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Abstract In this paper, the entanglement in a mixed-spin (1/2, 3/2) Heisenberg XXZ model
with Dzyaloshinskii-Moriya (DM) interaction in an inhomogeneous external magnetic field
is studied. We not only calculate the ground-state entanglement but also investigate the
behaviors of quantum phase transition following the changes of DM interaction and nonuni-
formmagnetic field. More importantly, we note that the DM interaction improves the critical
magnetic field Bc, the critical temperature Tc and broadens the region of entanglement.

Keywords Entanglement · Quantum phase transition · Mixed-spin (1/2, 3/2) ·
Dzyaloshinskii-Moriya interaction

1 Introduction

In recent years, the quantum entanglement has become a crucial physical resource in many
fields of quantum information processing such as quantum communication [1–3] and quan-
tum computation [4, 5] due to its nonlocal correlation. The Heisenberg chain as the simplest
but an operable model has been used for quantum dots [6], cavity QED [7] and so on.

In particular, the thermal entanglement is a natural entanglement, which is different from
the other kinds of entanglements by its advantages of stability for the reduction in entangle-
ment of an entangled state due to various sources of decoherence [8, 9]. Recently, lots of
studies have devoted to the thermal entanglement in various spin Heisenberg models with or
without external magnetic filed [8–21]. As we all know, Dzyaloshinsky and Moriya initially
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pointed out the Dzyaloshinskii-Moriya interaction [22, 23], which stems from the spin-orbit
coupling. By adding DM interaction, many researchers have investigated the thermal entan-
glement and teleportation [24–31]. In addition, the quantum discord [32] that a more general
measure of the quantum correlation with DM interaction also has been studied in Ref. [33,
34]. The above mentioned investigations suggest the thermal entanglement is an important
source of mixed entanglement, and the magnetic field and DM interaction play a significant
role in various quantum tasks.

It is noteworthy that, in Refs. [19, 20], by using the concept of negativity, Guo et al. have
studied the entanglement of mixed-spin (1/2, 3/2) Heisenberg XXY and XXmodels with the
nonuniform magnetic field, and noted that the mixed-spin (1/2, 3/2) Heisenberg chain can
generate more entanglement and higher critical temperature Tc than those in spin 1/2 and
mixed-spin (1/2, 1) Heisenberg models for the same parameters. It indicates that the mixed-
spin (1/2, 3/2) spin chain is a promising system. However, we notice the entanglement in
mixed-spin (1/2, 3/2) Heisenberg XXZ chain with DM interaction in an inhomogeneous
external magnetic field has not been investigated, and through the above discussions, we
realize that this study is essential. In this work, by adding the DM interaction, we not only
calculate the ground-state entanglement, but also discuss the behaviors of quantum phase
transition (QPT) [35], which takes place in the ground state at zero temperature. In addition,
we note that DM interaction not only improves the critical values of the uniform magnetic
field and temperature, but also broadens the region of the entanglement.

2 The Model and Calculation

In this paper, the Hamiltonian for the mixed-spin (1/2, 3/2) Heisenberg XXZ model with
z−component DM interaction and inhomogeneous magnetic field is given by

H = J
(
Sx
1Sx

2 + S
y

1S
y

2 + ΔSz
1S

z
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, (1)

where J denotes the exchange constant, for J > 0 corresponds to the anti-ferromagnetic
case, and J < 0 the ferromagnetic case, Δ is the anisotropy parameter, Dz is DM coupling
parameter in the z direction, B describes uniform external magnetic field, and b controls the
inhomogeneity of external magnetic field, Sι

1 and Sι
2 (ι = x, y, z) are the spin operators of

spin 1/2 and spin 3/2, respectively.
In order to study the entanglement, we need to obtain the eigenvalues and eigenstates for
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, here |n, m〉

is the eigenstate of Sz
1 and Sz

2 with the corresponding eigenvalues given by n and m,
respectively. Thus the Hamiltonian (1) can be calculated in the matrix form as

H =

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜⎜
⎝

a11 0 0 0 0 0 0 0
0 a22 0 0 a25 0 0 0
0 0 a33 0 0 a36 0 0
0 0 0 a44 0 0 a47 0
0 a52 0 0 a55 0 0 0
0 0 a63 0 0 a66 0 0
0 0 0 a74 0 0 a77 0
0 0 0 0 0 0 0 a88

⎞
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where a11 = 3
4JΔ + 2B + b, a22 = 1

4JΔ + B, a25 = a∗
52 = a47 = a∗

74 =
√
3
2 J +

√
3
2 Di,

a33 = − 1
4JΔ − b, a36 = a∗

63 = J + Di, a44 = − 3
4JΔ − B − 2b, a55 = − 3

4JΔ + B + 2b,
a66 = − 1

4JΔ + b, a77 = 1
4JΔ − B and a88 = 3

4JΔ − 2B − b. After a mathematical
calculation, the eigenvalues are given by
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where g1 = 2√
3

(b+2ς+τ1)(J−Dzi)
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.

