density matrices ρ1 and ρ2 as

dT (ρ1, ρ2) =
∥∥∥∥

ρ1

‖ρ1‖ − ρ2

‖ρ2‖
∥∥∥∥ , (6)

where ‖ · ‖ stands for the Hibert-Schmidt norm as usual. Then, they proposed the rescaled
geometric discord DT (ρ) for a state ρ as [48]

DT (ρ) = βA min
�A

dT (ρ,�A[ρ])2, (7)

where βA is a normalization constant and depends on the dimension of HA. If the convention
αA = dA/(dA − 1) with dA = dim{HA} was adopted,

βA =
√

dA

2
(√

dA − 1
) . (8)

Finally, they derived the RGD as

DT (ρ) = βA

[

2 − 2

√

1 − DG(ρ)

αATr{ρ2}

]

, (9)

where DG(ρ) is the GD defined as (3).
The QD and GD have been revealed as useful measurements, but they are originally not

symmetric for its all subsystems. As an extension of QD, Rulli proposed a global quantum
discord (GQD) for an arbitrary multipartite state ρA1···AN

as [40]:

D(ρA1···AN
) = min{�k}

[S(ρA1···AN
‖�(ρA1···AN

)) −
N∑

j=1

S(ρAj
‖�j(ρAj

))], (10)

where �j(ρAj
) = ∑

j ′ �
j ′
Aj

ρAj
�

j ′
Aj

and �(ρA1···AN
) = ∑

k �kρA1···AN
�k , with �k =

�
j1
A1

⊗ · · · ⊗ �
jN

AN
and k denoting the index string (j1 · · · jN).

To calculate D(ρA1···AN
) conveniently, Xu has given an equivalent expression of (10)[42]

D(ρA1···AN
) =

N∑

k=1

S(ρAk
) − S(ρA1A2···AN

) − max
�

[
N∑

k=1

S(�Ak
(ρAk

)) − S(�(ρA1···AN
))

]

,

(11)
where � = �A1A2···AN

is any locally projective measurement performed on A1A2 · · ·An.
The definition of GGQD for state ρA1A2···AN

is

DG(ρA1A2...AN
) = min

σA1A2 ···AN

{tr[ρA1A2···AN
− σA1A2···AN

]2 : D(σA1A2···AN
) = 0}, (12)

where D(σA1A2···AN
) is defined by (10). To simplify the calculation of (12), Xu derived two

equivalent formulas of GGQD. The first one is:

DG(ρA1A2...AN
) = min

�

{
tr
[
ρA1A2···An − �(ρA1A2···AN

)
]2}

= tr
[
ρA1A2···AN

]2 − max
�

{
tr
[
�(ρA1A2···AN

)
]2}

, (13)

where � is the same as the one in (11).
The second formula of GGQD can be expressed as

DG(ρ
A1A2 ...AN

) =
∑

α1,α2,···αN

(
Cα1α2···αN

)2−max
�

∑

i1i2···iN

(
∑

α1,α2,···αN

Aα1i1Aα2i2 · · ·AαN iN Cα1α2···αN

)2

,

(14)
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where Cα1α2···αN
and Aαkik are determined by

ρ
A1A2 ···AN

=
∑

α1α2···αN

Cα1α2···αN
Xα1 ⊗ Xα2 ⊗ · · · ⊗ XαN

, (15)

Aαkik = 〈ik|Xαk
|ik〉 (16)

and {Xαk
}n2

k

αk=1 are orthonormal bases of L(Hk), which were constituted by all Hermitian

operators on Hk; {|ik〉}n
2
k

ik=1 are orthonormal bases of Hk . For any two-qubit state ρAB , (14–
16) are reduced to:

DG(ρAB) =
∑

αβ

(
Cαβ

)2 − max
AB

∑

i,j

⎛

⎝
∑

αβ

AiαBjβCαβ

⎞

⎠

2

, (17)

Cαβ = tr
(
ρABXαYβ

)
, (18)

