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Abstract In this paper, we perform cosmological-model-independent tests for the distance-
duality (DD) relation η(z) = DL(1 + z)−2/DA by combining the angular diameter distance
DA( or comoving distances Dc ) with the luminosity distance DL. The DA are provided
by two galaxy clusters samples compiled by De Filippis et al. (the elliptical β model),
Bonamente et al. (the spherical β model), the Dc are obtained from Hubble parameter data
and DL are given from the Union2.1 supernovae (SNe) Ia compilation. We employ two
methods, i.e., method A: binning the SNe Ia data within the range �z = |z−zSNe| < 0.005,
and method B: reconstructing the DL(z) by smoothing the noise of Union2.1 data set over
redshift with the Gaussian smoothing function, to obtain DL associated with the redshits
of the observed DA or Dc. Four parameterizations for η(z), i.e., η(z) = 1 + η0z, η(z) =
1 + η0z/(1 + z), η(z) = 1 + η0z/(1 + z)2 and η(z) = 1 − η0 ln(1 + z), are adopted for the
DD relation. We find that DD relation is consistent with the present observational data, and
the results we obtained are not sensitive to the method and parameterization.

Keywords Distance-duality relation · Distance scale · Galaxy cluster

1 Introduction

The cosmic distance-duality (DD) relation, also well known as Etherington’s reciprocity
relation [1], plays a fundamental role in astronomical observation and cosmology, ranging
from gravitational lensing studies [2] to analysis of the cosmic microwave black body radi-
ation (CMBR) observations, as well as for galaxy and galaxy clusters observations [3–5].
Even cosmological interpretation of galaxy number counts distribution, as well as the optic
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theorem that surface brightness of an extended source does not depend on the angular diam-
eter distance between the observer and source, an important result for understanding lensing
brightness, are both consequences of this relation [6]. It connects different metric distances
via the following identity

DL

DA
(1 + z)−2 = 1, (1)

where DL and DA represent luminosity distance and angular diameter distance (ADD)
respectively, with z being the redshift. Given the fundamental hypothesis that, in general
relativity, light travels always along null geodesics, and that the sources and observers are
connected by null geodesics in a Riemannian spacetime, one can easily prove this equation
in the context of Friedmann-Lemaı̂tre-Roberson-Walker(FLRW) cosmology [7, 8]. Being
independent of Einstein field equations and nature of matter, this equation is generally valid
for all cosmological models based on Riemannian geometry.

It is in principle possible to test the validity of the DD relation with astronomical obser-
vation data. The basic idea is that the DD relation can be tested directly, if one can obtain
both DL and DA at the same redshift from observations. But it is difficult to find objects at
the same redshift with both known intrinsic luminosity and sizes. So some model-dependent
methods have been employed to perform the tests by using the observed DL or DA. De
Bernardis et al. [9] obtained a non violation of the DD relation in the framework of the cos-
mic concordance �CDM model with ADD from galaxy clusters provided by the sample of
Ref. [10]. Uzan et al. obtain a test for the DD relation from the observations of Sunyaev-
Zeldovich effect (SZE) and X-ray surface brightness of galaxy clusters [11]. With the 18
ADD galaxy clusters from the samples of Ref. [12], they found that there was no significant
deviation from the DD relation for a �CDM model [13].

Recently, Avgoustidis et al. [14] employed a parametrization dL = dA(1 + z)2+ε for the
DD relation, in a flat �CDM model, to place constraints on the cosmic opacity through
combining recent SNe Type Ia data compilation [15] with the latest measurements of the
Hubble expansion at redshifts 0 < z < 2 [16]. They found ε = −0.04+0.08

