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Abstract In our previous work (Wang J. Math. Phys. 49, 033513 (2008)) two problems
remain to be resolved. One is that we lack a minimal group to replace GL(4,C), the other is
that the Equation of Motion (EoM) for fermion has no mass term. After careful investiga-
tion we find these two problems are linked by conformal group, a subgroup of GL(4,C). The
Weyl group, a subgroup of conformal group, can bring about the running of mass, charge
etc. while making it responsible for the transformation of interaction vertex. However, once
concerning the generation of the mass term in EoM, we have to resort to the whole con-
formal group, in which the generators Kμ play a crucial role in making vacuum vary from
space-like (or light-cone-like)to time-like. Physically the starting points are our previous
conclusion, �E2 − �B2 �= 0 for massive bosons, and the two-photon process yielding e+e−
pair. Finally we get to the conclusion that the mass term of strong interaction is linearly
relevant to (chromo-)magnetic flux as well as angular momentum.

Keywords Nonlocal interaction · Conformal group · Fermion mass

1 Introduction

In our previous paper [1], a complex-geometry approach to quantum field theory was pro-
posed, aiming at describing nonlocal interaction (in the low-energy limit) through curvature
effects in certain kinds of complex space. In such approach, the field equations for inter-
acting fermions and bosons are obtained based on the assumption that there always exists
a complex reference frame for a fermion in which it behaves as a plane wave, i.e. as a free

� Hai-Jun Wang
hjwang@jlu.edu.cn

1 Center for Theoretical Physics and School of Physics, Jilin University, Changchun 130012, China

mailto:hjwang@jlu.edu.cn


578 Int J Theor Phys (2016) 55:577–594

(non-interacting) particle. This assumption is regarded as “principle of nonlocality”——
but actually it is a “complexification” of the Einstein’s Equivalence Principle (EEP). The
equation of motion (EoM) for fermions is derived by demanding that the fermions move
just along a “geodesic line” in the complex space. And by a transformation of observers,
we conclude that it is just the quadratic form of the standard Dirac equation, yet with-
out the mass term. The field equation for bosons is also derived, in which the mass
of boson occurs automatically and is proportional to �E2 − �B2. The conclusion holds
apparently for photon since �E2 − �B2 = 0 there. The theory might be useful in study-
ing non-perturbative dynamical systems, such as hadron spectra or scattering between
hadrons. In such a theory, a few problems remain to resolve, one of which is that the
structure group GL(4,C) is too large. Another is that a mass term is missing while deriv-
ing EoM for fermions. In this paper we try to analyze and resolve these two problems
consistently.

In our model, there are two kinds of curving——hyperbolic curving and elliptic curv-
ing. They are represented by two different structure groups GL(n,C) and U(n,C) [1], and in
this paper we are mainly concerned about the group GL(n,C). The 4-dimension Conformal
Group is a promising mini-group for our model, in which the scaling transformation is a
typical one in generators, nevertheless is seldom used independent of other generators [2].
The algebra structure of conformal group has been investigated thoroughly from different
aspects [3–10], and its applications to quantum fields have also been widely considered.
However none of the applications is satisfactory because hitherto no other perfect quantum
system than photon field [11, 12] has been found so that the corresponding Lagrangian is
conformally invariant, unless the masses of involved particles are null [2, 13–18]. Further-
more, according to Noether’s theorem if a Lagrangian is conformally invariant, then the
trace of the energy-momentum tensor should be null [2, 15]. Other efforts were also expe-
rienced to search for invariant fermion equation or scattering amplitude [14, 16, 19], and
even to apply it to nonlocal action [20, 21]. In recent years there have been surges using
conformal invariance accompanied with chiral symmetry breaking in studying hadron-level
strong interaction [22, 23]. So far it can almost be concluded that the conformal invariance
is unreachable to known material fields, by which we may suspect the applicability of con-
formal group. However from another point of view, the perturbative renormalization results
[24–28] shed much light on the relationship between the physical constants and scale trans-
formation, that is, some of the constants vary regularly with the energy scale. It follows
that the scale transformation can cause the variation of coupling constants and masses. That
suggests that scaling transformation might be helpful in generating mass term in EoMmath-
ematically. Whereas after delicate analysis, we find out that in our model, without the help
of other generators of conformal group, the mass term cannot be generated solely by scaling
transformation.

We analyze the mass term problem from two respects, the physical respect and math
respect. On physical side, the mass generation ascribes to dynamical chiral symmetry break-
ing (DCSB) and Higgs mechanism. The effect of these two mechanisms is to turn vacuum or
a massless particle from space-like (or light-cone like) to time-like, and thus makes particle
massive. In view of our former result that a massive boson meets the condition �E2− �B2 �= 0,
and of the Higgs mechanism that demands bosons occur first and then decay into fermions,
we employ a shortcut process γ + γ −→ e+e− [29–40] to analyze the transition from
space-like (or light-cone like) to time-like. In the process we perceive, at least equivalently,
one photon is stimulated by the other then becomes time-like and succeedingly decays into
electron pairs. The stimulation might lead to �E2 − �B2 �= 0. Such processes are truly rele-
vant to our consideration due to the fact that Higgs boson was first evidenced by decaying



Int J Theor Phys (2016) 55:577–594 579

into two-photon resonance. Such seemingly rough physics consideration is helpful in our
treating on math side, where we will note only particular generators of conformal group
are responsible for shifting space-time or energy-momentum from space-like to time-like
[41], which is not able to be realized solely by the scaling transformation of confor-
mal group. With the above cognition we find out that the answer to mass term problem
points to one conjecture in our original paper, i.e an integral which we had not carried
out.

