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Abstract We study the effects of the initial correlations in environment on the entangle-
ment dynamics of spin system. The correlated environment is novelly simulated by two
correlated wheel-shaped spin baths, each consisting of an intermediate spin interacting with
a spin-ring. The correlations in environment are achieved by the entanglement between two
intermediate spins. The spin system includes two system-spins, and the interaction between
the spin system and the environment is implemented by the coupling between the system-
spin and the intermediate spin. Firstly, we analyze the influences of the initial entanglement
between the two intermediate spins, the coupling parameters and the temperature of the
baths on the entanglement dynamics of the two system-spins in equivalent subsystems. It is
demonstrated that the initial entanglement between the baths can act as a resource for the
generation and the revivals of the entanglement of the system-spins. Moreover, the amount
of the generation and the revivals of the entanglement of the system-spins can be enhanced
by regulating the coupling constants and the temperature of the baths. In addition, we also
investigate the influences of different coupling ratios in non-equivalent subsystems, it is
found that changing the coupling ratios of two subsystems has a significant effect on the
generation and revivals of entanglement of system-spins.
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1 Introduction

Due to long decoherence time and scalability, spin systems have been widely applied in var-
ious fields of quantum computation and quantum information processing [1–3]. As other
quantum systems, realistic spin systems are not isolated and they are inevitably influenced
by their surrounding environments [4–6], especially the spin environments [7–12]. As a
result, their entanglement and coherence will be irretrievably lost, even vanished [9–11].
Recently, it has been observed that two spin qubits initially in the maximal entangled states
will completely disentangle in a finite time [13–15]. This phenomenon is called the entan-
glement sudden death (ESD). As entanglement is the most important resource for quantum
computation and quantum communication, the appearance of ESD puts a limitation to the
time when entanglement could be usefully exploited.

Extensive works have been put forward to protect entanglement or coherence in spin
systems [16–23]. And it has been found that strong system-environment couplings [17],
low temperatures [18] and initial system-environment correlations [20] play an important
role in the dynamics of spin systems. In addition, some meaningful proposals show that the
dynamics of entanglement can be frozen and inhibit their relaxation into the environment
by tuning the interaction parameters and the detuning [22, 23].

However, most previous literatures assumed that each spin locally couples to its own
environment and the environments for different spins are initially uncorrelated. The assump-
tion of independent environments may be much restrictive in realistic experiments. The
initial correlations between environments have been studied in the electromagnetic field
[24–26]. Interestingly, it has been shown that initial environmental correlations can be used
as a new resource for bringing memory effects in the dynamics of open quantum systems
[24] and can induce correlations between the initially uncorrelated atoms [25]. Moreover, it
has been verified experimentally that the information initially held in the environment can
induce nonlocal memory effects in a photonic open system [26]. So we are very interested
in what effects will be performed on the entanglement dynamics of the spin systems if there
are initial environmental correlations.

In this work, we consider a novel model, as shown in Fig. 1, two system-spins interact
respectively with their own environments. The environments are described with wheel-
shaped spin-baths and there are initial correlations between them. This model can be
reduced from realistic quantum system, e.g., coupled electron spins, with one of them cou-
pled to a bath of N nuclear spins in a quantum dot or nuclear magnetic resonance(NMR)
system [20]. In this paper, we study the effects of the initial correlations of spin-baths on
the entanglement dynamics of the two system-spins. The paper is organized as follows. In
Section 2, we describe our model in detail and present the Hamiltonian. In Section 3, we
derive the time-dependent expression of the reduced density matrix of the two system-spins.
In Section 4, we discuss the effects of various factors on the entanglement dynamics of the
two system-spins. Conclusions are given in Section 5.