For a state of system in thermal equilibrium (temperature T ), which is described by
the density operator ρ(T ) = (1/Z) exp(−H/kBT ), where H is the Hamiltonian, Z =
tr[exp(−H/kBT )] is the partition function, and kB is Boltzmann constant, for simplicity,
we write kB = 1. The entanglement of states of the system at thermal equilibrium is called
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thermal entanglement [8, 9]. In the standard basis above-mentioned, the density operator of
the system can be given by

ρ(T ) = 1

Z
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As is known to all, according to the Peres-Horodecki Criterion [36, 37] which can give
a qualitative way for judging whether the state of high dimensional bipartite systems is
entangled or not, the negativity was proposed by Vidal and Werner [38] and can be used to
effectively compute the entanglement for any mixed state of an arbitrary bipartite system,
and it does not increase under local manipulations of the system, thus we use it to study the
entanglement in our mixed-spin (1/2, 3/2) system. The negativity of a state ρ is defined as

N(ρ) = ‖ρT1‖ − 1

2
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Hence, from Eqs. (6) and (7), one can obtain the expression of negativity as follows

N = 1
2Z

{
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{
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√
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}
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{
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}
(8)
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{
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(ρ88 − ρ33)2 + 4ρ47ρ74 − ρ88 − ρ33

}}
,

which is a function of parameters T , J , Δ, B, b and Dz.

3 Ground-State Entanglement and Quantum Phase Transitions (QPT)

In order to investigate the entanglement of ground states and QPT, we analyze the energy
eigenvalues behaviour following the change of different parameters. In Fig. 1, we plot
the eigenvalues as the functions of the z-component of DM interaction by fixing the rest.
Obviously, which eigenstate is the ground state depends on the parameter Dz in this case.
It is clear that, when D < Dzc1 ≈ −2.57, the ground state is the entangled state |�6〉
with the eigenvalue E6, and the corresponding negativity is given by N = |ξ |

|ξ |2+1
, where

ξ =
(
2
√

D2
z +21+3

)
(Dzi−1)

4
√
3(D2

z +1)
; when D = Dzc1, the ground-state eigenvalue E6 and the eigen-

value E2 with the first excited state |�2〉 have an intersection, namely, the ground states are
doubly degenerate at the intersection, and this suggests that quantum phase transition occurs
[35], which is induced by the discontinuous changes in a property of the ground state |�6〉
and the structure of the first excited state |�2〉 when the external parameter Dz traverses a
critical point Dzc1, and in the QPT point, the quantum fluctuations play a dominant role and
the thermal fluctuations become frozen. Moreover, when Dzc1 < D < Dzc2 ≈ −2.57, the
ground-state is the unentangled stat |�2〉, so the negativity equals to zero; when Dz = Dzc2,
the ground-state energy eigenvalue E2 and the eigenvalue E6 with the first excited state
|�6〉 show a crossing point, and the QPT also takes place at Dz = Dzc2; when Dz > Dzc2,
the ground state becomes |�6〉 again. It is observed that the positions of two QPT points
(Dzc1 ≈ −2.57 and Dzc2 ≈ 2.57) are symmetric about Dz = 0. In addition, from Fig. 1,
we can clearly see the phenomenon that the other energy eigenvalues also display the inter-
section points, which is caused by the degeneracy of the excited states with the change of
DM interaction.

Fig. 1 The eigenvalues E versus
the z−copoment of DM
interaction Dz, where we assume
J = 1, Δ = 0.5, B = 3 and
b = 0.5
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Fig. 2 The eigenvalues E versus
uniform magnetic field B, where
we assume J = 1, Δ = 0.5,
b = 1 and Dz = 3
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The eigenvalues versus magnetic field B are plotted in Fig. 2. It is easy to find that there
are four QPT points (Bc1 ≈ −3.34, Bc2 ≈ −1.48, Bc3 ≈ −0.69 and Bc4 ≈ 3.51), and the
ground states can be described by
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1
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(9)

and the corresponding negativities are obtained as

N =

⎧
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 B < Bc1,
0.0973 B = Bc1,
0.4979 Bc1 < B < Bc2,
0.2971 B = Bc2,
0.4939 Bc2 < B < Bc3,
0.2931 B = Bc3,
0.4822 Bc3 < B < Bc4,
0.0880 B = Bc4,
0 Bc4 < B.