−0.07 at 2σ confi-
dence level (CL). The basic idea of this test is that, while SNe Ia observations are affected
by some sources, namely, the Milky Way, the hosting galaxy, the intervening galaxies and
the Intergalactic Medium, the current H(z) measurements are obtained from ages estimates
of old passively evolving galaxies, which depend only on the detailed shape of the galaxy
spectra, not on the galaxy luminosity. Therefore, measurements of the Hubble expansion
H(z), which is different from dL measurements of SNe Ia, are not affected by cosmic opac-
ity since this quantity is assumed to be not strongly wavelength dependent in the optical
band [14]. In order to obtain distance estimates from the largest Hubble parameter data H(z)

which consist of 28 data points [16, 18–23], Holanda et al. solved numerically the comoving
distance integral for non-uniformly spaced data using a simple trapezoidal rule [17]. They
obtained that a completely transparent universe is in agreement with this largest sample in
their analysis. Then with these Hubble parameter data H(z) and the current largest SNe Ia
samples (Union2.1) with three cosmological-model-independent methods [24], Liao et al.
tested the comic opacity and found that the universe is transparent. More recently, by using
luminosity distances of gamma-ray bursts and the latest Hubble data, Holanda et al. [25]
placed constraints on the cosmic opacity at high redshifts (z > 2) for a flat �CDM model,
and obtained that both SNe Ia and GRBs samples are compatible with a transparent universe
at 1σ CL.

To test the DD relation, one can express it as a function of the redshift z, namely

DL

DA
(1 + z)−2 = η(z). (2)
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Firstly, by comparing the elliptical and spherical β model (used to describe the galaxy clus-
ters) in Refs. [10, 26] with the theoretical value DTh

L obtained from �CDM model [27],
Holanda, Lima and Ribeiro used two parameterized forms for η(z) [28]

η(z) = 1 + η0z (3)

and
η(z) = 1 + η0z/(1 + z), (4)

where η0 is a constant parameter quantifying a possible departure from the validity of the
DD relation and when η0 = 0, the DD relation holds, to test the possible deviation, and
found that the elliptical and spherical β model are consistent with the validity of DD relation
at 1σ and 3σ confidence level respectively.

However, the consistency from above quoted literature depends on the assumed cosmol-
ogy model or some results provided by a chosen set of astrophysical phenomena. Comparing
the luminosity distance DL obtained from the current supernovae Ia data with the angular
diameter distance DA from FRIIb radio galaxies [55] and ultra compact radio sources [29–
32], Bassett and Kunz found that there exists a moderate violation (2σ confidence level)
caused by the brightening excess of SNe Ia at z > 0.5 [33]. Later on, with the parameteriza-
tions in (3, 4), Holanda et al. [34] proposed a model-independent cosmological test for the
DD relation by employing two sub-samples of SNe Ia carefully chosen from Constitution
data [35] and ADD samples from galaxy clusters obtained through SZE and X-ray measure-
ments with different assumptions concerning the geometry used to describe the clusters:
elliptical and spherical β model [10, 26]. For each cluster, they selected one SNe Ia data
whose redshift is the closest to the cluster’s with the range �z = |z − zSNe| < 0.005.
They found that the elliptical β model is marginally compatible with the validity of the DD
relation at 2σ CL, however, the spherical β model indicates a strong deviation from this
relation. Then with the selection criterion used in Ref. [34], Li et al., using the Union 2 [36]
compilation which contains 557 SNe Ia data and galaxy cluster data [10, 26], performed
a model-independent test of the DD relation [37], and finally obtained that DD relation is
accommodated at the 1σ CL for the elliptical model, and at 3σ CL for the spherical model.
Later on, Fu et al. [38] tested the DD relation by smoothing the noise of the Constitution
and Union2 SNe Ia compilations in a model-independent method [39], and found that the
elliptical β model with the Constitution compilation is only consistent with the DD relation
at 3σ CL, while the spherical β medel is incompatible with the DD relation at 3σ CL. For
the Union2 compilation, the elliptical and spherical β are marginally consistent with the DD
relation at 1σ and 2σ CL respectively. In order to avoid any bias brought by redshift incoin-
cidence between galaxy clusters and Type Ia Supernave (SNe Ia), Liang et al. [40] obtained
the luminosity distance of a certain SNe Ia point at the same redshift of the corresponding
galaxy cluster by interpolating from the nearby SNe Ia, and found that DD relation is con-
sistent with the observational data at 2σ CL. Meng et al. [41], aiming at comparing different
morphological model of galaxy clusters with four types of parameterizations for η(z), i.e.,
the first two of which are expressed as the (3, 4), and the last two are shown as follows