2 The Model and Hamiltonian

The model we consider is shown in Fig. 1. The system consists of two subsystems (1 and
2). In each subsystem, a system-spin (A or B) interacts with an intermediate spin (a or b),
and the intermediate spin locates in the center of a spin-ring (R1 or R2) and interacts with
the spin-ring. The intermediate spin and the spin-ring form a wheel-shaped spin-bath for
the system-spin. We assume that the separation between the two subsystems is large enough



732 Int J Theor Phys (2016) 55:730–742

Fig. 1 (Color online) Sketch of the model. The system-spin (A or B) interacts with an intermediate spin (a
or b), and the intermediate spin also interacts with the spin-ring (R1 or R2). The wavy line between a and b

indicates that there are initial correlations between them

so that there is no direct interaction between them. However, there are initial correlations
between the two baths. The Hamiltonian for the whole system can be written as

H = H1 + H2, (1)

where H1 and H2 are the subsystem Hamiltonians, they can be written as

Hl = HS + HI + HSI + HIR + HR, (2)

here, l = 1, 2 denotes the subsystems 1 and 2. HS(S = A,B), HI (I = a, b) and HR(R =
R1, R2) are the Hamiltonians for the system-spin, the intermediate spin and the spin-ring,
respectively. HSI describes the interaction between the system-spin and the intermediate
spin, HIR denotes the interaction between the intermediate spin and the spin-ring. They
have following forms

HS = μ0S
z
0, (3)

HI = μIS
z
I , (4)

HSI = αl(S
+
0 S−

I + S−
0 S+

I ), (5)

HIR = βl√
N

(S+
I J− + S−

I J+), (6)

HR = γ

N
(J+J− + J−J+), (7)

where μ0,μI are proportional to the external magnetic field applied on the system-spin and
the intermediate spin along the z direction, respectively. For simplicity, we take μ0 = μI =
μ. αl is the coupling constant between the system-spin and the intermediate spin. βl stands
for the interaction strength between the intermediate spin and the spin-ring , and γ is the



Int J Theor Phys (2016) 55:730–742 733

coupling constant between the bath spins. Sz
0, S+

0 and S−
0 are the operators of the system-

spin, Sz
I , S+

I and S−
I are the operators of the intermediate spin. J± = ∑N

i=1 S±
i are the

collective angular momentum operators of the spin-ring, in which S±
i are the corresponding

operators of the ith spin in the ring, N is the number of the spins in the ring. In our model,
we assume that all the spins have the value 1/2, and all the spins in the ring have the same
coupling to the intermediate spin, and all the couplings among the spins in the ring are
the same, as considered in Refs [9, 22]. By using the Holstein-Primakoff transformation
J+ = b†

√
N − b†b, J− = (

√
N − b†b)b, with [b, b†] = 1, and in the limit N → ∞, the

bath can be described by a single-mode boson field, then we have

HIR = βl(S
+
I b + S−

I b+), (8)

HR = 2γ b†b. (9)

In this work, we only consider the on-resonant case μ = 2γ , which is much easier
to study in the interaction picture. The interaction Hamiltonian for the subsystem can be
written as

H ′
l = αl(S

+
0 S−

I + S−
0 S+

I ) + βl(S
+
I b + S−

I b+). (10)

The transformed Hamiltonian describes two coupled spins, with one of them interacting
with a single-mode boson field.

3 Analysis on the State Evolution

Under the assumption of non-interacting subsystems, the time evolution operator for the
whole system 1 ∪ 2 can be expressed as Utot (t) = U1(t) ⊗ U2(t) with U1(t) and U2(t)

having the same form exp(−iH ′
l t). Further, we assume initial state of the total system as

ρtot (0) = ρAB(0) ⊗ ρab(0) ⊗ ρR1 ⊗ ρR2 , (11)

where ρAB(0) = |�AB(0)〉 〈�AB(0)| and ρab(0) = |�ab(0)〉 〈�ab(0)| are the initial density
matrix of the system-spins and the intermediate spins with

|�AB(0)〉 = c1 |00〉 + c2 |11〉 , |�ab(0)〉 = d1 |01〉 + d2 |10〉 , (12)

here |c1|2 + |c2|2 = 1 and |d1|2 + |d2|2 = 1. ρR1 (ρR2 ) is the density matrix of the spin-
ring R1(R2) satisfying the Boltzmann distribution, ρR1 = ρR2 = e−HR/T /Z where Z =
T r(e−HR/T ) is the partition function and the Boltzmann constant has been set to 1.

Although the absence of direct interaction, subsystems 1 and 2 still display dynamical
correlations when the system-spins A and B (the intermediate spins a and b) are initially
prepared in entangled states. The entanglement revivals of the system-spins may come from
two sources, one is the initial entanglement of the system-spins itself, the other comes from
the transfer of the entanglement that initially stored in the intermediate spins. The different
forms of the entangled states |�AB(0)〉 and |�ab(0)〉 will help us to distinguish the origin
of the contributions to the entanglement revivals of the two system-spins.

