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Abstract The theoretical and observational consequences of thermodynamics of open sys-
tems which allow matter creation, are investigated in modified f (R, T ) (R is the Ricci
scalar and T is the trace of energy-momentum tensor) theory of gravity within the frame-
work of a flat Friedmann-Robertson-Walker line element. The simplest model f (R, T ) =
R + 2f (T ) with “gamma-law” equation of state p = (γ − 1)ρ is assumed to obtain the
exact solution. A power-law expansion model is proposed by considering the natural phe-
nomenological particle creation rate ψ = 3βnH , where β is a pure number of the order of
unity, n the particle number density and H is the Hubble parameter. A Big Rip singularity
is observed for γ < 0 describing phantom cosmology. The accelerated expansion of the
Universe is driven by the particle creation. The density parameter shows the negative cur-
vature of the Universe due to particle creation. The entropy increases with the evolution of
the Universe. Some kinematics tests such as lookback time, luminosity distance, proper dis-
tance, angular diameter versus redshift are discussed in detail to observe the role of particle
creation in early and late time evolution of the Universe.

Keywords Cosmology · Modified gravity theory · Matter creation

1 Introduction

Many theoretical and observational studies of the Universe, such as Type Ia supernovae [1,
2], Planck collaboration [3], cosmic microwave background (CMB) anisotropy [4], large
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scale structures (LSS) [5] etc., have shown that a pure Friedmann-Lamaitre-Robertson-
Walker (FLRW) cosmology with matter and radiation does not explain all the large scale
properties of our Universe. The late time cosmic acceleration is usually assumed to be
driven by a cosmic fluid/field generically known as dark energy (DE) [6–8], which can be
observed only by its gravitational effects [9–11]. Since the time of the discovery of acceler-
ating Universe in 1998, a large number of probable candidates of DE have been proposed.
The simplest DE model is the standard ΛCDM model [12] where Λ is known as cosmo-
logical constant assumed possibly to be the quantum vacuum energy. In the context of early
Universe, the standard ΛCDM model presents several theoretical and observational diffi-
culties, such as the singularity problem [13], flatness and horizon problem, reheating during
the inflationary epoch [14], confliction between the age of the Universe and the age of the
oldest stars in globular clusters (age problem) [15], the entropy problem [16] etc.

The flatness and horizon problems together with the entropy problem have been resolved
(up to a certain extent) by the inflationary model proposed by Guth [17]. The age confliction
[18] is not an isolated complication, it comes with another serious trouble that is structure
formation through gravitational amplification of small primeval density perturbation. These
issues opened the door of investigations of different alternative theories of gravity not only
alleviate the issues related to early Universe [19–21] but the mystery of unpredicted late time
cosmic acceleration as well. Among the ways to resolve the problems of early Universe,
Dirac’s large number hypothesis [22] inspired a class of new cosmology named particle
creation [23]. The steady state model introduced by Bondi and Gold [24] on the foundation
of perfect cosmological principle (PCP) also asserts the continuous generation of matter in
the Universe. Hoyle [25] and Narlikar [26] independently proposed a creation field theory
and studied the matter creation during the evolution of the Universe. Tryon [27] and Fomin
[28] in their individual work proposed a theoretical concept of the creation of the Universe
as a vacuum fluctuation. Brout et al. [29–31] proposed a strong foundation of simultaneous
creation of matter and curvature from a quantum fluctuation of the Minkowskian space-time
vacuum.

Fulling and collaborator [32] investigated the evolution of the Universe where the mate-
rial content of the Universe may have had its origin in the continuous creation of radiation
and matter from the gravitational field of the expanding cosmos acting on the quantum
vacuum. Later on, Gunzig et al. [33] and Prigogine et al. [34] established the theoretical
scenario of matter creation in the framework of cosmology. They showed that the second
law of thermodynamics might be modified to accommodate the flow of energy from grav-
itational field to the matter field, resulting in the creation of particles and consequently
entropy. The work might suggest that at the expense of the gravitational field, particle cre-
ation takes place as an irreversible process constrained by the usual requirements of the
non-equilibrium thermodynamics, however, the reverse process (matter destruction) ther-
modynamically forbidden. Calváo et al. [35] extended this new theoretical concept of matter
creation under adiabatic conditions. The further results were generalized by Lima and Ger-
mano [36] through a contravariant formulation allowing specific entropy variation as usually
expected for non-equilibrium process in fluids. Lima and Alcaniz [37], and Alcaniz and
Lima [38] investigated observational consequences of FRW models driven by adiabatic
matter creation through some kinematical tests.

