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Abstract In this paper we will show that purely classical concepts based on a few heuristic
considerations about extended field configurations are enough to compute the leptonic
magnetic moment with corrections in α-power perturbative expansion.
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1 Historical Introduction

1947’s Shelter Island’s conference is known to have raised awareness around two effects,
the anomalous magnetic moment of the electron [1] and the Lamb shift in hydrogen atoms
[2, 3], which were shortly later explained in terms of n-loop contributions; the following
year another effect, the Casimir effect [4], was explained in terms of zero-point energies: as
the former two can be interpreted by means of creation and re-absorption of virtual particles,
while the latter one can be interpreted by means of vacuum fluctuations, these three effects
are altogether taken as proof to justify the interpretation for which quantum fluctuations are
real [5] — nevertheless, if we wish to avoid meaningless interpretations, it is necessary to
take into account these figures rather gingerly.

A first instance indicating that quantum fluctuations, and more precisely vacuum fluc-
tuations, are not necessarily real should have been seen already in the seminal paper about
the Casimir effect: Casimir calculated the pull of two plates using zero-point energies only
after Bohr suggested to follow a method simpler than the original one, in terms of which
Casimir and Polder calculated the attraction between paired conductors employing retarded
van der Waals forces; the Casimir force has also been computed in terms of radiative
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processes connected to external legs by Jaffe [6], or fields in interaction with external
sources by Schwinger [7]. In none of these calculations is the zero-point energy found: if
Jaffe replaced the ground-state with higher-order corrections but always dealing with oper-
ators while Schwinger replaced operators with sources in a formalism that was essentially a
path-integral formulation, Casimir and Polder considered no quantum concept. So we may
ask if also for the other two effects field quantization may be avoided.

The reality of quantum fields could also be questioned in view of what might give rise
to the Lamb shift for the hydrogen atom, with the hyper-fine splitting described by Bethe
in terms of the quantum setting: nevertheless, it has also been shown in a semi-classical
treatment by Welton that it is possible to describe these splittings as differences of the
potential due to oscillations in the position of the electron [8]; moreover, we can make
entirely classical this description if the displacement in the location of the electron is due its
Zitterbewegung [9].

That the hyper-fine splittings could be re-interpreted by assuming that electrons have a
trembling motion is important for the fact that in their decay rates, para-positronium and
ortho-positronium display a discrepancy in the fine-structure constant [5]: the reason may
be that in the case of positronium, electrons and positrons have an elementary dynamics, but
singlet and triplet states of positronium may receive different contributions if the electron
and positron were to have non-trivial dynamics.

Finally, also the electron magnetic moment correction has been calculated in terms of
Zitterbewegung [10].

This is important because the calculated and measured values of the anomalous magnetic
moment, if in the case of the electron they agree, in the case of the muon they disagree
for 3.4 standard deviations [11]: this discrepancy might be quenched for leptons of finite
extension.

That such corrections have something to do with a finite extension is clear since the
most precise tests of QED strongly depend on the precision about the measurement of the
Compton wave-length of particles [5].

As it is clear, precision tests of QED do show discrepancies between experiments and
theory.

Still worse is the fact that QED is known to have problems in its theoretical structure: the
most well-known and important is that (for the energy shifts and the anomalous magnetic
moment of leptons) calculations are done by using a cut-off that is not intrinsic to QED,
therefore suggesting that the theory would have to fail beyond a certain energy scale; also
(in the case of the anomalies for the magnetic moment of leptons) calculations are based
on perturbative expansions which, despite being finite term-by-term, do not converge in the
entire series.

However, an additional requirement in terms of which all calculations are done is the
existence of expressions

AI = UA0U
−1 (1)

|I 〉 = U |0〉 (2)

which spell that operators and states in interaction are unitarily equivalent to the correspond-
ing operators and states in free case: expressions (1–2) are known as interaction picture, but
they cannot hold in a Lorentz-covariant quantum field theory as proven by Haag theorem
[12].

As a consequence, Haag theorem, demonstrating that the interaction picture is inconsis-
tent, tells that quantum field theory may make no sense whatsoever [13].
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This suggests that it is preferable to employ the formalism of field theory assuming no
additional arbitrary tool, and in any case it is merely a question of general interest studying
what is the extent of classical fields.