The time evolution of the density matrix for the whole system is given by

ρtot (t) = Utot (t)ρtot (0)U
†
tot (t), (13)

where the exact expression of evolution operator Utot (t) of the whole system is obtained by
using the method proposed in reference [20] and the details are provided in the Appendix.
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Fig. 2 (Color online) a Time evolution of concurrence CAB(t) for two system spins initially in
|�AB(0)〉 = |00〉 with different initial correlation between intermediate spins (1) d1 = 1√

2
, d2 = 1√

2
(dot

curve), (2) d1 =
√

1
5 , d2 =

√
4
5 (dashed curve), (3) d1 =

√
1
10 , d2 =

√
9
10 (solid curve). b The corre-

sponding time evolution of concurrence Cab(t) for two intermediate spins initially in different states. Other
parameters: μ = 2γ , α1 = α2 = α, β1 = β2 = β, α/β = 1 , T = 1γ

The reduced density matrix of the two system-spins is calculated by tracing over the
environments consisting of a, b,R1,R2, namely

ρAB(t) = trabR1R2Utot (t)ρtot (0)U
†
tot (t) =

⎛

⎜
⎜
⎝

ρ11(t) 0 0 ρ14(t)

0 ρ22(t) ρ23(t) 0
0 ρ∗

23(t) ρ33(t) 0
ρ∗
14(t) 0 0 ρ44(t)

⎞

⎟
⎟
⎠ , (14)

The explicit expressions of the matrix elements are collected in the Appendix and they are
related to the initial state of the whole system, the coupling parameters and the temperature
of the baths. When the reduced density matrix is determined, the physical quantity of the
system-spins can be readily found out. In Section 4, we discuss the entanglement dynamics
of the system-spins with different initial conditions.

4 Numerical Analysis on the Entanglement Dynamics

In order to analyse the entanglement dynamics of the system-spins, we use the concurrence
[27] to measure the entanglement. The initial density matrix of the system-spins have the

Fig. 3 (Color online) Concurrence CAB(t) as a function of scaled time βt and the coupling ratio α/β with
different temperatures a T = 0.1γ , b T = 1γ , c T = 10γ . Other parameters: μ = 2γ , c1 = 1, c2 = 0,
d1 = d2 = 1√

2
, α1 = α2 = α, β1 = β2 = β
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Fig. 4 (Color online) ConcurrenceCAB(t) as a function of scaled time β1t with the coupling ratio α1/β1 = 2
and the different coupling ratios α2/β2 a β2 = β1, α2/β2 = 1.5, 2 and 2.5 (dot, solid and dashed curve);
b α2 = α1, α2/β2 = 1.5, 2 and 2.5 (dot, solid and dashed curve). Other parameters: μ = 2γ , T = 1γ ,
c1 = 1, c2 = 0, d1 = d2 = 1√

2

special X-structure, which is maintained during the evolution [22]. By virtue of the symme-
tries of such density matrix, the concurrence of the two system-spins can be simplified as
CAB(t) = C�(t) + C�(t) [25], where

C�(t) = 2max{0, [|ρ14(t)| − √
ρ22(t)ρ33(t)]}, (15)

C�(t) = 2max{0, [|ρ23(t)| − √
ρ11(t)ρ44(t)]}, (16)

here, C�(t) represents the concurrence preserved in the system-spins during evolution,
while C�(t) denotes the concurrence transferred from the initial entangled intermediate
spins. It is found that C�(t) and C�(t) cannot be positive simultaneously, so that we can
distinguish them easily. In this paper, we mainly concern the influence of initial concurrence
between the intermediate spins on the entanglement of the system-spins.