After the discovery of accelerating Universe, the matter creation theory was reconsid-
ered to explain it and obtained unexpected results. The studies of matter creation rapidly
recognize to explain dark energy. The negative pressure due to particle creation, might play
the role of exotic matter component. Zimdahl et al. [39], Qiang et al. [40], Lima et al.
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[41] and Steigman et al. [42] have presented a model with matter creation where a tran-
sition from decelerated to accelerated phase exists which are consistent with SNe Ia data.
Cárdenas [43] studied a model which offers a possible way to understand the current accel-
erated expansion. Singh and Beesham [44, 45], and Singh [46, 47] studied early Universe in
FRW cosmology with particle creation through some kinematical tests. Lima et al. [48] pro-
posed a creation cold dark matter cosmology with one free parameter that is equivalent to
the ΛCDM evolution. Recently, many authors [49–51] have paid attention on the cosmolo-
gies driven by gravitational “adiabatic ” particle production where matter and entropy are
generated but the specific entropy remains constant. Even a complete cosmology where the
space-time matter evolves between an early and a late time de Sitter phase driven by parti-
cle production has been proposed and its predictions has beeen compared with the available
astronomical data.

On the other hand, a number of pioneer concepts of modifying the general relativity (GR)
have been proposed to reconcile the problems plagued in cosmology [52]. The simplest
modification is replacing the Ricci scalar curvature R with the general function of R called
f (R) theories of gravity, describe transition from decelerated to accelerated expansion of
the Universe [53]. Bertolami et al. [54] have generalized f (R) theories by introducing an
explicit coupling between arbitrary function of the Ricci scalar R and the matter Lagrangian
density. Harko [55] has extended this new concept to the arbitrary coupling between matter
and geometry. Harko et al. [56] have considered another extension of GR, where the grav-
itational Lagrangian is given by an arbitrary function of the Ricci scalar R and of the trace
T of the stress-energy tensor, so called f (R, T ) theory of gravity. The authors have argued
that due to the coupling between matter and geometry the theory depends on a source term,
representing the variation of the matter-stress-energy tensor with respect to the metric. Con-
sequently, the cosmic acceleration in f (R, T ) gravity results not only from geometrical
effect but also from the matter contribution. These interesting features of f (R, T ) gravity
motivate many authors to study it for resolving several issues of current interest in cosmol-
ogy and astrophysics [57–65]. This newly proposed concept of modified gravity motivates
us to study the particle creation phenomena and its effects on early and late time evolution
of the Universe in f (R, T ) gravity.

In this paper, we investigate the theoretical and observational implication of particle cre-
ation in modified f (R, T ) gravity theory in a flat Friedmann-Robertson-Walker model.
Exact solutions of the field equations are obtained by assuming the suitable form of
f (R, T ) = R + 2f (T ), equation of state, and particle creation rate. We study some kine-
matical tests to explain the physical significance of particle creation during early and late
time evolution of the Universe.

The paper is organized as follows. The thermodynamics of particle creation is presented
in the Section 2. A brief review of modified f (R, T ) gravity theory and its field equations
are given in Section 3. In Section 4, the model and field equations are presented with particle
creation. The exact solutions of the field equations with suitable assumptions are obtained
in Section 5. Section 6 and its subsections are devoted to study some kinematical tests of
the model. Finally, the outcomes are summarized in concluding Section 7.