η(z) = 1 + η0z/(1 + z)2 (5)

and
η(z) = 1 − η0 ln(1 + z), (6)

found that DD relation is compatible with the elliptical β model at 1σ CL, but can not be
consistent with the spherical β models even at 3σ CL for most of the parameterizations. So
they also concluded that the elliptical model is a better geometrical hypothesis describing
the structure of the galaxy cluster compared with the spherical β model if the DD relation
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is valid in cosmological observations. Then, in order to both strengthen the constraints on
the DD relation and get rid of the systematics related to the unknown cluster geometry,
Cardone et al. [42], with the local regression technique to estimate luminosity distance DL
from SNe Ia data, investigated the possibility to use Baryon Acoustic Oscillations (BAO) to
infer DA(z) from future BAO surveys.

In this paper, we will perform a cosmological-model-independent test for the DD rela-
tion, which is assumed as a function of redshift z, η(z) = DL(1 + z)−2/DA, by combining
the angular diameter distances DA (or comoving distances Dc) with the luminosity dis-
tances DL. The function η(z) is parameterized in four general forms, i.e., η(z) = 1 + η0z,
η(z) = 1 + η0z/(1 + z), η(z) = 1 + η0z/(1 + z)2 and η(z) = 1 − η0 ln(1 + z), where η0
is a constant parameter quantifying a possible departure from the validity of the DD rela-
tion and when η0 = 0, the DD relation holds. The DA is given by the spherical β model [9]
and elliptical β model [26] of galaxy cluster samples. We get the Dc by a usual trapezoidal
rule from the Hubble parameter listed in Ref. [24]. In practice, the observational data pairs
of the DL and DA(or Dc) at the same redshift are obtained with two methods, i.e., method
A: binning the SNe Ia data within the range �z = |z − zSNe| < 0.005 to get the DL at
the redshift of galaxy cluster or Hubble parameter data, and method B: reconstructing the
DL(z) by smoothing the noise of Union2.1 data set over redshift with the Gaussian smooth-
ing function. We also test the validity of the DD relation by comparing the combination
of the galaxy cluster data and Hubble parameter data to the SNe Ia data. We find that DD
relation is consistent with the present observational data and the results we obtained are not
sensitive to the method and parameterization.

2 Samples

In order to test the DD relation with the parameterizations, we employ SZE and X-ray
observations of two galaxy cluster samples. The first sample contains 25 galaxy clusters,
described by an elliptical β model in the redshift range 0.023 ≤ z ≤ 0.784 [26]. The second
sample contains 38 DA of clusters, described by an spherical β model in the redshift range
0.14 ≤ z ≤ 0.89 [10].

Another method proposed by Holanda et al. is to obtain ADD from observational Hubble
parameter data [17]. Recently, with the newly released observational Hubble parameter data
H(z) and current largest SNe Ia samples (Union2.1), Liao et al. tested the comic opacity
and found that the universe is transparent [24]. The Hubble parameter H(z) at z �= 0 is
obtained by calculating the derivative of cosmic time with respect to redshift [43–47] in the
following form

H(z) = − 1

1 + z

dz

dt
. (7)

Using a simple trapezoidal law and 28 data summarized in Table of literature [24], we can
obtain the comoving distance (Dc) by the following equation,

Dc = c

∫ z

0

dz′

H(z′)
≈ c

2

n∑
i=1

(zi+1 − zi)

[
1

H(zi+1)
+ 1

H(zi)

]
, (8)

and the error associated to the ith bin,

si = c

2
(zi+1 − zi)

(
σ 2

Hi+1

H 4
i+1

+ σ 2
Hi

H 4
i

)1/2

, (9)
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where σHi
is the error of H(z) data and H0 = 73.8 ± 2.4 km/s/Mpc [48]. The rela-

tive errors have been studied by Liao et al. [24] and were found to decrease remarkably
when the numbers of intervals increase from 12 to 28 compared to the number used in the
literature [17].

