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Abstract In the interpretations of quantum mechanics involving quantum histories there is
no collapse postulate and the measurement is considered as a quantum interaction between
the measured system and the measured instrument. For two consecutive non ideal mea-
surements on the same system, we prove that both pointer indications at the end of each
measurement are compatible properties in our generalized context formalism for quantum
histories. Inmediately after the first measurement an effective state for the measured system
is deduced from the formalism, generalizing the state that would be obtained by applying
the state collapse postulate.

Keywords Quantum histories · Consistent histories · Generalized contexts

1 Introduction

The quantum histories approach was developed in order to give an interpretation of quan-
tum mechanics potentially useful for quantum cosmology, i.e. an observer-independent
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formulation of quantum theory. A new theoretical framework was necessary for this purpose
since, while the standard Copenhagen interpretation works well in the laboratory, it cannot
be applied to closed systems.

In order to reach that goal, the quantum histories formalism was proposed, in which the
fundamental objects are sets of quantum histories. R. Griffiths [1, 2], R. Omnès [3, 4], M.
Gell-Mann and J. Hartle [5] developed the theory of consistent histories. More recently, we
introduced the formalism of generalized contexts for quantum histories [6, 7]. By contrast
to some interpretations of quantum mechanics, particularly the Copenhagen interpretation,
in quantum histories formalisms there is no collapse postulate and the measurement is
considered as a quantum interaction between the measured system and the measurement
instrument.

In the consistent histories formulation of quantum theory, the allowed sets of quantum
histories that can be included in a valid description of the system must satisfy some con-
sistency conditions. Since the consistency conditions depend on the state of the system, the
properties that can be included in a valid description also depend on the state. This is an odd
situation compared with the standard formalism of quantum mechanics, where the allowed
contexts of properties are the possible distributive sublattices of the Hilbert space, which
do not depend on the state. Moreover, it was shown that it is possible to retrodict contrary
properties in different consistent sets of histories. This fact is considered by some authors
as a serious failure of the theory [8–10].

In our formalism of generalized contexts, the allowed sets of quantum histories must sat-
isfy a compatibility condition, defined by the commutation of the corresponding projectors
translated to a common time [6, 7]. In this formalism the allowed sets of histories are state
independent and free from the problem of retrodiction of contrary properties [11].

The generalized-contexts formalism is an alternative to the theory of consistent histories,
which has proved to be useful for the time dependent description of the logic of quan-
tum measurements [12], the decay processes [13] and the double slit experiment with and
without measurement instruments [7]. More recently, we have discussed the relation of our
formalism with the theory of consistent histories [14].

In this paper we show that a generalized form of state collapse can be obtained from
the formalism of generalized contexts when it is applied to the measurement process. For
two consecutive non-ideal measurements on the same system, we prove that both pointer
indications at the end of each measurement are compatible properties in our formalism.
Moreover, immediately after the first measurement, we deduce, applying the generalized
context formalism, an effective state for the measured system, generalizing the state that
would be obtained by applying the state collapse postulate.

The paper is organized in the following way. In Section 2, we summarize the notion
of context in ordinary quantum mechanics. In Section 3, we present the main ideas of the
formalism of generalized contexts and its application to the description of a measurement
process. In Section 4, we apply this formalism to the description of two consecutive mea-
surements, in such a way that an effective state of the system can be defined immediately
after the first measurement. This effective state is compared with the state obtained using
the collapse postulate. The main conclusions are given in Section 5.

2 Quantum Contexts

In quantum mechanics, each isolated physical system is associated with a Hilbert space
H and a Hamiltonian operator H . Each observable of the system is represented by a
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self-adjoint operator. The eigenvalues of this operator are the possible values of the observ-
able. Using the spectral theorem, the possible values of the observable can be represented
by the corresponding projection operators. More generally, each property p of the quantum
system can be represented by a projection operator �p : H −→ H.

A state of the system at time t is represented by a statistical operator ρt . In the
Schrödinger representation, the state operator evolves in time according to the Liouville –
von Neumann equation i� d

dt
ρt = [H ; ρt ].