2 Theory of Particle Creation

If we regard the whole Universe as a closed thermodynamical system in which the number
of the particles in a given volume is constant, then the laws of thermodynamics have the
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form [14]
d(ρmV ) = dQ − pmdV, (1)

and
T dS = d(ρmV ) + pmdV, (2)

where ρm, V , pm, T and S are the energy density, volume, thermodynamical pressure,
temperature, and entropy, respectively. Here, dQ is the heat received by the system during
time dt . It is observed from (1) and (2) that the entropy production is given by

T dS = dQ. (3)

Equation (3) shows that the entropy remains stationary, i.e., dS = 0 for a closed
adiabatic system for which dQ = 0. However, if we treat the Universe as an open thermo-
dynamic system allowing irreversible matter creation from the energy of the gravitational
field, we can account for entropy production right from the beginning, and the second law
of thermodynamics is also incorporated into the evolutionary equations in a more meaning-
ful way. Thus, the creation of matter acts as a source of internal energy. In such situation the
number of particles N in a given volume V is not to be a constant but is time -dependent.
Therefore, (1) modifies as

d(ρmV ) = dQ − pmdV + (h/n) d(nV ), (4)

where N = nV , n is the particle number density, and h = (ρm+pm) is the enthalpy per unit
volume of the system. In case of adiabatic system where dQ = 0, (4) for an open system
reduces to

d(ρmV ) + pmdV = (h/n) d(nV ). (5)

We see that in such a system the thermal energy is received due to the change of the
number of particles. In cosmology, this change may be considered as a transformation of
energy from gravitational field to the matter.

In the context of an open system, (5) can be rewritten as

d(ρmV ) = −(pm + pc)dV, (6)

where
pc = −(h/n)(dN/dV ). (7)

Equation (6) suggests that the creation of matter in an open thermodynamic system
corresponds to a supplementary pressure pc, which must be considered as a part of the
cosmological pressure entering into the Einstein field equations (decaying of matter leads
to a positive decay pressure) and is equivalent to adding the term pc given by (7) to the
thermodynamic pressure pm. It is to be noted that pc is negative or zero depending on the
presence or absence of particle creation.

Since the increment in entropy for an adiabatic system is only caused by creation of mat-
ter, the entropy is an extensive property of the system. In present scenario, S is proportional
to the number of particles included in the system. Therefore, the entropy change dS for
open systems from (2) and (5) becomes

T dS = (h/n) d(nV ) − μ d(nV ) = (T S/N)dN ⇒ dS

S
= dN

N
, (8)

where μ is the chemical potential given by μ = (h − T s)/n, s = S/V . Since the second
law of thermodynamics is a fundamental law in physics, the presence or absence of particle
creation can not affect it. This law basically requires dS ≥ 0, consequently, (8) gives

dN ≥ 0. (9)
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The above inequality implies that the space-time can produce matter, whereas the reverse
process is thermodynamically not admissible.

The basic idea of this entire formulation is to modify the usual energy momentum con-
servation law in an open thermodynamical system, which leads to the explicit use of a
balance equation for the number density of the particles created, in addition to Einstein’s
field equations.

The particle flux vector is given by

Nα = nuα, (10)

and Nα is assumed to satisfy the balance equation [34, 66]

Nα
;α = ψ, (11)

where the function ψ denotes a source term of particle creation which is positive or negative
depending on whether there is production or annihilation of particles. In standard cosmology
ψ is usually assumed to be zero.

In the presence of a gravitational particle source, the balance equation (11) for the particle
flux becomes

ṅ + 3nH = ψ, (12)

where n and V = a3 are the particle number density and volume, respectively.
Thus, the pressure creation pc depends on the particle creation rate, and for adiabatic

matter creation, (7) takes the following form [36]

pc = − (ρm + pm)

3nH
ψ. (13)

Therefore, (13) shows that pc is negative for ψ > 0, which can help to drive the era of
accelerated cosmic expansion.

3 A Brief Review of Modified f (R, T ) Gravity Theory

The f (R, T ) theory is a modified theory of gravity, in which the Einstein-Hilbert
Lagrangian is modified by replacing Ricci scalar curvature R by an arbitrary function of
R and trace T of energy-momentum tensor, i.e., f (R, T ). So the gravitational action for
f (R, T ) modified theory of gravity [56] in the units G = 1 = c takes the following form.