In order to get DL, we use the Union2.1 compilation [49] which contains 580 data points
between the redshift region 0 ≤ z ≤ 1.415 by presenting refinements to the analysis on
Union2 compilation [36] and adding 23 SNe Ia data, among which 14 new SNe Ia from the
Hubble Space telescope Cluster Survey [49] and 9 low redshift SNe Ia from the Carngie
Supernova Project [50].

3 Methods of Dealing with SNe Ia Samples

In principle, given a DA from galaxy cluster data or Dc from Hubble parameters at a certain
redshift, one should select a DL from SNe Ia data point that shares the same redshift z with
the given data to test the DD relation. However, this condition usually can not be met in
reality. In this section, we introduce two cosmological-model-independent methods to get
the luminosity distance DL of a certain SNe Ia point which has the same redshift of the
corresponding galaxy cluster data or Hubble parameters.

3.1 Method A: Binning the SNe Ia Data

In order to test the DD relation with model-independent method, Both Holanda et al. [28]
and Li et al. [37] adopted a selection criterion �z = |zclu − zSNe| < 0.005, and choose
the nearest SNe Ia data for every galaxy cluster. However, using merely one SNe Ia data
point from all those available which meets the selection criterion will lead to larger statisti-
cal errors. Instead of using one DL point of Union2.1 SNe Ia, we bin these data available in
the range �z = |zclu/Hub − zSNe| < 0.005, where zclu/Hub denotes the redshifts of the galaxy
cluster or Hubble parameter data. In this method, we employ an inverse variance weighted
anverage of all the selected data. If DLi denotes the ith appropriate SNe Ia luminosity
distance data with σDLi

representing the corresponding observational uncertainty and with
the conventional data reduction techniques in Chapter. 4 in [51], we can straightforwardly
obtain

D̄L =
∑

(DLi/σ
2
DLi

)∑
1/σ 2

DLi

, (10)

σ 2
D̄L

= 1∑
1/σ 2

DLi

, (11)

where D̄L represents the weighted mean luminosity distance at the corresponding galaxy
cluster or Hubble parameter redshift, and σ 2

D̄L
is its uncertainty. The selection criteria in this

method can be satisfied for all galaxy clusters samples except for the cluster CL J1226.9 +
3332 (the nearest one is at �z = 0.005) [10] from spherical model sample, and for most
of the Hubble parameter data except for the points at z = 0.9, 1.037, 1.43, 1.53 and 1.75.
For the sake of completeness of the galaxy cluster, we keep the cluster data point of CL
J1226.9 + 3332 in our analysis with this method. The distributions of these two angular
diameter distance samples and the luminosity distance DL obtained by this method are
shown in Fig. 1.
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Fig. 1 Hubble diagram of the elliptical β model, spherical β model and the corresponding DL from SNe Ia
data (Union2.1) with the associated error bars obtained by method A

3.2 Method B: Smoothing the SNe Ia Data

In order to avoid any bias brought by redshift incoincidence between galaxy clusters
(Hubble data) and Type Ia Supernave (SNe Ia), as well as to ensure the integrity of
the galaxy clusters samples, we obtain the luminosity distance of a certain SNe Ia point
at the same redshift of the corresponding galaxy cluster (Hubble data) by smoothing
the noise of the SNe Ia data directly to obtain the continuous luminosity distance at
redshifts z.

Following a procedure in the analysis of large scale structure, Shafieloo et al. [39, 52],
with a Gaussian kernel, smoothed the noise of the SNe Ia data directly to reconstruct the
expansion history of the universe and property of dark energy. Then Wu and Yu general-
ized this procedure to eliminate the impact of H0 and reconstruct the cosmic expansion
history [53]. Then, Fu et al. studied the effect of spatial curvature on reconstructing the
cosmic expansion history and the property of dark energy by smoothing the noise of the
Union2.1 Type Ia Supernovae (SNIa) data with a Gaussian smoothing function [54]. More
recently, in order to test the distance-duality relation [38] or examine the cosmic opac-
ity [24], this model-independent method was also used to smooth Constitution, Union2 or
Union2.1 SNe Ia compilation to obtain the curves of the luminosity distance. In this paper,
in order to obtain the luminosity distance curve DL(z) with Union2.1 compilation, we use
ln f (z) = ln DL(z) + ln h through the following iterative method

ln f (z)sn = ln f (z)sn−1 + N(z)
∑

i

[ln f obs(zi) − ln f (z)sn−1] exp

[
− ln2 ( 1+z

1+zi

)
2�2

]
, (12)

with a normalization parameter

N(z)−1 =
∑

i

exp

[
− ln2 ( 1+z

1+zi

)
2�2

]
. (13)