(10)

By observing Eq. (10), we can find the entanglement of ground state is independent of the
uniform magnetic field B when B is in a certain range.

Fig. 3 The eigenvalues E versus
inhomogeneous magnetic field b,
where we assume J=1, Δ = 0.5,
B = 3 and Dz=3
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Finally, in Fig. 3, we study the influence of the inhomogeneous magnetic parameter
b and note that there are two QPT points ( bc1 ≈ −3.10 and bc2 ≈ −2.51). It is
observed that, with the increasing of b, E6 has an abrupt change near b = 0, and the
ground state initially changes from the entangled state |�4〉 ( b < bc1) to the entangled
state |�8〉 (bc1 < b < bc2), then jumps to the entangled |�6〉 (b > bc2) at the posi-
tions of QPT (b = bc1 and b = bc2), respectively. The corresponding negativities can
be obtained as N|�4〉 = |σ1|

|σ1|2+1
, N|�8〉 = |σ2|

|σ2|2+1
, and N|�6〉 = |σ3|

|σ3|2+1
, where σ1 =

−
√
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(
12b − 3 − 3
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)
i
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10[
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i
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√
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60
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(
12b + 3 + 3

√
16b2 − 8b + 121

)
i
]
. From the above discussions, not only can we change

the positions of QPT points, but also obtain the optimal entanglement of ground state by
coordinating the parameters Dz, B and b in our model.

4 Thermal Entanglement

Firstly, we would like to study the effect of the uniform field B on thermal entanglement
when DM interaction is included. The N as the functions of T and B are plotted by fixing
the parameters J ,Δ, b andDz in Fig. 4. Looking at Fig. 4a, we find that, at zero-temperature
limit, the N maintains the maximal value until B arrives at a critical value Bc, above which
the N disappears. At the same time, we note that the entanglement also decreases to zero at
critical temperature Tc, for the reason that as temperature goes up the mixing of ground state
with more excited states acts as a destructive noise that leads to the entanglement decays.
In Fig. 4b, six contour lines of N = 0, 0.05, 0.1, 0.2, 0.3, 0.4 are shown, respectively.
Beyond the contour line N = 0, there is no entanglement, which also can be seen Eq.
(9) the entanglement goes to zero when ρ77ρ22 ≥ ρ2

36, ρ66ρ11 ≥ ρ2
25, and ρ88ρ33 ≥ ρ2

47.
Comparing with Ref. [19], where the DM interaction is absent,Dz can enhance the maximal
value of N and the critical temperature Tc. For example, by controlling the rest parameters,

0
1

2
3

40
1

2
3

4

0

0.1

0.2

0.3

0.4

0.5

BT

N

(a)
0

0.05

0.1

0.2

0.3

0.4

B

T

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
(b)

Fig. 4 The negativityN is plotted as functions of magnetic fieldB and temperature T when J = 1,Δ = 0.5,
b = 0.5 and Dz = 1. (a) The curve of N as functions of B and T . (b) The contour lines of N versus B and T
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Fig. 5 The negativity N versus
temperature T for different
z−component of DM interaction
Dz, where we assume J = 1,

 = 0.5, B = 2 and b = 0.5
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Dz = 0, Nmax ≈ 0.38, Tc ≈ 1.13 [19]; Dz = 1, Nmax ≈ 0.43, Tc ≈ 1.58. However,
we have to note the Dz can’t change the intrinsic nature of the entanglement: when Dz is
excluded, observed from the Figures 1 and 3 of Ref. [19] and the Figure 1 of Ref. [20], and
when Dz is included, seen from Fig. 4 in our work, we obtain the same result that the critical
temperature Tc is completely independent of the uniform magnetic field B.

Secondly, we discuss the role played by the z-component DM interaction in adjusting
thermal entanglement. The N as a function of temperature T is plotted for different Dz in
Fig. 5, from which one can easily find that the value of N from zero goes up to a maximum
with the increases of Dz at zero-temperature limit. Furthermore, when T < Tc and Dz > 1,
the higher the temperature is, the smaller the N is, and the value of N decreases due to
the destruction of the quantum entanglement by classical thermal fluctuations. However,
when 0 < Dz < 1, with the increasing of T , the N goes up gradually to a maximum, then
drops slowly to zero. More importantly, it is observed that the larger Dz can improve critical
temperature Tc, which means that we can gain the same conclusion with Refs. [25, 28, 29]
that the entanglement can be obtained at higher temperature asDz is raised. In the following,
the N versus magnetic field B for different values of Dz is plotted in Fig. 6. When Dz = 0,
the N is a small value, and it monotonically decreases to zero with B increasing; when
Dz > 1, we find that, as B increases, N goes to a maximum and then decays monotonously
to zero at critical uniform magnetic field Bc, and it is easy to see that Bc is broadened by
the increasing of Dz. One can also find, for a finite magnetic field B < Bc, the larger Dz

can enhance the maximal value of entanglement. Thus one can obtain the conclusion that
Dz plays a considerably important role in improving entanglement.