S = 1

8π

∫
d4x

√−g

[
f (R, T )

2
+ Lm

]
, (14)

where g is the determinant of the metric tensor gμν and Lm corresponds to matter
Lagrangian. The energy-momentum tensor Tμν , defined by fluid Lagrangian density is
given by

Tμν = − 2√−g

δ(
√−g Lm)

δgμν
, (15)

and its trace, T = gμνTμν . By assuming that the matter Lagrangian density Lm depends
only on the metric tensor components gμν , not on its derivatives, we obtain

Tμν = gμνLm − 2
∂Lm

∂gμν
. (16)
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The equations of motion by varying the action (14) with respect to metric tensor become

fR(R, T )Rμν − 1

2
f (R, T )gμν + (gμν� − ∇μ∇ν)fR(R, T )

= 8πTμν − fT (R, T )Tμν − fT (R, T )�μν, (17)

where fR and fT denote the derivatives of f (R, T ) with respect to R and T , respectively.
Here, ∇μ is covariant derivative and � ≡ ∇μ∇μ is the d’Alembert operator and �μν is
defined by

�μν ≡ gαβ δTαβ

δgμν
. (18)

Using (16) into (18), we get

�μν = −2Tμν + gμνLm − 2gαβ ∂2Lm

∂gμν∂gαβ
. (19)

As the field equations of f (R, T ) gravity depend on �μν , i.e., on the physical nature
of the matter. A number of models corresponding to different form of f (R, T ), e.g.,
f (R, T ) = R + 2f (T ), f (R, T )= μf1(R) + νf2(T ), where f1(R) and f2(T ) are arbi-
trary functions of R and T , and μ and ν are real constants, respectively [56–58], and
f (R, T ) = R f (T ) [60], etc., may be assumed depending on the nature of the matter source
to solve the field equations. In this paper we assume the following simplest form [56]:

f (R, T ) = R + 2f (T ), (20)

where R is a function of cosmic time t and f (T ) is an arbitrary function of the trace of
energy-momentum tensor of matter. Equation (20) shows that the action is given by the
same Einstein-Hilbert of General Relativity plus a function of T . The term 2f (T ) in the
gravitational action modifies the gravitational interaction between matter and curvature.

Using (20), one can re-write the gravitational field equations defined in (17) as

Rμν − 1

2
Rgμν = 8πTμν − 2(Tμν + �μν)f

′(T ) + f (T )gμν. (21)

Here, a prime stands for derivative of f (T ) with respect to T .
The main issue now arises on the matter contents of the Universe through the energy

momentum tensor and consequently on the matter Lagrangian Lm and the trace of the
energy momentum tensor. We assume the universe is filled with a perfect fluid which is
incorporated in the next section.

4 Model and Field Equations

We consider a homogenous and isotropic universe with spatially flat geometry described by
flat Friedmann-Robertson-Walker (FRW) metric

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2), (22)

where a(t) is the scale factor, which is a function of cosmic time t only.
In the formalism of particle creation, the second law of thermodynamics leads natu-

rally to a modification of the energy momentum tensor with an additional creation pressure
depends on the rate of creation of particles. In the presence of particle creation, the energy
momentum tensor of perfect fluid is given by

Tμν = (ρm + pm + pc)uμuν − (pm + pc)gμν, (23)
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where uμ is the four velocity of the fluid such that uμuν = 1, and in comoving coordinates
uμ = δ

μ
0 .

The trace of energy momentum tensor (23), gives

T = ρm − 3(pm + pc). (24)

We treat the scalar invariant Lm as the effective pressure of the perfect fluid matter
and pressure originated by creation of particles. Therefore, the matter Lagrangian may be
assumed as Lm = −(pm + pc), therefore, (19) becomes

�μν = −2Tμν − (pm + pc)gμν. (25)

In view of (25), the field (21) can be rewritten as

Rμν − 1

2
gμνR = 8πTμν + 2

[
Tμν + gμν(pm + pc)

]
f ′(T ) + gμνf (T ). (26)

The field equations (26) for a fluid endowed with matter creation (23) in the background
of metric (22), yield

3H 2 = 8πρm + 2(ρm + pm + pc)f
′(T ) + f (T ), (27)

2Ḣ + 3H 2 = −8π(pm + pc) + f (T ), (28)

where H(t) = ȧ/a is the Hubble parameter. A dot denotes derivative with respect to cosmic
time t .

5 Solution of Field Equations

We have two field equations (27)–(28) and five unknowns variables, namely, H , ρm, pm,
pc and f (T ). Therefore, one needs three more relations in order to construct a definite
cosmological scenario.