In (12,13), � is a quantity needed to be given prior. Since a large value of � leads to a
smooth result but depresses the accuracy of reconstruction, and inversely for a small value
of �, it is important to choose a reasonable value of �. Here, following Shafieloo et al. [39,
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52] and Wu and Yu [53], we choose � = 0.6. Using f (z)sn in (12), we can get a smoothed
luminosity distance at any redshift z after n iteration. When n = 1

ln f (z)s1 = ln f (z)s
0 + N(z)

∑
i

(ln f obs(zi) − ln f (z)s
0) exp

[
− ln2 ( 1+z

1+zi

)
2�2

]

= ln DL(z)s
0 + N(z)

∑
i

(ln f obs(zi) − ln DL(z)s
0) exp

[
− ln2 ( 1+z

1+zi

)
2�2

]
,(14)

where DL(z)s
0 is the luminosity distance of the suggested background model, and it has been

shown that the results are not sensitive to the chosen value of � and the guessed background
model [52]. Here we use a wCDM model with w = −0.9 and �m0 = 0.28 as the guessed
background model. ln f obs(zi) is the observed one from the SNe Ia and can be expressed as:

ln f obs(zi) ≡ ln 10

5
[μobs(zi) − 42.38] = ln Dobs

L (zi) − ln h . (15)

Here h = H0/100 and μobs is the observed distance module of SNe Ia. In order to determine
whether we obtain a best fit one after some iterations, we calculate, after each iteration, χ2

s :

χ2
s,n =

∑
i

(μ(zi)n − μobs(zi))
2

σ 2
μobs,i

. (16)

The best fit result corresponds to the minimum value of χ2
s,n. For the SNe Ia data from

Union2.1, when n = 32, the value of χ2
s reaches the minimum value, as shown in the left

panel of Fig. 2. So, we obtain the best fit smoothed luminosity distance at any redshifts z

shown in the right panel of Fig. 2. With this method, we obtain observational data pairs of
the DL and DA/Dc at the same redshift from the continuous luminosity distance function
DL(z), so we consider all available data from galaxy cluster data and Hubble parame-
ters. The distributions of these two angular diameter distance samples and the luminosity
distance DL obtained by this method are shown in the right panel of Fig. 2.
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tical β model spherical β model and the corresponding DL obtained by method B (right panel) from SNe Ia
data (Union2.1)
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4 Analysis and the Results

Now, with observational data pairs of the DL and DA (or Dc) at the same redshift, we will
place constraints on the parameter η0 for the DD relation η(z) = DL(z)(1 + z)−2/DA(z)

for parameterizations from (3∼6). We note that, in general, the SZE + X-ray surface bright-
ness observations technique gives Dcluster

A (z) = DA(z)η2, instead of DA(z). In order to
test the DD relation in (1) with SZE + X-ray observations, we should replace the angular
diameter distance DA(z) by Dcluster

A in (2), and get ηobs(z) = Dcluster
A (z)(1 + z)2/DL(z).

It should be noted that in this paper, we can not obtain DA directly from Dc as we
have applied the parameterizations for the DD relation. In a flat universe, we explored

Fig. 3 The likelihood distribution functions from the elliptical β (upper panel), spherical β model (middle
panel) and Hubble parameter (bottom panel) respectively. The left and right panels are obtained through
method A and B respectively



Int J Theor Phys (2016) 55:1229–1240 1237

phenomenologically the expression of Dc/[(1 + z)
√

η(z)] to determine DA in (2) [17], and
get ηobs(z) = DL(z)2/[Dc(z)(1 + z)]2. Thus, using the following equation