We first consider the case in which the system-spins are initially prepared in a product
state i.e., c1 = 1, c2 = 0, and the two subsystems are completely identical. Figure 2a shows
the influence of the different initial degree of entanglement of the intermediate spins on
the entanglement dynamics of the system-spins. Due to there is no initial entanglement and

Fig. 5 (Color online)a Time evolution of the concurrence CAB(t) of the two system-spins initially in
|�AB(0)〉 = 1√

2
(|00〉 + |11〉) with intermediate spins in different states d1 = 1/

√
2, d2 = 1/

√
2 (dashed

curve); d1 = √
1/10, d2 = √

9/10 (dot-dashed curve); d1 = 1, d2 = 0 (solid curve). The Bold lines denote
the concurrence transferred from the initial entangled intermediate spins. b The corresponding time evo-
lution of concurrence Cab(t) for two intermediate spins initially in different states. The Bold lines denote
the concurrence transferred from the initial entangled system-spins. Other parameters: μ = 2γ, T = 1γ ,
α1 = α2 = α, β1 = β2 = β, α/β = 2.5
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(a) (b) (c)

Fig. 6 (Color online) In the α/β ≤ 1 regime, a Concurrence CAB(t) as a function of βt and the coupling
ratio α/β; b Concurrence C�(t) as a function of βt and the coupling ratio α/β; c Concurrence C�(t) as a
function of βt and the coupling ratio α/β. Other parameters: μ = 2γ , T = 1γ , c1 = c2 = 1√

2
, d1 = d2 =

1√
2
, α1 = α2 = α, β1 = β2 = β

coupling between the two system-spins, the only origin of the concurrence of the system-
spins is the transfer of the entanglement that initially stored in the intermediate spins. It can
be observed that the entanglement of the system-spins emerges and oscillates with the scaled
time βt , and can be enhanced by increasing the degree of entanglement of the intermediate
spins. Meanwhile, we plot the concurrence of the intermediate spins with the scaled time βt

in Fig. 2b. By comparing Fig. 2a and b, one can explicitly find that a part of the entanglement
in the intermediate spins is transferred to the system spins through the system-intermediate
coupling.

Figure 3 illustrates the change of the concurrence of the system-spins as a function of
both scaled time βt and the ratio α/β with different temperatures. With increasing the value
of α/β, the generation of the entanglement in the system-spins is more rapid and the concur-
rence is larger. A comparison among Fig. 3a-c shows that higher temperature will suppress
the generation and the revivals of the entanglement in the system-spins.

Then we study the entanglement dynamics of the system-spins in non-equivalent subsys-
tems. For non-equivalent subsystems, we consider two cases (1) α1 �= α2, β1=β2 and (2)
β1 �= β2, α1 = α2. In Fig. 4 we plot the concurrence CAB(t) as a function of scaled time
β1t with fixed coupling ratio α1/β1 and different coupling ratios α2/β2. In the first case,
Fig. 4a shows that the magnitude and generated time of entanglement of the system-spins
with α1 = α2 are better than other non-equivalent coupling ratios. For the second case,
Fig. 4b shows that decreasing the value of β2 is benefit for the entanglement generation of
the system-spins.

(a) (b) (c)

Fig. 7 (Color online) In the α/β ≥ 1 regime, a Concurrence CAB(t) as a function of βt and the coupling
ratio α/β; b Concurrence C�(t) as a function of βt and the coupling ratio α/β; c Concurrence C�(t) as a
function of βt and the coupling ratio α/β. Other parameters: μ = 2γ , T = 1γ , c1 = c2 = 1√

2
, d1 = d2 =

1√
2
, α1 = α2 = α, β1 = β2 = β
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(a) (b) (c)

Fig. 8 (Color online) Concurrence CAB(t) as a function of scaled time βt and the coupling ratio α/β with
different temperature a T = 0.1γ , b T = 1γ , c T = 10γ . Other parameters: μ = 2γ , c1 = c2 = 1√

2
,

d1 = d2 = 1√
2
, α1 = α2 = α, β1 = β2 = β

Now we consider the situation in which the system-spins are initially prepared in a max-
imal entangled state, namely c1 = c2 = 1/

√
2 . Firstly, we also analyze how the initial

entanglement in the intermediate spins make effects on the entanglement dynamics of the
system-spins in equivalent subsystems. Figure 5a shows the concurrence of the system-spins
as a function of scaled time βt with different initial entangled states of the intermediate
spins and the concurrence of the system-spins strongly depends on the initial correlations
between the intermediate spins. For greater initial correlation of the intermediate spins, the
revived entanglement of the system-spins reaches a higher maximum and the revived time
lasts longer, but the decay of the concurrence of the system-spins gets quicker. These results
suggest that the initial correlations in environment can act as a resource for promoting the
revivals of entanglement in the system-spins. On the other hand, the initial entanglement
of system-spins also transfer to the intermediate spins. In Fig. 5b, we plot the entangle-
ment evolution of the intermediate spins for observing the entanglement flow between the
system-spins and intermediate spins. By comparing Fig. 5a and b, it can be found that both
of the concurrence of system-spins and the intermediate spins consist of two part. One is the
concurrence of the entanglement preserved in themselves during evolution, and the other as
the bold lines in Fig. 5a and b denote the transferred from each other.