Quantum mechanics does not give an operational meaning to the joint probability distri-
bution of observables represented by non commuting operators. It operationally deals only
with sets of properties belonging to a single context, i.e. a Boolean sublattice of properties.
A context of properties Ci at the time ti is obtained starting from a set of atomic properties
p

ki

i (ki ∈ σi) represented by projectors �
ki

i corresponding to a projective decomposition of
the Hilbert space H, i.e. verifying

∑
ki∈σi

�
ki

i = I, �
ki

i �
k′
i

i = δkik
′
i
�

ki

i . (1)

Any property p of the context Ci is represented by a sum of some of the projectors of the
projective decomposition

�p =
∑

ki∈σp

�
ki

i , (2)

where σp is a subset of the set of indexes σi .
The context Ci is an orthocomplemented distributive lattice, with the order relation p ≤

p′ defined by �pH ⊆ �p′H and the complement p of a property p defined by �p ≡
I − �p . A well defined probability, i.e. additive, non negative and normalized, is defined
by the Born rule Prti (p) ≡Tr(ρti �p) on the context Ci .

In the Heisenberg representation the probability of a property p at time ti is written in
terms of the state at a reference time t0, i.e.

Pr
ti

(p) = T r(ρt0�p,0), �p,0 ≡ U(t0, ti )�pU(ti , t0), U(ti , t0) = e− i
�

H(ti−t0).

(3)
Taking into account (2) and (3), the Heisenberg representation of the property p of the

context Ci at time ti is given by

�p,0 =
∑

ki∈σp

�
ki

i,0, (4)

where the projectors �
ki

i,0 = U(t0, ti )�
ki

i U(ti , t0) represent the time translation of the

atomic properties p
ki

i from time ti to the time t0. The projectors �
ki

i,0 also satisfy (1).

3 Generalized Contexts and Quantum Measurements

In this section we present a brief summary of our formalism of generalized contexts for
quantum histories [6, 7] and its application to the measurement process [12]. We refer the
reader to our previous papers for the detailed presentation.

3.1 Generalized Contexts

The Heisenberg representation of the context Ci at time ti suggests a generalization of
quantum mechanics for including the joint probability of properties belonging to different
contexts C1, ..., Ci , ..., Cn corresponding to n different times t1 < ... < ti < ... < tn.
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By extending what is a common assumption in ordinary quantum mechanics, we propose
to give theoretical meaning to the joint probabilities of properties at different times only
if they correspond to commuting projectors in the Heisenberg representation. This will be
the case if the atomic properties that generate each of the n contexts are represented by
projectors satisfying the compatibility conditions given by

[
�

ki

i,0; �
kj

j,0

]
= 0, i, j = 1, ..., n, ki ∈ σi, kj ∈ σj . (5)

If these projectors commute, the projectors �k
0 ≡ �

k1
10...�

ki

i0...�
kn

n0, with k = (k1, ..., kn)

and ki ∈ σi , form a projective decomposition of the Hilbert space H, as they satisfy
∑

k

�k
0 = I, �k

0�k′
0 = δkk′�k

0, k, k′ ∈ σ1 × ... × σn

In our formalism we postulate that an expression of the form “property p
k1
1 at time t1

and ... and property p
kn
n at time tn” is an atomic generalized property pk with the Heisen-

berg representation given by the projector �k
0 . A generalized context is defined by all the

generalized properties p having a Heisenberg representation given by a partial sum of the
projectors �k

0 , i.e.

�p =
∑

k∈σp

�k
0, (6)

where σp is a subset of σ1 × ... × σn. The generalized context is an orthocomplemented
distributive lattice, with the complement p of p defined by �p = I − �p, and the order
relation p ≤ p′ defined by the inclusion of the corresponding Hilbert subspaces (�pH ⊆
�p′H).

An extension of the Born rule provides a definition of an additive, non negative and
normalized probability on the generalized context, given by

Pr(p) ≡ Tr(ρt0�p). (7)

3.2 Quantum Measurements

The formalism of generalized contexts can be applied to the description of the measurement
process. Let us consider a system S, on which a non ideal measurement is performed by
an instrument A in the time interval (t0, t1). In the Hilbert space HS ⊗ HA the quantum
measurement is represented by the unitary transformation USA satisfying

|qj 〉|a0〉 USA−→ |φj 〉|aj 〉, (8)

where the vectors |qj 〉 ∈ HS are a complete set of eigenstates of an observable Q of the
system S, |a0〉 is the reference state of the measurement instrument A and |aj 〉 ∈ HA is
the state corresponding to the pointer indication of the instrument correlated with the initial
state |qj 〉 of the measured system S. As we assume a non ideal measurement, we consider
|φj 〉 
= |qj 〉. The state |qj 〉 of the measured system S is changed into |φj 〉 by the non-ideal
measurement process.