Aiα = 〈i|Xα|i〉, Bjβ = 〈j |Yβ |j〉, i, j = 1, 2; α, β = 0, 1, 2, 3. (19)

Here, for consistency with other literatures, such as [34, 36], we have exchanged the
indexes of A and B in (19), which do not affect the following results. On the other hand, In
(18) and (19), X0 = IA/

√
2, Xi = σA

i /
√

2, i = 1, 2, 3; Y0 = IB/
√

2, Yj = σB
j /

√
2, j =

1, 2, 3, where IA and σA
i are 2 × 2 unitary matrix and Pauli matrix for qubit A, IB and σB

j

are the same for qubit B, respectively. We can further express (17) in the matrix form,

DG(ρAB) = tr(CCt ) − max
AB

tr(ACBtBCtAt ), (20)

where Xt denote the transpose of matrix X, A = {Aiα}, B = {Bjβ} and C = {Cαβ}.
Equation (20) is obviously the generalization of (5) in [34] to the case of GGQD.

Now, we turn our attention to TQC. Hassan and Joang introduced total quantum
correlations in a state ρ12···N [46]. They assumed that the non-selective von Neumann pro-
jective measurements �̃(1), �̃(2), · · · , �̃(N) are acted on N parts 12 · · ·N of the system
successively. The corresponding post-measurement states are expressed as

�̃(1)(ρ12···N), �̃(2)(�̃(1)(ρ12···N)), · · · , �̃(N)(· · · (�̃(1)(ρ12···N) · · · )).
The GDs of these successive measurement states are given by

D1(ρ12···N),D2(�̃
(1)(ρ12···N)), · · · ,DN(�̃(N−1)(· · · (�̃(1)(ρ12···N)) · · · )).

Then, the geometric measure of total quantum correlations of a N-partite quantum state
ρ12···N is defined as

Q(ρ12···N) = D1(ρ12···N)+D2(�̃
(1)(ρ12···N))+· · ·+DN(�̃(N−1)(· · · (�̃(1)(ρ12···N)) · · · )).

(21)
In the following, we shall see that the definitions of GGQD and TQC are different in

form, but they are identical to each other. To this end, we recall that 1) (13) is also obviously
valid for GD with � = �k, k = 1, 2, · · · , N , which only performed on kth part of the
system; 2) the projector �̃(1) is defined as the von Neumann measurement minimizing the
quantity ‖ρ − �(1)(ρ)‖2 [46], which implies that

tr[�̃(1)(ρ)]2 = max
�(1)

{
tr
[
�(1)(ρ)

]2
}

. (22)
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Keeping these in mind, we can rewrite (21) for N = 2 as

Q(ρ) = D1(ρ) + D2(�̃
(1)(ρ)) = tr[ρ]2 − max

�(1)

{
tr
[
�(1)(ρ)

]2
}

+ tr
[
�̃(1)(ρ)

]2 − max
�(2)

{
tr[�(2)(�̃(1)(ρ))]2

}

= tr[ρ]2 − max
�(2)

{
tr
[
�(2)(�̃(1)(ρ))

]2
}

= tr[ρ]2 − max
�

{
tr [�(ρ)]2

}
= DG(ρ). (23)

There are two key points to be emphasized. First, the terms max
�(1)

{tr[�(1)(ρ)]2} and

tr[�̃(1)(ρ)]2 after the second equal sign naturally canceled out each other because
of (22). Second, since �̃(1) has been determined by (22), therefore, we can write
max
�(2)

{tr[�(2)(�̃(1)(ρ))]2} as max
�

{tr[�(ρ)]2 with � = �(2)�̃(1). The proof of Q(ρ) =
DG(ρ) for N ≥ 3 cases is similar and straightforward. The identity of GGQD with TQC
is not surprising, because both of them use the original definition of the geometric measure
of quantum discord to every individual of the system. This can be further manifested by
observing that (64) for TQC in Ref. [46] and the (14) for GGQD are the same. Due to this
identity, therefore, hereafter we use the name ’geometric global quantum discord (GGQD)’,
which also stands for ’total quantum correlations (TQC)’. In the next section, we are going
to use (20) to calculate the GGQD of X state.