(a) (b)

Fig. 9 (Color online) Concurrence CAB(t) as a function of scaled time β1t with the coupling
ratio α1/β1 = 3 and the different coupling ratio α2/β2 a β2 = β1, α2/β2 = 2, 3 and 4 (dot, solid
and dashed curve); b α2 = α1, α2/β2 = 2, 3 and 4 (dot, solid and dashed curve). Other parameters:
μ = 2γ , T = 1γ , c1 = c2 = 1√

2
, d1 = d2 = 1√

2
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Then we discuss how the entanglement dynamics of the system-spins are influenced by
the ratio α/β of the coupling parameters. Here the intermediate spins are initially prepared
in the Bell state with d1 = d2 = 1√

2
. In the α/β ≤ 1 regime, the concurrence of the system-

spins is plotted as a function of scaled time βt and the ratio α/β in Fig. 6a. It is shown that,
the smaller the value of the ratio α/β is, the better the entanglement is preserved. In order
to figure out the origin of the entanglement CAB(t) of the system-spins, we plot the time
evolution of C�(t) and C�(t) in Fig. 6b and c. One can see clearly that the initial entan-
glement in the system-spins contributes to the most of CAB(t) while the initial entangled
intermediate spins contribute little. The reason is that when α � β, the entanglement of the
intermediate spins loses quickly to the ring.

In the α/β ≥ 1 regime, the decay rate of the concurrence of the system-spins increases
and the revivals of the entanglement of the system-spins become much stronger when the
value of the ratio α/β is larger, as shown in Fig. 7. From Fig. 7b and c, we can see that
both C�(t) and C�(t) contribute to the entanglement revivals, and the time period of their
contribution to the entanglement revivals is complementary because that C�(t) and C�(t)

cannot be positive simultaneously. The difference between Figs. 6c and 7c shows that the
strong coupling between the system-spin and the intermediate spin make the entanglement
of the intermediate spins transfer to the system-spins. The effect of the temperature on the
entanglement dynamics of the system-spins is shown in Fig. 8, it demonstrates that high
temperatures depress the revivals of the entanglement.

Finally, we also discuss the effect of non-equivalent subsystems with coupling ratio
α1/β1 �= α2/β2 on entanglement dynamics of the system-spins. Like as the situation of
system-spins prepared in product state, Fig. 9a and b demonstrate that keeping α1 = α2 and
decreasing the value of β2 are effectively promoted to the revivals of entanglement of the
system-spins.

5 Conclusions

In summary, we have studied the effects of initial environmental correlations on the entan-
glement dynamics of the system-spins. The entangled environment is constructed by two
entangled intermediate spins, each embedded in the center of a wheel-shaped bath. The
interaction between the system-spin and the environment is simulated by the coupling
between the system-spin and the intermediate spin.

In this work, we firstly analysed numerically the time evolution of concurrence of the
system-spins influenced by the initial correlations in environment, the coupling ratio α/β,
and the temperature of the baths in equivalent subsystems. It is shown that when we increase
the initial degree of entanglement in environment, the amount of generation and revivals
of the entanglement of the system-spins become stronger and the revived time lasts longer,
but the decay rate of the concurrence gets quicker. Moreover, with increasing the value of
the coupling ratio α/β which regulates the degree of non-Markovian characteristics of the
system, the entanglement of the intermediate spins transferring to the system-spins can be
evidently enhanced. While the high temperature of the bath always suppresses the transfer
of the concurrence from the initial entangled intermediate spins. These results suggest that
the initial correlations in environment can act as a resource for generating entanglement
and promoting the revivals of entanglement in the system-spins, and we can enhance the
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non-Markovian effects of the spin system by increasing the coupling ratio α/β or decreasing
the temperature of the baths. In addition, we investigated the effects of different coupling
ratios for non-equivalent subsystems on the entanglement dynamics of system-spins. It is
found that keeping coupling constant α1 = α2 and decreasing the value of β2 are benefit for
the generation and revivals of entanglement of the system-spins.
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Appendix