χ2
D =

∑
z

[η(z) − ηobs(z)]2

σ 2
ηobs

, (17)

we can obtain the constraints on η0. Here σηobs is the errors of the observation techniques
ηobs. It, for galaxy cluster data, is given by

σ 2
ηobs

= η2
obs

⎡
⎣

(
σDclu

A (z)

Dclu
A (z)

)2

+
(

σDL(z)

DL(z)

)2
⎤
⎦ . (18)

For Hubble parameters, σηobs can be expressed as

σ 2
ηobs

= 4η2
obs

[(
σDHub

c (z)

DHub
c (z)

)2

+
(

σDL(z)

DL(z)

)2
]

. (19)

Our results are shown in Figs. 3, 4 and Tables 1, 2.
In the upper and middle panels of Fig. 3, with the four forms of parameterizations for

η(z) and two methods for DL from SNe Ia data, we find that, for the elliptical β model (the
De Filippis et al. sample) [26], the DD relation is consistent with observational data at 1σ

CL with both methods. As for the spherical β model (the Bonameta et al. sample [10]), DD
relation is marginally consistent at 2σ CL. Compared with the results obtained by Holanda

Fig. 4 The likelihood distribution functions from combination of the elliptical β model and Hubble param-
eter (upper panel), spherical β model and Hubble parameter (bottom panel) respectively. The left and right
panels are obtained through method A and B respectively
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Table 1 The summary of maximum likelihood estimation results of η0 for four parameterizations
respectively

Parametrization η0 (Elliptical β model) η0(Spherical β model) η0 (Hubble data)

1 + η0z
� −0.04±0.18±0.36±0.54 −0.16±0.11±0.22±0.33 −0.08±0.15±0.29±0.43

1 + η0z
∗ −0.14±0.17±0.34±0.51 −0.21±0.10±0.21±0.31 0.07±0.08±0.17±0.25

1 + η0
z

1+z
� −0.07±0.25±0.50±0.75 −0.24±0.17±0.33±0.50 −0.16±0.25±0.50±0.74

1 + η0
z

1+z
∗ −0.21±0.24±0.47±0.71 −0.32±0.16±0.31±0.46 0.15±0.18±0.35±0.53

1 + η0
z

(1+z)2
� −0.12±0.33±0.67±1.00 −0.35±0.24±0.48±0.72 −0.27±0.39±0.78±1.18

1 + η0
z

(1+z)2
∗ −0.30±0.32±0.64±0.96 −0.48±0.23±0.45±0.68 0.24±0.32±0.65±0.97

1 − η0ln(1 + z)� 0.05±0.21±0.43±0.64 0.19±0.14±0.27±0.41 0.12±0.19±0.39±0.58

1 − η0ln(1 + z)∗ 0.17±0.20±0.41±0.61 0.26±0.13±0.25±0.38 −0.11±0.13±0.25±0.38

The η0 is represented by the best fit value at 1, 2 and 3 σ CL for each data set. The triangle or asterisk
represents the case with method A or method B respectively

et al. [28], Li et al. [37] and Fu et al. [38], where they obtained that the DD relation is
compatible with the observations at 2σ or 1σ CL respectively for the elliptical β model,
and almost incompatible at 3σ CL for the spherical β model, our results suggest that the
DD relation is more compatible with the observational data of galaxy cluster. Compared to
the previous results from the complete ADD sample and the Union2 set (Liang et al. [40];
Meng et al. [41]), our analyses are consistent with their results.

From the bottom panel of this figure, we can conclude that the test between Hubble data
and Union2.1 SNe Ia indicates that the DD relation is consistent with the observational
data at 1σ CL. Figure 4 shows that the result for the test between the SNe Ia data and
the combination of elliptical β model and Hubble data(upper panel) or spherical β model
and Hubble data (bottom panel), and it indicates that the DD relation is consistent with
the observational data at 1σ and 2σ CL respectively. We can also conclude that the results
obtained are not sensitive to the method and parameterization through comparing the results
obtained from different parameterizations for η(z) and methods for DL from SNe Ia data.