3 GGQD of Two-qubit X State

The two-qubit X state usually arises as the two-particle reduced density matrix in many
physical systems. In the computational basis |00〉, |01〉, |10〉, |11〉 , the visual appearance of
its density matrix resembles the letter X, so it is commonly known as X state in literatures.
The density matrix of a two-qubit X state

ρAB =

⎛

⎜⎜
⎝

	00 0 0 	03
0 	11 	12 0
0 	∗

12 	22 0
	∗

03 0 0 	33

⎞

⎟⎟
⎠ (24)

has nonzero elements only on the diagonal and the antidiagonal, where 	00, 	11, 	22, 	33 ≥
0 satisfy 	00 + 	11 + 	22 + 	33 = 1. The antidiagonal elements 	03, 	12 are generally
complex numbers, but can be made real and nonnegative by the local unitary transformation
e−iθ1σz ⊗ e−iθ2σz with θ1 = −(arg 	03 + arg 	12)/4, θ2 = −(arg 	03 − arg 	12)/4, where σ

is the Pauli matrix. Hereafter we assume 	03, 	12 ≥ 0. Recall that the matrix C in (20) can
be written as [34, 35]

C = (Cij ) = 1

2

(
1 yt

x T

)
, (25)

Matrix A and B in (20) can be expressed as [34]

A = 1√
2

(
1 a
1 −a

)
, (26)

B = 1√
2

(
1 b
1 −b

)
, (27)

where a = {a1, a2, a3} = √
2(A11, A12, A13), b = {b1, b2, b3} = √

2(B11, B12, B13) and
‖a‖ = ‖b‖ = 1. Using (25–27), we can easily get the first term in (20)

tr(CCt ) = 1

4

(
1 + ‖x‖2 + ‖y‖2 + ‖T‖2

)
(28)
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and the second term

tr(ACBtBCtAt ) = 1

4

[
1 + ytbtby + a(xxt + TbtbTt )at

]
. (29)

The maximization over matrixes A and B in (20) can be done by two steps. First, we
maximize a(xxt + TbtbTt )at on matrix A. The maximum of this term is the largest eigen-
value λmax−A of matrix xxt + TbtbTt . According to the Lemma 1 of Ref. [45], which
states that for any two vectors |a〉 and |b〉 (not necessarily normalized) in R

3, the largest
eigenvalue of the matrix |a〉〈a| + |b〉〈b| is λ = [a2 + b2 +√

(a2 − b2)2 + 4〈a|b〉2]/2 with
a2 = 〈a|a〉 and b2 = 〈b|b〉, we get

λmax−A = 1

2
[‖x‖2 + ‖Tbt‖2 +

√
(‖x‖2 − ‖Tbt‖2)2 + 4(xt (Tbt ))2]. (30)

Substituting (28 – 30) into (20), we obtain the GGQD of any two-qubit systems

DG(ρAB) = 1

4

{
‖x‖2 + ‖y‖2 + ‖T‖2 − 1

2
max
b

[
‖x‖2 + ‖Tbt‖2

+
√

(‖x‖2 − ‖Tbt‖2)2 + 4(xt (Tbt ))2 + 2‖by‖2
]}

. (31)

The second step to maximize tr(ACBtBCtAt ) in (20) is reduced to maximize ‖x‖2 +
‖Tbt‖2 + √

(‖x‖2 − ‖Tbt‖2)2 + 4(xt (Tbt ))2 + 2‖by‖2 in above equation on b =
{b1, b2, b3} . For X state (24),

xt = {x1, x2, x3} = {0, 0, 	00 + 	11 − 	22 − 	33}, (32)

yt = {y1, y2, y3} = {0, 0, 	00 − 	11 + 	22 − 	33}, (33)