In the Appendix we provide the method to obtain the exact time evolution operator and the
reduced density matrix of the system-spins. Note that the environment is constituted by the
intermediate spins and the spin-rings, it is difficult to trace over them together directly. Here,
we adopt a skillful method to handle this problem. Firstly, we take the two system-spins and
the two intermediate spins as a whole, and their reduced density matrix can be written as

ρAaBb(t) = trR1R2 [U1(t) ⊗ U2(t)ρAB(0) ⊗ ρab(0)⊗ρR1 ⊗ ρR2U
†
1 (t) ⊗ U

†
2 (t)]. (17)

Since there is no interaction between the subsystems 1 and 2 , we first concentrate on the
time evolution operator of a single subsystem only. We use Uij to denote the components
of the single time evolution operator Ul acting on the basis {|00〉, |01〉, |10〉, |11〉}, here
|mn〉 corresponds to the states of the system-spin and the intermediate spin [20]. From the
Schrodinger equation we obtain

d

dt
U1j = −i βlb

+U2j , (18)

d

dt
U2j = −i [−βlbU1j + αlU3j ], (19)

d

dt
U3j = −i [αlU2j + βlb

+U4j ], (20)

d

dt
U4j = −i βlbU3j . (21)

Here, j = 1, 2, 3, 4 is the number of the column of the evolution operator Ul in the
chosen basis. Differentiating the equations (19) and (20), we obtain

d

dt2
U2j = −iβ2

l (1 + n̂)U2j − iαl

d

dt
U3j (22)

d

dt2
U3j = −iβ2

l n̂U3j − iαl

d

dt
U2j (23)
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where n̂ = b+b. By combining with the equations (18) and (21), we can get the explicit
expressions of the evolution operator

U11 =
(A1 + α2

l − β2
l ) cosh(B1+t√

2
) + (A1 − α2

l + β2
l ) cosh(B1−t√

2
)

2A1
, (24)

U21 =
−ibβl[(A1 + α2

l + β2
l )B1+ sinh(B1−t√

2
) + (A1 − α2

l − β2
l )B1− sinh(B1+t√

2
)]

√
2A1B1−B1+

,(25)

U31 =
αlβlb[cosh(B1−t√

2
) − cosh(B1+t√

2
)]

A1
, (26)

U41 =
−i

√
2αlβ

2
l bb[B1+ sinh(B1−t√

2
) − B1− sinh(B1+t√

2
)]

A1B1−B1+
, (27)

U12 =
−iβlb

+[(A1+α2
l +β2

l )B1+ sinh(B1−t√
2

)+(A1 − α2
l − β2

l )B1− sinh(B1+t√
2

)]
√
2A1B1−B1+

, (28)

U22 =
(A1 + α2

l + β2
l ) cosh(B1−t√

2
) + (A1 − α2

l − β2
l ) cosh(B1+t√

2
)

2A1
, (29)

U32 = U23 =
iαl[B1− sinh(B1−t√

2
) − B1+ sinh(B1+t√

2
)]

√
2A1

, (30)

U42 =
αlβlb[cosh(B1−t√

2
) − cosh(B1+t√

2
)]

A1
, (31)

U13 =
αlβlb

+[cosh(B1−t√
2

) − cosh(B1+t√
2

)]
A1

, (32)

U33 =
(A1 + α2

l − β2
l ) cosh(B1−t√

2
) + (A1 − α2

l + β2
l ) cosh(B1+t√

2
)

2A1
, (33)

U43 =
−iβlb[(A1 + α2

l − β2
l )B1+ sinh(B1−t√

2
) + (A1 − α2

l + β2
l )B1− sinh(B1+t√

2
)]

√
2A1B1−B1+

,(34)

U14 =
−i

√
2αlβ

2
l b+b+[B1+ sinh(B1−t√

2
) − B1− sinh(B1+t√

2
)]

A1B1−B1+
, (35)

U24 =
αlβlb

+[cosh(B1−t√
2

) − cosh(B1+t√
2

)]
A1

, (36)