In clarifying the reach of classical fields one may get an insight about the essence of
quantum effects and indeed there may be a physical meaning that can be extracted from the
quantization protocols: the fact that quantization prescriptions, being related to stochastic
processes, involve an infinite number of degrees of freedom, makes it possible to interpret
the particle as an extended field.

Assuming classical fields with a finite size and calculating what are the consequences
for the leptonic magnetic moment correction is what we will do in this paper.

2 Classical Extended Fields

In the introduction, we have re-called and high-lighted that quantum electrodynamics in its
fundamental structure may be not well defined at all [13], and consequently it is wise to do
calculations avoiding any form of field quantization prescription; also we have remarked
that the presence of the Compton wave-length of the particle is ubiquitous [5], which
suggests that considering point-like particles is restrictive: a leptonic magnetic moment cor-
rection up to the lowest-order was calculated for a classical particle looking like an extended
field because of its Zitterbewegung in [10], although in this paper there are again addi-
tional arbitrary assumptions maybe avoidable for a classical particle as an extended field
distribution.

In this direction, there are works in settings that are semi-classical [14], or classical [15,
16], where the leptonic magnetic moment correction is shown to be present, although the
generality of the treatment forbade the computation of its magnitude; nevertheless while in
the previous works exact solutions were needed, here a few simple features of the material
distribution would be enough.

To see what these properties are, we start from the fundamental observation that, despite
the field is fundamental, nevertheless it is not irreducible: 1

2 -spin spinors have two com-
plementary parts, the left-handed and the right-handed semi-spinor projections; if we think
at these two components as wave-packets localized in two regions, then the two peaks are
separated by a distance equalling the size of the particle given by the Compton wave-length
that is associated to the mass of the particle itself.

The model we employ is a (1+3)-dimensional spacetime with torsion and metric forming
the metric-compatible connection, orthonormal frames allow general coordinate transforma-
tions to become specific Lorentz transformations, vector Aμ is the electrodynamic potential,
and by writing the Lorentz transformation in complex representation, Clifford matrices
{γ μ, γ ν} = 2gμν

I are introduced so that the 1
2 -spin spinors ψ are defined; in terms of par-

tial derivatives Fμν = ∂μAν −∂νAμ is the electrodynamic strength, whereas in terms of the
most general covariant derivative of the spacetime and with the electrodynamic potential
Dμψ = ∇μψ +iqAμψ is the gauge-covariant derivative with charge q of the spinor field:
this is the kinematic structure of the leptonic matter field we study.

For the dynamical evolution we may assume that torsion be negligible and the metric be
flat although we retain the use of curvilinear coordinates; for the electrodynamic interaction
of the spinor field the action is hence

L=− 1
4FμνF

μν + i
2

(
ψγ μDμψ−Dμψγ μψ

)−mψψ (3)
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in terms of the mass m of the matter field, and whose variation gives the ensuing field
equations according to

∇αFαν =qψγ νψ (4)

iγ μDμψ−mψ =0 (5)

or in an equivalent explicit form that is given by

∇α∇αAν =qψγ νψ (6)

iγ μ∇μψ−qAμγ μψ−mψ =0 (7)

in Lorentz-gauge ∇A = 0 as known: the system of the Maxwell field equations (6) has
solution given by

Aν = q

4π

∫
ψ ′γ νψ ′

|�r−�r ′| d3r ′ (8)

called retarded potentials and which can be substituted into the Dirac field equation (7) so
that they become

iγ μ∇μψ− q2

4π

∫
γ μψψ ′γμψ ′

|�r−�r ′| d3r ′−mψ =0 (9)

where ψ ′ =ψ ′(t−|�r−�r ′|, �r ′) and ψ =ψ(t, �r ) were used and showing the retardation acting
on the spinor field.

From the Dirac field equation we get the Gordon form

∇μ

(
i
4ψ [γ α, γ μ] ψ

)+ i
2

(
ψ∇αψ−∇αψψ

) −
−qAαψψ−mψγ αψ ≡0 (10)

decomposed into the divergence of the leptonic spin plus the current the lepton would have
had if it were a scalar plus the retarded potentials plus the leptonic current.