T =

⎛

⎜⎜
⎝

T11 0 0
0 T22 0
0 0 T33

⎞

⎟⎟
⎠ =

⎛

⎝
2(	12 + 	03) 0 0

0 2(	12 − 	03) 0
0 0 	00 − 	11 − 	22 + 	33

⎞

⎠ , (34)

‖x‖2 + ‖Tbt‖2 + 2‖by‖2 +√
(‖x‖2 − ‖Tbt‖2)2 + 4(xt (Tbt ))2

= x2
3 + V + 2b2

3y
2
3 +

√(
x2

3 − V
)2 + 4(V − W)x2

3 ,
(35)

where

W = b2
1T

2
11 + b2

2T
2

22, V = b2
3T

2
33 + W. (36)

To complete the maximization in (35), let

b1 = sin θ cos φ, b2 = sin θ sin φ, b3 = cos θ.

The half of (35) becomes

f (θ, φ) = 1

2

[
x2

3 + 2y2
3 cos2 θ + γ (θ, φ) +

√
(γ (θ, φ) − x2

3 )2 + 4T 2
33x

2
3 cos2 θ)

]
,

γ (θ, φ) = T 2
33 cos2 θ + μ(φ) sin2 θ, (37)

μ(φ) = T 2
11 cos2 φ + T 2

22 sin2 φ.
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We find
{

∂f (θ,φ)
∂θ

,
∂f (θ,φ)

∂φ

}
|θ=0 = 0, f (0, φ) = x2

3 + y2
3 + T 2

33,
{

∂f (θ,φ)
∂θ

,
∂f (θ,φ)

∂φ

}
|θ= π

2 ,φ=0
∨

π = 0, f (π
2 , 0

∨
π) =

{
T 2

11, for T 2
11 ≥ x2

3 ;
x2

3 for T 2
11 < x2

3 ,
{

∂f (θ,φ)
∂θ

,
∂f (θ,φ)

∂φ

}
|
θ= π

2 ,φ= π
2

∨ 3π
2

= 0, f (π
2 , π

2

∨ 3π
2 ) =

{
T 2

22, for T 2
22 ≥ x2

3 ;
x2

3 for T 2
22 < x2

3 .

(38)

Obviously, x2
3 +y2

3 +T 2
33 ≥ x2

3 and T 2
11 ≥ T 2

22, therefore, max[f (θ, φ)] = max[x2
3 +y2

3 +
T 2

33, T
2

11]. Substituting expressions of x3, y3, T11 and T33 into this expression, we obtain
the maximum value of f (θ, φ),

max[f (θ, φ)] = max
[
	2

00 + 	2
11 + 	2

22 + 	2
33 − 1/4, (	12 + 	03)

2
]

and the GGQD of X states

DG(ρX)=	2
00+	2

11+	2
22+	2

33−
1

4
+2

(
	2

12 + 	2
03

)
−max

[
	2

00+ 	2
11+ 	2

22 + 	2
33 − 1

4
, (	12+ 	03)

2
]

.

(39)

For comparing GGQD with GD for some X states in the next section, we also calculated
the GD of X state according to Ref. [34] and got the following formula:

D(ρX) = 1

2

(
	2

00 + 	2
11 + 	2

22 + 	2
33

)
− 	00	22 − 	11	33 + 2

(
	2

12 + 	2
03

)

− max

[
1

2

(
	2

00 + 	2
11 + 	2

22 + 	2
33

)
− 	00	22 − 	11	33, (	12 + 	03)

2
]

. (40)

This formula can also be derived by (23) of Ref. [31]. In simplifying (39, 40) the condi-
tion 	00+	11+	22+	33 = 1 has been used repeatedly. It is easy to obtain the corresponding
expression of DT by substituting (40) into (9).

4 Illustrative Examples

In this section, we give some concrete examples to illustrate how to use these formulas
obtained above.