Table 2 The summary of maximum likelihood estimation results of η0 for four parameterizations respec-
tively. The η0 is represented by the best fit value at 1, 2 and 3 σ CL for each data set. The triangle or asterisk
represents the case with method A or method B respectively

Parametrization η0 (Elliptical β model+ Hubble data) η0(Spherical β model+ Hubble data)

1 + η0z
� −0.06±0.11±0.23±0.34 −0.13±0.09±0.18±0.26

1 + η0z
∗ 0.03±0.08±0.15±0.23 0.04±0.07±0.13±0.20

1 + η0
z

1+z
� 0.11±0.18±0.35±0.53 −0.21±0.14±0.27±0.41

1 + η0
z

1+z
∗ 0.02±0.14±0.28±0.42 −0.12±0.12±0.23±0.35

1 + η0
z

(1+z)2
� −0.18±0.25±0.51±76 −0.33±0.20±0.41±0.61

1 + η0
z

(1+z)2
∗ −0.03±0.23±0.45±0.68 −0.24±0.19±0.37±0.56

1 − η0ln(1 + z)� 0.09±0.14±0.29±0.43 0.17±0.11±0.22±0.34

1 − η0ln(1 + z)∗ −0.03±0.11±0.21±0.32 0.07±0.09±0.18±0.27
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5 Conclusion

In this paper, we used a cosmological-model-independent method to test the distance-
duality (DD) relation η(z) = DL(1 + z)−2/DA (when η(z) = 1, the DD relation holds), by
combining the angular diameter distance DA provided by two galaxy clusters samples com-
piled by De Filippis et al. (the elliptical β model) [26] and Bonamente et al. (the spherical
β model) [10] or comoving distances Dc obtained from Hubble parameter data, with the
luminosity distance DL from current largest supernovae (SNe) Ia data set (Union2.1). The
η(z) is parameterized in four general forms, i.e. η(z) = 1 + η0z, η(z) = 1 + η0z/(1 + z),
η(z) = 1 + η0z/(1 + z)2 and η(z) = 1 − η0 ln(1 + z), where η0 is a constant quantifying
a possible departure from the validity of the DD relation, and when η0 = 0, the DD rela-
tion holds. The luminosity distances DL associated with the redshits of the observed DA
or Dc, is obtained with two methods, i.e., method A: binning the SNe Ia data within the
range �z = |z − zSNe| < 0.005, and method B: reconstructing the DL(z) by smoothing
the noise of Union2.1 data set over redshift with the Gaussian smoothing function. As for
Hubble parameter, we get fistly the comoving distances Dc using a usual trapezoidal rule.
In a flat universe, we explored phenomenologically the expression of Dc/[(1 + z)

√
η(z)]

to substitute Dc/[(1 + z)
√

η(z)] for DA, and the parameter ηobs(z) can be expressed as
ηobs(z) = DL(z)2/[Dc(z)(1 + z)]2. Finally, we test the distance-duality (DD) relation.

Our results show that, for the test of the DD relation between the elliptical β model (the
De Filippis et al. sample) [26] and Union2.1 SNe Ia data set, the DD relation is consistent
with observational data at 1σ CL with both methods. While for the spherical β model (the
Bonameta et al. sample [10]) the DD relation is marginally consistent at 2σ CL. For the
test between Hubble data and SNe Ia from Union2.1 data set, we get that the DD relation
is consistent with the observational data at 1σ CL. As for the test between the SNe Ia
data and the joint of elliptical β model and Hubble data or spherical β model and Hubble
data, we find that the DD relation is consistent with the observational data at 1σ or 2σ CL
respectively. Compared with the results obtained by Holanda et al. [28], Li et al. [37] and
Fu et al. [38], where they obtained that the DD relation is compatible with the observations
at 2σ or 1σ CL respectively for the elliptical β model, and almost incompatible at 3σ CL
for the spherical β model, our results suggest that the DD relation is more compatible with
the present observational data. Our analyses are consistent with the ones obtained by Liang
et al. [40]; Meng et al. [41] with the complete galaxy cluster sample and Union2 set. We
can also conclude that the results obtained in this paper are not sensitive to the method and
parameterization.
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