In non-relativistic limit, potentials (8) have the purely spatial part that is given according
to the expression

�A= q

4π

∫
ψ ′ �γψ ′

|�r−�r ′|d
3r ′ (11)

with no retardation after all and as it is known in the standard representation the spinor
reduces to the form that is given according to ψ = (φ†, 0) with a dependence of the type
φ′ =φ′(�r ′) and φ =φ(�r ) themselves showing no sign of retardation; as a consequence, the
Gordon decomposition (10) has the purely spatial part given by

�∇×
(
φ† �σ

2 φ
)
− i

2

(
φ† �∇φ− �∇φ†φ

)
−φ†φq �A≡mψ �γψ (12)

where the current the lepton would have if it were a scalar accounts for the linear momentum
and so it is negligible.

Plugging solution (11) into expression (12) we get

�∇×
(

φ† �σ
2

φ

)
≡mψ �γψ+ q2

4π

1

m

∫
mψ ′ �γψ ′φ†φ

|�r−�r ′| d3r ′ (13)
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where the electrodynamic potentials have disappeared from an expression that now yields
the curl of the spin density in terms of the mechanical momentum density plus the mechan-
ical momentum density induced by the electrodynamic interaction of the entire field
distribution.

Up to now all is general, but from this moment on we may take advantage of the heuristic
interpretation of extended fields given above: in it the lepton is described in terms of two
wave-packets separated in average by the Compton wave-length; the two wave-packets are
to be identified with the left-handed and right-handed semi-spinor components localized in
�r and �r ′ so that they can be written as in ψ† = (L†, 0) and ψ ′† = (0, R†) respectively, with
the condition |�r −�r ′| = λ and λ being the Compton wave-length associated to the mass of
the particle.

When the field equations (9) are decomposed in terms of the left-handed and right-
handed semi-spinorial components, we get the pair of coupled equations

iγ μ∇μL− q2

4π

∫
γ μLL′γμL′

|�r−�r ′| d3r ′ −

− q2

4π

∫
γ μLR′γμR′

|�r−�r ′| d3r ′−mR=0 (14)

iγ μ∇μR− q2

4π

∫
γ μRL′γμL′

|�r−�r ′| d3r ′ −

− q2

4π

∫
γ μRR′γμR′

|�r−�r ′| d3r ′−mL=0 (15)

in which it is possible to see that each of the chiral projections has a self-interaction plus
an interaction with the other chiral projection: for the self-interaction, the integral contains
the pole �r → �r ′ but since in that point we also have L → L′ and R → R′ and because
we know that γ μLLγμL ≡ 0 and γ μRRγμR ≡ 0 then the self-interaction terms vanish;
for the mutual interaction, the distance is fixed at the Compton wave-length and therefore
ultra-violet divergences do not necessarily occur.

In the Gordon decomposition the splitting in left-handed and right-handed semi-spinorial
components has the same features; thus when in (13) we split the integral in the two regions
occupied by the two matter distributions that correspond to the two chiral projections we
may neglect the integral containing the pole while in the remaining integral condition |�r−
�r ′|=λ may be used.

In the non-relativistic approximation, in chiral representation the left-handed and right-
handed projections tend to become identical, implying the validity of the relationships
mψ ′ �γψ ′ ≈ −mψ �γψ and φ′†φ′ ≈ φ†φ as it is clear since the two opposite helicity states
must have opposite spatial momentum densities and for wave-packets we have mψ ′ �γψ ′ =
φ′†φ′ �p ′ and mψ �γψ = φ†φ �p as it can be seen by employing plane waves: expression (13)
becomes

�∇×
(

φ† �σ
2

φ

)
≡mψ �γψ− q2

4π

1

mλ

∫
mψ �γψφ′†φ′d3r ′ (16)

and because it is always possible to have the wave-packet normalized to unity then we may
finally write

�∇×
(

φ† �σ
2

φ

)
≈mψ �γψ

(
1− α

2π

)
(17)
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since α = q2

4π
and as mλ = 2π is by definition the Compton wave-length associated to the

mass of the particle and giving the curl of the spin density in terms of the momentum density
in a very simple relationship indeed.

This expression will be used to calculate in terms of the spin the leptonic magnetic
moment of the particle.

3 Leptonic Magnetic Moment Correction

We may now proceed to the actual computation of the leptonic magnetic moment and its
principal corrections.