(1) The first example is to consider the initial state ρ = a|φ+〉〈φ+| + (1 −
a)|1A, 1B〉〈1A, 1B |(0 < a ≤ 1), where |φ+〉 = (|0A, 0B〉 + |1A, 1B〉)/√2 is a maximally
entangled state [14]. The density matrix of this state is given by

ρX =

⎛

⎜⎜
⎝

a
2 0 0 a

2
0 0 0 0
0 0 0 0
a
2 0 0 1 − a

2

⎞

⎟⎟
⎠ . (41)

The corresponding GGQD, GD and DT are

DG(ρX) = D(ρX) = a2

2
. (42)

DT (ρX) = 2 + √
2

2

⎛

⎝2 −
√

3a2 − 4a + 4

a2 − a + 1

⎞

⎠ . (43)
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We plot DG(ρX), D(ρX) and DT (ρX) in Fig. 1, which shows that DG(ρX) and D(ρX)

are completely coincident, but DT (ρX) is unequal to DG(ρX) and D(ρX) in this state.
(2) We take a class of states defined as ρ = a|ψ+〉〈ψ+| + (1 − a)|1A, 1B〉〈1A, 1B |(0 ≤

a ≤ 1),where |ψ+〉 = (|0A, 1B〉 + |1A, 0B〉)/√2 is a maximally entangled state [14]. The
density matrix of this state is:

ρX =

⎛

⎜⎜
⎝

0 0 0 0
0 a

2
a
2 0

0 a
2

a
2 0

0 0 0 1 − a

⎞

⎟⎟
⎠ . (44)

The corresponding GGQD and GD are

DG(ρX) =
{

a2

2 , 0 ≤ a ≤ 3
5

1
4 (3 − 8a + 7a2), 3

5 < a ≤ 1.
(45)

D(ρX) =
{

a2

2 , 0 ≤ a ≤ 1
2

1
2 (1 − 3a + 3a2), 1

2 < a ≤ 1.
(46)

We plot DG(ρX), D(ρX) and DT (ρX) for the state (44) in Fig. 2. We see that DG(ρX) =
D(ρX), for 0 ≤ a ≤ 1

2 and DG(ρX) ≥ D(ρX), for 1
2 < a ≤ 1. Finally DG(ρX) = D(ρX)

when a = 1. The DG(ρX), D(ρX) and DT (ρX) have the similar trend, but DT (ρX) does
not always greater or less than DG(ρX), D(ρX).

(3) We take a class of states defined as ρ = 1
3 {(1 − a)|0A, 0B〉〈0A, 0B | + 2|ψ+〉〈ψ+| +

a|1A, 1B〉〈1A, 1B |}(0 ≤ a ≤ 1), where |ψ+〉 is the same as that in example (2) [14]. The
density matrix of this state is:

ρX =

⎛

⎜⎜
⎝

1−a
3 0 0 0
0 1

3
1
3 0

0 1
3

1
3 0

0 0 0 a
3

⎞

⎟⎟
⎠ . (47)

The corresponding GGQD and GD are

DG(ρAB) = 2

9

(
a − 1

2

)2

+ 5

36
, (48)

D(ρAB) = 1

9

(
a − 1

2

)2

+ 5

36
. (49)

We plot DG(ρX), D(ρX) and DT (ρX) for the state (47) in Fig. 3. We see that DG(ρX)

and D(ρX) have the same minimum values 5
36 ≈ 0.14 at a = 1

2 , but DT has the minimum

Fig. 1 (Color online) Graphs of
DG(ρX)(black line), D(ρX)(red
dashed line) and DT (ρX) (blue
dotted line) as functions of the
parameter a for the class of states
in (41)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

a

D
G

A
B
a

,D
A
B
a

,D
T

A
B
a



1842 Int J Theor Phys (2016) 55:1833–1846

Fig. 2 (Color online) Graphs of
DG(ρX)(black line), D(ρX)(red
dashed line) and DT (ρX)(blue
dotted line) as functions of the
parameter a for the class of states
in (44)
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,D
T
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a

value 1
2 (2 + √

2)(2 −
√

31
3 ) ≈ 0.25 at the same point. The three curves are symmetric about

a = 1
2 .