U34 =
−iβlb

+[(A1 + α2
l −β2

l )B1+ sinh(B1−t√
2

)+(A1−α2
l + β2

l )B1− sinh(B1+t√
2

)]
√
2A1B1−B1+

, (37)

U44 =
(A1 − α2

l − β2
l ) cosh(B1−t√

2
) + (A1 + α2

l + β2
l ) cosh(B1+t√

2
)

2A1
. (38)

In the above equations we have used the notation

A1 =
√

(α2
l + β2

l )
2 + 4α2

l β
2
l n̂, B1,± =

√
−α2

l − β2
l (1 + 2n̂) ± A1



Int J Theor Phys (2016) 55:730–742 741

Having determined the exact analytical form of the evolution coefficients Uij of the
single subsystem, we could get the total components of the time evolution operator Utot (t).
And after the trace over the intermediate spins, we can find the explicit reduced density
matrix of the two system-spins as

ρAB(t) =

⎛

⎜
⎜
⎝

ρ11(t) 0 0 ρ14(t)

0 ρ22(t) ρ23(t) 0
0 ρ∗

23(t) ρ33(t) 0
ρ∗
14(t) 0 0 ρ44(t)

⎞

⎟
⎟
⎠

where

ρ11(t) = |c1|2f1(t)f2(t) + |c2|2f3(t)f4(t),

ρ44(t) = |c1|2g1(t)g2(t) + |c2|2g3(t)g4(t),

ρ22(t) = |c1d1|2f1(t)g2(t) + |c1d2|2f2(t)g1(t)
+ |c2d1|2f3(t)g4(t) + |c2d2|2f4(t)g3(t),

ρ33(t) = |c1d2|2f1(t)g2(t) + |c1d1|2f2(t)g1(t)
+ |c2d2|2f3(t)g4(t) + |c2d1|2f4(t)g3(t),

ρ23(t) = |c1|2d1d∗
2h23(t) + |c2|2d1d∗

2h24(t),

ρ14(t) = ρ∗
41(t) = c1c

∗
2h1(t)h2(t),

and

f1(t) = 1
Z

(
∞∑

n=0
U11U

†
11e

−2γ n/T +
∞∑

n=1
U21U

†
21e

−2γ n/T ),

f2(t) = 1
Z

(
∞∑

n=0
U12U

†
12e

−2γ n/T +
∞∑

n=0
U22U

†
22e

−2γ n/T ),

f3(t) = 1
Z

(
∞∑

n=0
U13U

†
13e

−2γ n/T +
∞∑

n=0
U23U

†
23e

−2γ n/T ),

f4(t) = 1
Z

(
∞∑

n=0
U14U

†
14e

−2γ n/T +
∞∑

n=0
U24U

†
24e

−2γ n/T ),

g1(t) = 1
Z

(
∞∑

n=1
U31U

†
31e

−2γ n/T +
∞∑

n=2
U41U

†
41e

−2γ n/T ),

g2(t) = 1
Z

(
∞∑

n=0
U32U

†
32e

−2γ n/T +
∞∑

n=1
U42U

†
42e

−2γ n/T ),

g3(t) = 1
Z

(
∞∑

n=0
U33U

†
33e

−2γ n/T +
∞∑

n=1
U43U

†
43e

−2γ n/T ),

g4(t) = 1
Z

(
∞∑

n=0
U34U

†
34e

−2γ n/T +
∞∑

n=0
U44U

†
44e

−2γ n/T ),

h1(t) = 1
Z

(
∞∑

n=0
U11U

†
33e

−2γ n/T +
∞∑

n=1
U21U

†
43e

−2γ n/T ),
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h2(t) = 1

Z
(

∞∑

n=0

U12U
†
34e

−2γ n/T +
∞∑

n=0

U22U
†
44e

−2γ n/T ),

h3(t) = 1
Z

(
∞∑

n=0
U11U

†
32e

−2γ n/T +
∞∑

n=1
U21U

†
42e

−2γ n/T ),

h4(t) = 1
Z

(
∞∑

n=0
U13U

†
34e

−2γ n/T +
∞∑

n=0
U23U

†
44e

−2γ n/T ).

In the above expressions, Z = 1
1−e−2γ /T .
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