In first choice, we consider a particular function given by [56]

f (T ) = λT , (λ is a constant). (29)

Using (29) and (24), the field (27) and (28) yield

3H 2 = (8π + 3λ)ρm − λ(pm + pc), (30)

2Ḣ + 3H 2 = −(8π + 3λ)(pm + pc) + λρm. (31)

In order to obtain the exact solution of the field equations, we assume two more addi-
tional relations: the equation of state and the matter creation rate. In the cosmological
domain, the former is usually given by the “gamma-law” form

pm = (γ − 1)ρm, (32)

where γ is a constant lies in the interval [0, 2] and known as the EoS parameter of the
perfect fluid.

Using (32) into (30) and (31), and simplifying, we get a single evolution equation for H :

2Ḣ + (8π + 2λ)(γρm + pc) = 0. (33)

We confine our attention to the simple phenomenological expression for the matter
creation rate [16]

ψ(t) = 3βnH, (34)

where the parameter β lies in the interval [0, 1] and is assumed to be a constant.
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Using (32) and (34) into (13), we have

pc = −βγρm, (35)

Substituting (32) and (35) into (30), we obtain

ρm = 3H 2

8π + 4λ − γ λ(1 − β)
. (36)

Using (35) and (36) into (33), we get

Ḣ + 3

2

γ (8π + 2λ)(1 − β)

[8π + 4λ − γ λ(1 − β)]
H 2 = 0. (37)

The solution of (37) for γ �= 0 and for all values of λ and β is given by

H(t) =
(

C + 3

2

γ (8π + 2λ)(1 − β)

[8π + 4λ − (1 − β)γ λ]
t

)−1

, (38)

where C is an integration constant. For γ = 0, the well known de-Sitter scale factor a(t) =
a0 eH0t is obtained.

From (38) we find the following expression for the scale factor

a(t) = D

(
C + 3

2
Aγ t

) 2
3Aγ

, (39)

where D is a new integration constant and A = (8π + 2λ)(1 − β)/8π + 4λ − γ λ(1 − β).
The above scale factor may be rewritten as

a(t) = a0

(
1 + 3

2
AγH0(t − t0)

) 2
3Aγ

, (40)

where H = H0 > 0 at t = t0. The subscript ‘0’ refers to the present values of parameters.
Since 0 ≤ γ ≤ 2, we must have A > 0 for expansion of the Universe. Also, A > 0 implies
λ > 0 as 0 ≤ β < 1.

If γ < 0, we have a Big -Rip singularity at a finite value of cosmic time tbr = t −
t0 = −2/3H0Aγ . Thus, we have a phantom cosmology for γ < 0. If one choose t0 =
2H−1

0 /3Aγ , Eq. (40) takes the familiar form of power-law expansion of the Universe, i.e.,

a(t) = a0

(
3

2
AγH0 t

) 2
3Aγ

. (41)

If λ = 0 = β, (39) and (41) reduce to the well-known expressions of power-law
expansion of scale factor for a flat FRW model in GR.

By use of (40) one may express the energy density of matter, particle creation pres-
sure and the particle number density as functions of the scale factor a. These parameters
respectively have the following forms

ρm = ρ0

(a0

a

)3Aγ

, (42)

pc = −βγρ0

(a0

a

)3Aγ

, (43)

n = n0

(a0

a

)3(1−β)

, (44)

where ρ0 = 3H 2
0 /[8π + 4λ − γ λ(1− β)] is the present value of energy density. Here, n0 is

the present value of particle number density for any values of β. The above results show that
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the transition from one phase to other phase, in the course of expansion, happens exactly as
in the standard cosmological model.

The number of particles N in a given volume V is given by

N = N0

(
a

a0

)3β

, (45)

which shows that N increases with time. If β = 0, N would remain constant throughout the
evolution of the Universe and we would recover the standard FRW model of the Universe
in f (R, T ) theory. Again, from (8) S = S0(N/N0), the entropy in terms of scale factor is
given by

S = S0

(
a

a0

)3β

. (46)

The deceleration parameter defined as q = −aä/ȧ2, gives

q = −1 + 3γA

2
=

[
3γ

2

(8π + 2λ)(1 − β)

[8π + 4λ − (1 − β)γ λ] − 1

]
. (47)

which shows that q is independent of cosmic time t . Therefore, there is no transition from
one phase to other. The decelerated or accelerated phase is described according the sign of
q. Here, q may be positive or negative for a given set of values of β and λ. We know that
the model accelerates for q < 0, therefore, the value of A must be 0 < A < 2/3γ for an
accelerated universe.