Equation (8) is a “toy model” of a real measurement, since we do not take into account
the additional degrees of freedom of the measurement instrument which are different from
the pointer variable. However, the results can be easily generalized to consider more realistic
measurement processes [12].

We have proved in [12] the compatibility of the properties corresponding to the possible
values of the observable Q of the system S at time t0 and the properties corresponding to
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the possible values of the pointer observable of instrument A at time t1. These properties
are represented by commuting projectors when they are translated to a common time.

Therefore, a generalized context involving these properties is well defined. In this gen-
eralized context we deduced the conditional probability Pr(qj at t0|aj at t1) = 1. The
interpretation of this result is that the value aj of the pointer variable after the measurement
process implies that the observable Q had the value qj before the measurement.

4 Consecutive Measurements and State Collapse

We are now going to consider that the measurement by instrument A in the time inter-
val (t0, t1) is followed by a measurement by an instrument B in the time interval (t1, t2),
represented in HS ⊗ HB by the unitary transformation USB satisfying

|pμ〉|b0〉 USB−→ |χμ〉|bμ〉. (9)

In the previous expression the vectors |pμ〉 ∈ HS form a complete orthonormal set of
eigenvectors of an observable P of the system S, |b0〉 is the reference state of instrument B

and |bμ〉 corresponds to the pointer indication of the instrument B correlated with |pμ〉.

4.1 Compatibility of the Pointer Variables

We are going to prove that the pointer indications of both instruments at the end of each
measurement process are compatible properties of the system composed by the measured
system S and both instruments A and B.

The possible pointer indications aj of instrument A at time t1 are represented by the
projectors

�
j

1 ≡ IS ⊗ |aj 〉〈aj | ⊗ IB. (10)

These projectors form a projective decomposition of the Hilbert space HS ⊗ HA ⊗ HB .
Another projective decomposition of the Hilbert space is given by the projectors

�
μ
2 ≡ IS ⊗ IA ⊗ |bμ〉〈bμ|, (11)

representing the possible pointer indications of the instrument B at time t2.
Based on the fact that the commutation relations are invariant under unitary transforma-

tions, any reference time can be chosen to verify the compatibility conditions given in (5).
The compatibility conditions for the pointer variables of both measurement instruments are
easily verified by choosing t1 as the common time to translate the projectors given in (10)
and (11).

The projectors �
j

1 represent properties already defined at time t1, while the time transla-
tion of the projectors �

μ
2 from time t2 to time t1 are given by (U−1

SB ⊗ IA)�
μ
2 (USB ⊗ IA).

Taking into account (10) and (11) we obtain the commutation relations
[
(U−1

SB ⊗ IA)�
μ
2 (USB ⊗ IA); �

j

1

]
= 0,

and therefore the possible values of both indication variables at the end of each measure-
ment process are compatible properties. The pointer values aj of instrument A at t1 and the
pointer values bμ of instrument B at t2 generate a generalized context of properties for a
valid description of the composed quantum system.
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4.2 Effective State After the First Measurement and State Collapse

At time t0, before both measurements take place, we consider the state |�t0〉 =
|ϕ0〉|a0〉|b0〉 ∈ HS ⊗ HA ⊗ HB , corresponding to an arbitrary state |ϕ0〉 of the system S

and both instruments in their reference states.
In the previous subsection we proved that the properties corresponding to the instrument

A indicating aj at time t1, and the instrument B indicating bμ at time t2, are represented
by commuting projectors when they are translated to a common time. Therefore they are
compatible properties and we can compute the probability for their conjunction using our
formalism of generalized contexts.

For the state |�t0〉, and using (6) and (7), this probability is given by

Pr
�t0

(aj at t1 and bμ at t2) = 〈�t0 |�j

10�
μ
20|�t0〉,

where

�
j

10 = (U−1
SA ⊗ IB)�

j

1(USA ⊗ IB),

�
μ
20 = (U−1

SA ⊗ IB)(U−1
SB ⊗ IA)�

μ
20(USB ⊗ IA)(USA ⊗ IB).