The general definition of the magnetic moment comes directly from similarly general
considerations about the multi-pole expansion in electrodynamics and it is

�μ= 1

2

∫
�r×(

qψ �γψ
)

d3r (18)

in terms of the leptonic current; then (17) inverted as

mψ �γψ =
(

1− α

2π

)−1 �∇×
(

φ† �σ
2

φ

)
(19)

furnishes the form of the leptonic current in terms of the leptonic spin density: together they
give the relationship

�μ= q

2m

(
1− α

2π

)−1
∫

�r×
[

�∇×(φ† �σ
2

φ)

]
d3r (20)

which have to be integrated over the occupied volume.

Because it is 1
2 �r×

[ �∇×(φ† �σ
2 φ)

]
≡φ† �σ

2 φ up to surface terms that can be neglected inside

the integral then

�μ= q

2m

(
1− α

2π

)−1
2
∫

φ† �σ
2

φ d3r (21)

in which the integral of the leptonic spin density is the leptonic spin: so we may write the
final form

�μ= q

2m

(
1− α

2π

)−1
2�s (22)

of the leptonic magnetic moment with the leptonic spin.
Because of the smallness of the constant we expand

�μ≈�s q

2m
2
(

1+ α

2π

)
(23)

to the lowest-order of α
2π

in the perturbative series.
According to this last formula, it is possible to read that the leptonic magnetic moment

is given by the spin, times the factor q
2m

as it should be expected, times the gyro-magnetic
factor 2

(
1 + α

2π

)
itself being the product of the factor 2 that recovers the prediction of the

Dirac theory and the fine structure factor 1+ α
2π

in which the unity is corrected by the factor
α

2π
in perturbation that recovers the prediction from Schwinger’s calculations.
In our heuristic interpretation the gyro-magnetic factor has this meaning: factor 2 comes

from the two-fold multiplicity of 1
2 -spin spinors; in the fine-structure factor, the unity term

is determined by the mechanical moment and it is corrected by powers of α as result of



Int J Theor Phys (2016) 55:669–677 675

the mutual electrodynamic interaction between left-handed and right-handed semi-spinorial
components: more precisely, the lowest-order power is given by α

2π
as the result of the

fact that each semi-spinorial component is a charged field moving in the electrodynamic
potential induced by the other semi-spinorial component at the distance of the Compton
wave-length; higher-order powers would be due to the fact that each semi-spinorial compo-
nent moves in the electrodynamic potential induced by the other semi-spinorial component
which itself moves in the electrodynamic potential induced by the initial semi-spinorial
component, so that each would respond through the other to the action produced by itself
in a back-reaction of electrodynamic origin which has the effect of changing the distance
separating the two semi-spinorial projections.

We have not accounted for these corrections because if we were to consider them then
in the electrodynamic self-coupling the retarded potentials could not be approximated as
instantaneous and the non-relativistic limit would no longer be valid; as for the moment
we shall not consider these relativistic corrections because they are beyond the aim of the
present paper, but instead we will try to argue in what way a slight change in the aver-
age separation between the two semi-spinorial components would affect the result of the
previous computations.

We are going to speculate on this in next section.

4 Speculative Remarks

In view of further work, it is necessary to ask how we can extend these results, and clearly
the answer is that we have to renounce to the single hypothesis that has been assumed in
the paper, that is the fact that the extension of the matter field be the Compton wave-length
exactly.

Nevertheless, it is an observed fact that the scale at which the particle starts to display
wave properties is the Compton scale, and thus we are allowed to assume that the extension
of the field be not much different from the Compton wave-length: if the extension of the
field were given by an expression that is the Compton wave-length plus a small correction
|�r−�r ′|=λ+δλ then

�μ≈�s q

2m
2

(
1− α

2π+mδλ

)−1

(24)

which we can expand in powers of both α and δλ in every calculation, but there is more that
is to be said about it.