As expected, the above solutions reduce to the standard FRW model of GR for β = 0
and λ = 0 and for all values of γ . In what follows, we study the role of f (R, T ) gravity
and particle creation in early and late time evolution of the Universe.

Case 1 γ = 2
3

Figure 1 plots the scale factor as a function of time for γ = 2/3 and some selected values
of λ and β. We observe that if β = 0, q < 0 for all λ > 0, therefore, we find that the
Universe accelerates in f (R, T ) gravity without particle creation. Similarly, if λ = 0, i.e.,
in the absence of f (T ), q = −β < 0 for any values of β > 0. Thus, the acceleration occurs
due to particle creation. The rate of expansion increases more rapidly for non-zero values
of β and λ. It is to be noted that if λ = 0 = β then the the marginal inflationary phase of
GR is recovered, i.e., a ∼ t and q = 0.

Case 2 γ = 4
3

In this case, if β = 0 and λ > 0, we have q > 0. This shows that the Universe decelerates
in the absence of particle creation. If λ = 0 then q ≥ 0 for 0 < β ≤ 1/2, and q < 0
for 1/2 < β < 1. Therefore, the Universe decelerates or accelerates depending on the rate
of particle creation. However, if λ �= 0 and β �= 0, the deceleration or acceleration of the
Universe depend on the following constrains, respectively:

0 < β ≤ 1

4
, λ > 0 or

1

4
< β <

1

2
, 0 < λ <

6π − 12πβ

−1 + 4β
, (48)

1

4
< β ≤ 1

2
, λ >

6π − 12πβ

−1 + 4β
or

1

2
< β < 1, λ > 0. (49)
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Fig. 1 Scale factor as a function of time for γ = 2
3 and some selected values of λ and β

The behavior of scale factor versus time is shown in Fig. 2 for some selected values of
λ and β. The figure shows that the Universe accelerates fast due to higher particle creation
rate. For λ = 0 = β, a ∼ t1/2 and q = 1, which is the radiation phase in GR.

Case 3 γ = 1

In this case, the Universe expands with decelerated rate as q > 0 for β = 0 and λ > 0.
Figure 3 plots graph between scale factor versus time for some selected values of λ and β.
For λ = 0, we have q > 0 for 0 < β < 1/3, and q < 0 for 1/3 < β < 1. The critical
case (β = 1/3, q = 0), describes a coasting cosmology. For λ �= 0 and β �= 0, the model
decelerates or accelerates under the following constraints:

0 < β <
1

3
, 0 < λ <

π − 3πβ

β
, (50)

0 1 2 3 4
t0

2

4

6

8

10
a t

0, 1 3

0, 0

0, 2 3

10, 0

1, 1 2

Fig. 2 Scale factor as a function of time for γ = 4
3 and some selected values of λ and β
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Fig. 3 Scale factor as a function of time for γ = 1 and some selected values of λ and β

0 < β ≤ 1

3
, λ >

π − 3πβ

β
or

1

3
< β < 1, λ > 0, (51)

respectively. As expected, for λ = 0 = β, we have a ∼ t2/3 and q = 1/2, i.e., the model
reduces to standard matter-dominated era of GR.

Case 4 γ = 1
2

In this case, if λ = 0 = β, a ∼ t4/3 and q = −1/4, which corresponds to the present
accelerated phase of the Universe of the standard FRW universe in GR. Since the Universe
accelerates even in absence of both f (T ) and particle creation, therefore, the contribution
of f (R, T ) gravity or particle creation just enhance the rate of acceleration of the Universe.
Figure 4 plots the dynamics of scale factor versus t , which is similar to case I.

2 4 6 8
t0

10

20

30

40
a t

0, 0

0, 2 3

1, 0

1, 1 2

Fig. 4 Scale factor as a function of time for γ = 1
2 and some selected values of λ and β
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6 Kinematic Tests

Now, we derive some kinematical relations of the model as proposed in the preceding
sections.