(4) Two atoms in the Tavis-Cumming model [49]. We consider two atoms (A and B),
each of which interacts resonantly with a single quantized cavity field (system C) in a Fock
state. This system is described by the two-atom Tavis-Cummings (TC) Hamiltonian: H =
�g[(σA + σB)a

†
C + (σ

†
A + σ

†
B)aC], where σj and σ

†
j denote the Pauli ladder operators for

the j th atom, a(a†) stands for the annihilation (creation) operator of photons in cavity C,
and g is the coupling constant. We consider that the system is initially in the state |ψ(0)〉 =
(α|0

A
0

B
〉 + β|1

A
1

B
〉)|n

C
〉. Because the total number of excitations is conserved by TC

Hamiltonian, the cavity mode will develop within a five-dimensional Hilbert space spanned
by {|(n − 2)

C
〉, |(n − 1)

C
〉, |n

C
〉, |(n + 1)

C
〉, |(n + 2)

C
〉} for n ≥ 2. When n = 0, 1 the

dimension is 3 and 4, respectively. On the other hand, since the atomic system evolves within
the subspace {|0

A
0

B
〉, |+〉, |1

A
1

B
〉} with |+〉 = (|1

A
0

B
〉 + |0

A
1

B
〉)/√2 independently of n,

for our purpose, we only consider n = 0 case. By solving the Schrödinger equation, we
obtain the state of the system at time t ,

|ψ(t)〉 = c1(t)|0A
0

B
〉|2

C
〉 + c2(t)|+〉|1

C
〉 + c3(t)|1A

1
B
〉|0

C
〉 + c4(t)|0A

0
B
〉|0

C
〉 (50)

with the following probability amplitudes

c1(t) = −
√

2

3
β
[
1 − cos(

√
6gt)

]
,

c2(t) = − iβ√
3

sin(
√

6gt),

c3(t) = β

{
1 + 1

3
[cos(

√
6gt) − 1]

}
,

c4(t) = α. (51)

Fig. 3 (Color online) Graphs of
DG(ρX)(black line), D(ρX)(red
dashed line) and DT (ρX)(dotted
blue line) as functions of the
parameter a for the class of states
in (47)
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Now, we take trace of the density operator ρ = |ψ(t)〉〈ψ(t)| over cavity C resulting in
the reduced density matrix of the qubit-qubit system

ρAB =

⎛

⎜⎜⎜
⎝

|c1|2 + |c4|2 0 0 |c3c4|
0 |c2|2

2
|c2|2

2 0

0 |c2|2
2

|c2|2
2 0

|c3c4| 0 0 |c3|2

⎞

⎟⎟⎟
⎠

. (52)

Using (39) and (40), we obtain

DG(ρAB) =
(
|c1|2 + |c4|2

)2 + |c2|4 + |c3|4 + 2|c3c4|2 − 1

4

− max

[
1

2
|c2|4 + |c3|4 +

(
|c1|2 + |c4|2

)2 − 1

4
,

(
1

2
|c2|2 + |c3c4|

)2
]

,(53)

D(ρAB) = 1

2

(
|c1|4 + 4|c2|4 + |c3|4 + |c4|4 − |c2|2

)
+
(
|c1|2 + 2|c3|2

)
|c4|2

− max

[
1

2

(
1

2
|c2|4 − 1 − |c2|2

)
+ (1 − |c2|2)|c3|2,

(
1

2
|c2|2 + |c3c4|

)2
]

.(54)

In this case, DG(ρAB), D(ρAB) and DT (ρAB) as functions of dimensionless time τ =√
6gt/(6π) are plotted in Fig. 4, which shows that three curves change periodically with a

period Tτ = 1. In addition, they simultaneously arrive to their maximums and minimums.
Furthermore, the practical calculation shows the results for n ≥ 1 are the same as those
in Fig. 4, which enhances that the evolution of two atomic system is independent of n, as
pointed out earlier.