Taking into account (8) and (9) we obtain

Pr
�t0

(aj at t1 and bμ at t2) = |〈qj |ϕ0〉|2|〈pμ|φj 〉|2,

and also
Pr
�t0

(aj at t1) = 〈�t0 |�j

10|�t0〉 = |〈qj |ϕ0〉|2.
Therefore the probability for the second measurement to give bμ conditional to the first

measurement to have given aj is

Pr
�t0

(bμ at t2|aj at t1) = Pr�t0
(aj at t1 and bμ at t2)

Pr�t0
(aj at t1)

= |〈pμ|φj 〉|2. (12)

This result can be compared with the measurement process by the single instrument B

on the system S, for an initial state at t1 given by |
t1〉 = |φj 〉|b0〉 ∈ HS ⊗ HB , where we
obtain

Pr

t1

(bμ at t2) = 〈
t1 |�μ
21|
t1〉 = |〈pμ|φj 〉|2. (13)

with �
μ
21 = U−1

SB (IS ⊗ |bμ〉〈bμ|)USB .
For the system S prepared at time t0 in the state |ϕ0〉 ∈ HS , (12) gives the probability to

obtain at time t2 the pointer value bμ for the measurement with instrument B, if a previous
measurement with instrument A have given the pointer value aj at time t1 < t2.

Equation (13) gives the probability to obtain at time t2 the pointer value bμ for a single
measurement of system S with instrument B, on a system prepared at time t1 in the state
|φj 〉 ∈ HS .

Different choices of the instrument B would give different vectors |pμ〉, but in any case
the probabilities given in (12) and (13) would have the same values (Pr�t0

(bμ at t2|aj at
t1) = Pr
t1

(bμ at t2)). Therefore we can conclude that the preparation of the system S

in any state |ϕ0〉 followed by a result aj of a measurement with an instrument A and the
preparation of the system S in the state |φj 〉 defined in (8) produce the same results for a
future measurement with any instrument B.
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The state |φj 〉 can be considered as the effective state of the system S at time t1, after
a measurement process by instrument A has given the value aj for the pointer variable.
We can say that the preparation of system S in any state |ϕ0〉 at time t0, followed by a
measurement by instrument A with the value aj of the pointer variable is mathematically
equivalent to consider the system S prepared in the state |φj 〉 at time t1.

It should be stressed that from the perspective of the collapse hypothesis, the effec-
tive state is the real state of the system after the first measurement. However, from the
generalized context formalism, it is not the real state of the system, but a computa-
tional artifact which supplies the same result as would be obtained with the complete
calculation.

In general, the effective state after a measurement obtained with our formalism do not
coincide with the state that would be obtained by applying the state collapse postulate.

However, for the special case of an ideal measurement (8) is replaced by |qj 〉|a0〉 USA−→
|qj 〉|aj 〉 and our formalism gives the effective state |φj 〉 = |qj 〉, i.e. the same result obtained
by means of the state collapse postulate.

5 Conclusions

The quantum histories approach was developed in order to give an interpretation of quantum
mechanics in which there is no collapse postulate and the measurement is considered as a
quantum interaction between the measured system and the measurement instrument.

Our formalism of generalized contexts is one of these formalisms of quantum histories,
which allows to define expressions of conjunctions and disjunctions of properties at dif-
ferent times and enables to organize them in a valid quantum history if they satisfy the
compatibility condition, i.e. if the properties at different times are represented by commuting
projectors when translated to a common time.

In this paper we applied this formalism to two consecutive non-ideal measurements on
the same system. We proved that the possible values of the pointer variables, correspond-
ing to two consecutive measurements on a system S are always compatible properties.
The measured system S and both measurement instruments A and B form a composed
quantum system with a valid description, involving the possible pointer values of the
instruments immediately after each of the two successive measurements. Therefore, it
is possible to use the formalism of generalized contexts to compute the probability for
each result of the second measurement with instrument B, conditional to a given pre-
vious result of the first measurement with instrument A. We proved that the value of
this conditional probability is the same that would be obtained performing only a mea-
surement with instrument B on the system S in an effective state. This effective state
depends on the result of the first measurement. Only in the case of an ideal measure-
ment the effective state coincides with the state obtained applying the state collapse
postulate.

It is interesting to note that, by contrast to the case of consistent histories, it was not
necessary to use decoherence to deduce the effective state that generalizes the collapse
postulate (see [4], chapters 19 and 21). The decoherence involving the many degrees of
freedom of a real measurement instrument was not considered, as these degrees of freedom
were absent in our toy model. This fact supports the position that, although decoherence
appears to be essential for explaining the classical limit, it is not necessary for obtaining the
state collapse postulate.
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