6.1 The Density Parameter

The density parameter, defined as Ωm = ρm/ρc, where ρc = 3H 2/8π , is given by

Ωm = 8π

8π + 4λ − (1 − β)γ λ
. (52)

Therefore, it is clear that Ωm < 1 for all values of 0 ≤ γ ≤ 2, 0 < β < 1 and λ > 0.
Hence the Universe is negatively curved. In absence of both λ and β, we have Ωm = 1 for
all γ , i.e., the flat model of GR is recovered.

6.2 Lookback Time-Redshift

The lookback time Δt = t0 − t (z), is the difference between the age of the Universe at the
present time z = 0 and the age of the Universe when a particular right ray at redshift z was
emitted.

For a given redshift z, the scale factor a(tz) is related to a0 by

a(tz) = a0(1 + z)−1. (53)

From (41) and (53), the cosmic time in terms of redshift is given by

t (z) = 2H−1
0

3γA
(1 + z)−

3γA
2 , (54)

where H0 is expressed in the usual practical observational units of km s−1 Mpc−1 and
its value is believing to be somewhere between 50-80 km s−1 Mpc−1. However, H0 is
dimensionally similar to the reciprocal of time. The reciprocal of Hubble constant is called
the Hubble time tH : tH = H−1

0 , where tH is expressed in s and H0 in s−1. If H0 is
expressed in km s−1 Mpc−1 and tH in gigayears (1 gr = 1 milion years = 109 years)

then tH = 977.8/H0.
Therefore, from (54) we have

t0 − t (z) = 2H−1
0

3γA

[
1 − (1 + z)−

3γA
2

]
. (55)

Figure 5 plots lookback time versus redshift for γ = 1 and some selected values of
λ and β. All models coincide for lower redshift since they follow the same behavior. The
graph shows that the lookback time increases for higher values of β. Thus, the Universes
with larger matter creation rate are older.

For small values of redshift, (55) becomes

H0 (t0 − t (z)) = z −
(
1 + 3γA

2

)
z2 + · · · . (56)

Taking lim z → ∞ in (55), the present age of the universe is

t0 = 2H−1
0

3γA
= H−1

0

1 + q
. (57)

Thus, the age of the Universe depends on both parameters β and λ.
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Fig. 5 Lookback time versus redshift for γ = 1, H0 = 60 and some selected values of λ and β

6.3 Proper Distance-Redshift

The proper distance between the source and observer is defined as d(z) = a0r(z), where
r(z) is the radial distance of the object at light emission in term of redshift given by

r(z) =
∫ t0

t

dt

a(t)
= H−1

0

a0

(
3γA
2 − 1

)
[
1 − (1 + z)

−
(
3γA
2 −1

)]
. (58)

Consequently, the proper distance becomes

d(z) = H−1
0(

3γA
2 − 1

)
[
1 − (1 + z)

−
(
3γA
2 −1

)]
. (59)

The proper distance as a function of redshift for some selected values of β and λ are
displayed in Fig. 6. We observe that the f (T ) contribution in f (R, T ) and particle creation
gives rise to proper distance.
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Fig. 6 Proper distance versus redshift for γ = 1, H0 = 60 and some selected values of λ and β
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Equation (59) can be rewritten as

H0d(z) = z − 3γA

4
z2 + · · · . (60)

From (59), it is observed that the distance dz is maximum at z → ∞. Hence,

H0d(z → ∞) = 1
3γA
2 − 1

= 1

q
. (61)

6.4 Luminosity Distance-Redshift

The best-known way to trace the evolution of the Universe observationally is to look into the
redshift-luminosity distance relation. The luminosity distance dl is defined by the relation
d2
l = l

4πL
, where l is the luminosity of the object and L is the measured flux from the

object. In standard FRW cosmology it is defined in terms of redshift as

dl = a0(1 + z)r(z) = (1 + z)d(z). (62)

From (59) and (62), we get

dlH0 = 1(
3γA
2 − 1

)
[
(1 + z) − (1 + z)

−
(
3γA
2 −2

)]
. (63)

The graph between Luminosity distance and redshift for some selected values of β and
λ is plotted in Fig. 7. One may observe that the luminosity distance corresponding to any
specific value of redshift rises due to f (R, T ) gravity and particle creation.