As precision measurements tell what is the magnetic moment correction then it is possi-
ble to see that the expected order of magnitude is obtained when the Compton wave-length
correction is of the order of magnitude of the constant of fine-structure over the mass: with
this foresight we may write δλ=k α

m
and therefore we obtain

�μ≈�s q
2m

2
(

1+ 1
2

α
π

+ 1−k
4

∣
∣ α
π

∣
∣2

)
(25)

in which the parameter k is of the order of unity.
In the expansion k begins to affect the coefficients starting from the power two: it is

interesting to remark that the magnetic moment can be interpolated precisely for the electron
by the parameter k ≈ 2.53 while for the muon by the parameter k ≈ −2.11 and for the tau
by the parameter k≈−10.33 which are of the same magnitude.
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Let us recollect now the main features: first of all, the initial relationship |�r − �r ′| =
λ+ k α

m
spells that the two chiral projections are separated by a distance that in average

is the Compton wave-length with a correction of the order of magnitude of the leptonic
classical radius, an occurrence that we find curious; in the second place, the parameter k

has influences that are present for the power two and higher, which means that the leptonic
magnetic moment correction at the lowest-order can be explained as the electrodynamic
mutual interaction between the two chiral components at the distance of the Compton wave-
length plus a given correction, and that terms at higher-order would be addressed not only in
terms of electrodynamic back-reaction but also in terms of this correction to the distance that
separates the two chiral projections. Such an adjustable factor allows diverse fine-structure
corrections for the different leptons.

We notice that the field extension diminishes when the particle mass increases and thus
we speculate that more information may be available if we find some link between size and
mass, maybe in terms of torsion gravity.

5 Interpretation

To interpret what we have been doing, we may say that we have considered the lepton no
longer as a point-like particle but as an extended field with an internal structure constituted
by two chiral projections themselves taken as point-like particles and separated by the asso-
ciated Compton wave-length; this picture may look naı̈ve but it is merely the application
for leptons of a picture that for hadrons is successful: as hadrons are composite of quarks
and their chromodynamic interactions similarly leptons can be thought as composite of two
chiral projections and their electrodynamic interactions.

Nevertheless, we have that the simpler structure of leptons compared to hadrons and the
weaker coupling of photons compared to gluons are why the correction of leptons compared
to hadrons is less dramatic.

6 Conclusion

In this paper, we have considered the heuristic interpretation of leptons as extended objects
with an internal structure given by the two chiral projections localized in two small regions
separated by the Compton wave-length of the mass of the particle, and we have taken the
non-relativistic limit; we have seen that ultra-violet divergences do not necessarily arise
and we have calculated the leptonic magnetic moment correction to the lowest-order, even-
tually speculating about possible reasons for higher-order corrections: we have remarked
that leptonic magnetic moment corrections and hadronic magnetic moment anomalies
may have an analogous interpretation and so they may have the very same physical
meaning.

In this picture, we considered no tool whose existence might be questioned in the same
way in which one may question the existence of the interaction picture through the Haag
theorem: the difference compared to quantum field theory is that here leptons have an inter-
nal structure, but this comes from the fact that leptons are reducible, which is no assumption;
nor is it in debate the fact that the field extension is the Compton wave-length associ-
ated to the particle mass. Hence, the correction to the gyro-magnetic factor of leptons is
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described in terms of the electrodynamic interaction between the two chiral projections of
the field; this result has to be taken together with the fact that the hyper-fine splitting can
be described in terms of a displacement in the location of the electron due to its Zitterbewe-
gung, and with the original description of the Casimir effect as due to the retardation in van
der Waals forces. These threes results describe in terms of extended fields and their retarded
interactions but with no field quantization the three effects that are commonly described
precisely by field quantization.

There is however a point that must be addressed about the hypothesis we assumed:
although there is no debate around the fact that the average extension of the field be the
Compton wave-length and despite that this condition is assumed systematically in quantum
field theory as well, nevertheless it remains unjustified; and on the contrary we know that
there are situations in which such a condition does not hold, as for the case of hadrons since
their dimension is given by chromodynamic confinement.

Nevertheless, it may be that the underlying mechanism is essentially correct for leptons,
quarks and hadrons, and that the differences appearing for the last instances could simply
be corrections arising from strong processes.

Were this the case, then classical extended fields could replace quantization protocols;
in QED, the common procedure is that of considering the particle to be point-like although
quantization would give rise to a surrounding cloud of virtual bosons that makes point-
like particles look like classical extended fields: but it may well be that quantum particles
actually are classical extended fields.

That implementing field quantization for point-like particles may merely mean consid-
ering classical extended fields is an idea underlying in the accepted interpretation the entire
framework of QED: we suggest that this is no coincidence and that it has to be taken
seriously.

Retaining the description in terms of classical extended fields is theoretically simpler
although it will take time for this idea to get the same QED precision.

But it may be curious to think at what might have happened if this idea came back in
1947.
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