Fig. 6 The negativity N versus
magnetic B for different
z−component of DM interaction
Dz, where we assume T = 1,
J = 1, 
 = 0.5 and b = 0.5
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Fig. 7 The negativity N versus temperature T for different values of inhomogeneous magnetic b, where we
assume J = 1, 
 = 0.5 and B = 1. (a) Dz = 0; (b) Dz = 3

In the next step, we discuss how the thermal entanglement behaves as we change the
inhomogeneous magnetic field b for various values of Dz. Looking at Fig. 7a and 7b, for
T → 0, it is quite obvious that the parameter b plays a negative role, namely, the higher the
b is, the smaller the N is. And as temperature T increases, the N monotonously decreases,
the reason is that the maximally entangled state mixes with other excited states. When T

is large enough, the all entanglement will be destroyed by classical thermal fluctuations.
Comparing Fig. 7a with 7b, the same results can be discovered with Fig. 5 that the larger
Dz not only broadens the region of entanglement but also improves the critical tempera-
ture Tc. For example, Dz = 0, b = 0, Tc ≈ 1.08, and the same result can be seen in
Figure 1(b) of Ref. [19]; Dz = 3, b = 0, Tc ≈ 2.72; Dz = 0, b = 2, Tc ≈ 1.82;
Dz = 3, b = 2, Tc ≈ 3.45. At the same time, it is found that the maximal value of N

doesn’t have an obvious change when Dz increases for b = 0. Besides, whether or not Dz

is considered, we clearly observe that Tc depends on the inhomogeneity of the magnetic
field b, and can be improved by the increasing of b. It could be a significant supplement
to Refs. [19, 20], in which the same result is obtained in the case that DM interaction
is absent.
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Fig. 8 The negativity N versus temperature T for different values of coupling constant J , where we assume

 = 0.5, B = 1 and b = 0.5. (a) Dz = 0; (b) Dz = 3
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Fig. 9 The negativity N versus temperature T for different values of anisotropy parameter 
, where we
assume J = 1, B = 1 and b = 0.5. (a) Dz = 0; (b) Dz = 3

Ultimately, in Figs. 8 and 9, the N versus temperature for different values of coupling
constant J or anisotropy parameter 
 with different Dz values. Looking at Fig. 8a, where
Dz = 0, as the temperature increases, the N increases sharply from zero to a peak value,
and after the peak value, it decreases monotonously in that the thermal fluctuation gradually
dominates the system. It is clear that the maximum value of the N and the critical tempera-
ture Tc are enhanced by the increasing of J . In Fig. 8b, where Dz = 3, contrasting with the
Dz = 0 case, we find that the larger Dz leads to a result that the maximal value of negativ-
ity does not show significant variations as J increases. For the same parameter case, we can
obtain more entanglement under higher temperature because of the existence of DM inter-
action. Moreover, In Fig. 8a and 8b, for different J values, we clearly see that, before N

arriving at a maximum, the behaviors of the N are always consistent, which suggests that,
in the special region, the temperature is the main factor to affect the entanglement, and the
influences of J and Dz can be almost ignored. Looking at Fig. 9a and 9b, we can find, even
if the DM interaction is added, the anisotropy parameter 
 still distinctly suppresses the
maximal value of N , but it can improve the critical temperature Tc and broaden the region
of entanglement for the same 
. It is also clear that the Tc increases with the increasing of

, which agrees with the conclusion of Ref. [19]. In addition, for various 
 values, before
the N increasing to a peak value, the behaviors of N are inconsistent, but Dz gradually
eliminates this difference.

5 Conclusions

In this article, by using the concept of negativity, we study the effects of the z−component
of DM interaction and an inhomogeneous external magnetic field on the entanglement and
QPT in mixed-spin (1/2, 3/2) Heisenberg XXZ model. Firstly, we calculate the ground-state
entanglement, and note that not only the positions of QPT points can be changed but also the
optimal ground-state entanglement can be obtained by coordinating the parameters Dz, B

and b in our model. It is noteworthy that, even if the Dz is included, the critical temperature
Tc is still completely independent of uniform magnetic B, while Dz can enhances Tc, which
means that we can gain more entanglement under higher temperature. It is also observed that
Dz improves the critical magnetic fieldBc. At the same time, we find that the inhomogeneity
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of magnetic field b, coupling constant J and the anisotropy parameter 
 play substantially
important roles in improving the critical temperature Tc and enhancing the entanglement in
our system.
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