Expanding (63) for small z, we find

H0dl = z − 1

2

(
3γA

2
− 2

)
z2 + · · · . (64)

As expected, we find the same behavior for different models at z  1 and the possible
difference in behaviors for different models come at large redshift (z � 1). In Fig. 7 we
observe that all curves start off with the linear Hubble law (z = dlH0) for small z, but then,
only the curve for q = 1, i.e., β = 0 = λ stays linear all the way. We also note that for the
small redshift the luminosity distance is larger for lower values of q.
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Fig. 7 Luminosity distance versus redshift for γ = 1, H0 = 60 and some selected values of λ and β
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Fig. 8 Angular diameter distance versus redshift for γ = 1, H0 = 60 and some selected values of λ and β

6.5 Angular Diameter Distance-Redshift

The angular diameter distance dA is the ratio of physical transverse size of an object to its
angular size (in radians). In terms of z, it is given by

dA = d(z)

1 + z
= dl

(1 + z)2
. (65)

Using (59), we have

H0dA = 1(
3γA
2 − 1

) [
(1 + z)−1 − (1 + z)−

3γA
2

]
. (66)

In Fig. 8 we plot the angular diameter distance versus redshift for some selected values
of β and λ. The graph shows that the f (R, T ) and particle creation enhance the angular
distance. The angular diameter distance initially increases with increasing z and eventually
begins to decrease.

On expanding (66), we get

H0dA = z +
⎡
⎣1 −

(
3γA
2 + 1

) (
3γA
2 + 2

)

2
(
3γA
2 − 1

)
⎤
⎦ z2 + · · · . (67)

Thus, the angular diameter shows linear behavior up to first approximation whereas it
has quadratic up to second approximation.

7 Conclusion

In this paper, we have studied a flat FRW cosmological model described by an open thermo-
dynamic system including particle creation at the expense of gravitational field in f (R, T )

theory of gravity. We have obtained exact solutions for the scale factor and various phys-
ical quantities by assuming a suitable form of f (R, T ) = R + 2f (T ) and “gamma-law”
equation of state. The model exhibits non-singular power-law expansion of the Universe for
0 ≤ γ ≤ 2. The model shows Big Rip singularity for γ < 0. The dynamics of the scale
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factor and other physical quantities have been examined through some graphical represen-
tations in various phases of evolution of the Universe with some selected values of λ and
β. The expressions of the energy densities and particle number density as function of scale
factor have been established.

It has been observed that the scale factor always increases with decelerated and accel-
erated rate depending upon the contribution of particle creation and the parameter λ. It has
been noticed that the Universe expands with slow rate in early time but fast during late
time. The energy density and effective pressure always decrease with time and both tend to
zero in late time for 0 ≤ γ ≤ 2. The number of particles increase with time in all phases.
The number of particles in the absence of particle production remain constant throughout
the evolution of the Universe, which is quit obvious. The deceleration parameter has been
found as a constant, which exhibits both decelerated and accelerated Universe under some
constraints on different parameters. The density parameter shows that the model becomes
open in the presence of particle creation in f (R, T ) theory.

We have also discussed some observational consequences of the model through some
kinematics tests such as lookback time, proper distance, luminosity distance and angular
diameter distance with respect to redshift. The results for the cosmological tests are found
to be compatible with the recent observations. These tests are found to be depend on λ and
β. The Universe with particle creation is always older than the usual FRWmodel in absence
of particle creation. The model of Lima et al. [16] may be recovered for λ = 0.

In summary, we have studied a cosmological model with particle creation in f (R, T )

gravity theory to understand the current acceleration expansion of the Universe. We have
found that the negative pressure due to the matter creation may play the role of dark energy
and derive the accelerating expansion of the universe in f (R, T ) theory. We may expect that
the process of particle creation is also an ingredient which accounts this unexpected obser-
vational results. The changes introduced by the particle creation process, which is quantified
by the parameter β, provide reasonable observational results. The new fact justifying the
present work is that we have considered the thermodynamics approach for which particle
creation is at the expense of the gravitational field. One may find that the particle creation
changes the predictions of standard cosmology, thereby alleviating the problem of reconcil-
ing observations with the inflationary scenario. In future work, one may plan to constraint
cosmological model with matter creation using complimentary astronomical observations.
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