(5) As a final example, let us consider two atoms A and B in a common reservoir C [49].
We suppose that the initial state of this system was |�(0)〉 = (|gAgB〉+|eAeB〉)|0̄〉C, where
|0̄〉 = ∏

k |0〉k is the reservoir vacuum state. The overall state of the system at time t can be
written as

|�(t)〉 = α|gAgB〉|0̄C〉 + c1(t)|eAeB〉|0̄C〉 + c2(t)|+〉AB |1̄C〉 + c3(t)|gAgB〉|2̄C〉, (55)

where |+〉AB = (|eAgB〉+|gAeB〉)/√2 and |k̄〉 denotes the collective states of the reservoir
in k excitations. The probability amplitudes for this case are

c1(t) = βe−γ t , c2(t) = β
√

2γ te−γ t ,

c3(t) =
√

1 − α2 − c2
1(t) − c2

2(t). (56)

Fig. 4 (Color online) The
evolution of DG(ρAB), D(ρAB)

and DT (ρAB) as functions of the
dimensionless time
τ = √

6gt/(2π) for the initial
state |ψ(0)〉 =
(α|0

A
0

B
〉 + β|1

A
1

B
〉)|n

C
〉 with

α = β = 1/
√

2. The black solid
line corresponds to DG(ρAB), the
red dashed line to D(ρAB) and
the blue dotted line to DT (ρAB) 0.0 0.5 1.0 1.5 2.0 2.5 3.0
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Tracing out the reservoir, we obtain the density matrix of atomic subsystem

ρAB =

⎛

⎜⎜⎜
⎝

α2 + c2
3 0 0 αc1

0
c2

2
2

c2
2
2 0

0
c2

2
2

c2
2
2 0

αc1 0 0 c2
1

⎞

⎟⎟⎟
⎠

, (57)

which is just an X state. The corresponding GGQD and GD are

DG(ρAB) = 3/4−2
[
c2

1

(
c2

2 + c2
3

)
+ c2

2

(
c2

3 + α2
)]

−max

[
c4

1 + c4
2/2 +

(
α2 + c2

3

)2 − 1/4,
(
c2

2/2 + αc1

)2
]

,

(58)

D(ρAB) = 1

4

[
2 + 7c4

2 − 6c2
2 − 4c2

1

(
c2

3 − α2
)]

−max

{
1

2

[
1 − 3c2

2

(
1 − c2

2

)
− 2c2

1

(
c2

3 + α2
)

− c4
2/2

]
,
(
c2

2/2 + αc1

)2
}

.

(59)

In deducing above two equations, c2
1+c2

2+c2
3+α2 = 1 has been used. We plot DG(ρAB),

D(ρAB) and DT (ρAB) as functions of the dimensionless time γ t in Fig. 5. DG(ρAB),
D(ρAB) and DT (ρAB) have the similar behavior with γ t : they have two relative maximums
as well as one relative minimum, respectively. Their corresponding relative maximums and
relative minimums are close to each other. In addition, DG(ρAB) and D(ρAB) have the
same initial values 2α2(1−α2), which is greater than the initial values of DT (ρAB). Finally,
when t → ∞, DG(ρAB), D(ρAB) and DT (ρAB) simultaneously approach zero.

5 Discussion

We have derived analytical formulas of GGQD and GD for two-qubit X states. Here we
give some useful remarks. First, it should be pointed out that (20, 31), from which (39) was
derived, are applicable not only to two-qubit X states, but also to any two-qubit states. Sec-
ond, because of tr(ACBtBCtAt ) = tr(BCtAtACBt), we can alternatively first optimize
system B, then system A. This is equivalent to exchange subsystems A and B, and transpose
matrix C. Of course, the two procedures give the same results. Third, more importantly, we
find that GGQD are always greater than or equal to GD in five examples given in Section 4.
In fact, this is true for any X state. We give a proof below.

First, using tr(ρX) = 	00 + 	11 + 	22 + 	33 = 1 we easily obtain
(
	2

00 + 	2
11 + 	2

22 + 	2
33 − 1/4

)
−
[(

	2
00 + 	2

11 + 	2
22 + 	2

33

)
/2 − 	00	22 − 	11	33

]

= [2(	00 + 	22) − 1]2/4 = [2(	11 + 	33) − 1]2/4 ≥ 0, (60)

Fig. 5 (Color online) The
evolution of DG(ρAB), D(ρAB)

and DT (ρAB) as functions of the
dimensionless time γ t for the
initial state |ψ(0)〉 =
(α|0

A
0

B
〉 + β|1

A
1

B
〉)|0̄

C
〉 with

α = 0.1 and β = √
1 − α2. The

black solid line corresponds to
DG(ρAB), the red dashed line to
D(ρAB) and the blue dotted line
to DT (ρAB) 0 1 2 3 4
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which means 	2
00 +	2

11 +	2
22 +	2

33 − 1/4 ≥ (	2
00 +	2

11 +	2
22 +	2

33)/2 −	00	22 −	11	33.
Therefore, there are only three cases need to be considered.

(1) (	12 +	03)
2 ≥ 	2

00 +	2
11 +	2

22 +	2
33 −1/4 ≥ (

	2
00 + 	2

11 + 	2
22 + 	2

33

)
/2−	00	22 −

	11	33:

DG(ρAB) = 	2
00 + 	2

11 + 	2
22 + 	2

33 − 1

4
+ (	12 − 	03)

2, (61)

D(ρAB) = 1

2

[
(	00 − 	22)

2 + (	11 − 	33)
2
]

+ (	12 − 	03)
2, (62)

DG(ρAB) − D(ρAB) = 1

4
[2(	00 + 	22) − 1]2 = 1

4
[2(	11 + 	33) − 1]2 ≥ 0. (63)

(2) 	2
00 +	2

11 +	2
22 +	2

33 −1/4 ≥ (	12 +	03)
2 ≥ (

	2
00 + 	2

11 + 	2
22 + 	2

33

)
/2−	00	22 −

	11	33:

DG(ρAB) = 2
(
	2

12 + 	2
03

)
, (64)

D(ρAB) = 1

2

[
(	00 − 	22)

2 + (	11 − 	33)
2
]

+ (	12 − 	03)
2, (65)

DG(ρAB) − D(ρAB) = (	12 + 	03)
2 − 1

2

[
(	00 − 	22)

2 + (	11 − 	33)
2
]

≥
1

2
(	2

00+	2
11+	2

22+	2
33)−	00	22−	11	33− 1

2

[
(	00−	22)

2+(	11− 	33)
2
]
= 0. (66)

(3) (	12 + 	03)
2 ≤ (	2

00 + 	2
11 + 	2

22 + 	2
33)/2 − 	00	22 − 	11	33 ≤ 	2

00 + 	2
11 + 	2

22 +
	2

33 − 1/4:

DG(ρAB) = D(ρAB) = 2(	2
12 + 	2

03). (67)

We conclude that DG(ρAB) ≥ D(ρAB) for any X state from (60, 63, 66, 67). However,
our examples show that DT is not always greater than DG(ρAB) or D(ρAB).

6 Summary

In summary, we have first proven GGQD and TQC are the same and then obtained analytical
formulas of GGQD and GD for two-qubit X states. We have also compared GGQD, TQC
and RGD by five concrete examples. We have further found that GD is the tight lower bound
of GGQD, which means that GD is a good approximation for GGQD at least for X states.
There are still some interesting opening problems to be studied in this aspect, such as, are
there any analytical expressions of GGQD for qubit-qudit system? Can GD be a tight lower
bound of GGQD for any bipartite system? We shall report our research results on these
issues later.
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