The structure of this paper is as follows. In Section 2 we introduce two representations
of 4-dimensional conformal group. The focus is on how to derive the spinor representa-
tion, which is actually employed as our nonlocal structure group. In Section 3 we link the
two representations of conformal group by physical interaction vertices in the conventional
sense, especially we elucidate the function of generatorsKμ on chiral-like vertex γμ(1−γ5),
which is useful for our further discussion on mass term in EoM. Section 4 is dedicated to
elaborating the mathematical processes of massless particles (bosons and fermions) getting
massive and to deriving the mass term. Then follows the conclusions and discussions. In
appendix A. we explain why a massive fermion spinor cannot be generated solely by the
scaling transformation. The scaling transformation just transforms a spinor from helicity
representation to spinor representation.

2 The Spatial and Spinor Representations for Conformal Group

In this section we separately present the spatial/operator representation and unitary/spinor
representation of the 4-dimensional Conformal group [2, 42], including their genera-
tors and commutations among them. The spatial representation is mainly referencing
to that of Ref. [42, 43] and the unitary representation is derived by applying Cartan
method [3] to SO(6) − SU(4) transform. The unitary representation is the focus of this
section.

We start with the null vector space (Euclidean space, with the first and the sixth
imaginary),

6∑

a=1

η2a = 0. (1)

reserving which gives the popular definition of conformal group [3]. A special expression
of the differential forms in 4-dimension spatial representation can be derived directly from
the above equation. In derivation we need to apply the following variables [42]

xμ = ημ

K
, where K = η5 + i η6 , where μ = 1, 2, 3, 4 (2)

together with the differential form

∂

∂ηa

= 1

K

{
[δaμ − (δa5 + iδa6)xμ] ∂

∂xμ

+ (δa5 + iδa6)K
∂

∂K

}
, where a = 1, 2, · · · , 6

(3)
to the definition of 6-dimensional angular-momentum

Mab = i

(
ηa

∂

∂ηb

− ηb

∂

∂ηa

)
, where a, b = 1, 2, · · · , 6. (4)
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Then one gets the following generators for conformal group [42] [of which in eq. (56)]

D = iM56 = −
(

η5
∂

∂η6
− η6

∂

∂η5

)
= i

(
xμ

∂

∂xμ

− K
∂

∂K

)
,

Pμ = M5μ + iM6μ = i
∂

∂xμ

,Kμ = M5μ − iM6μ

= i

{
−x2 ∂

∂xμ

+ 2xμxν

∂

∂xν

− 2K xμ

∂

∂K

}
, (5)

The projected form (making K as constant boundary of Minkowski space[4]) shifting to
Minkowski convention then is

D = i xμ

∂

∂xμ

, Mμν = i

(
xμ

∂

∂xν
− xν

∂

∂xμ

)
,

Pμ = i
∂

∂xμ
, Kμ = −i

(
x2 ∂

∂xμ
− 2xμxν ∂

∂xν

)
, (6)

where Mμν represent the components of conventional angular momentum in 4-dimension.
The corresponding commutation relation can be obtained by direct computation,

[Mμν, Mρσ ] = i(gνρMμσ + gμσ Mνρ − gμρMνσ − gνσ Mμρ),

[Mμν, Pρ] = i(gνρPμ − gμρPν),

[D, Pμ] = −iPμ, [D, Kμ] = iKμ,

[D, Mμν] = 0

[Mμν,Kρ] = i(gνρKμ − gμρKν) (7)

[Pμ,Kρ] = −2 i (gμρ D + Mμρ) (8)

Before using Cartan method to achieve its unitary representation, let’s review first the
steps of Cartan method with SO(3) − SU(2) mapping as an example [3][of which in pp.
41–48]. To keep the invariance of x2

1 + x2
2 + x2

3 = 0, one defines the matrix

X =
(

x3 x1 − i x2
x1 + i x2 −x3

)
. (9)

The trace Tr(X†X) is x2
1 + x2

2 + x2
3 . With U as an element of SU(2) group, we define

X′ = U−1XU , (10)

immediately we have

T r(X′†X′) = T r(X†X) , (11)

thus SU(2) group keeps the trace invariant, and by this way the group also keeps the metric
x2
1 + x2

2 + x2
3 . With the knowledge that the SO(3) group directly reserves the metric x2

1 +
x2
2 + x2

3 , we conclude that Cartan matrix X acts as a mapping between SO(3) and SU(2).

By the Cartan Matrix X, one can define spinor

(
ξ0
ξ1

)
by

X

(
ξ0
ξ1

)
= 0 , (12)
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with the solution ξ0 = ±
√

x1−i x2
2 and ξ1 = ±

√
−x1−i x2

2 , and the reverse yields

x1 = ξ20 − ξ21

x2 = i
(
ξ20 + ξ21

)

x3 = −2ξ0ξ1 , (13)

which automatically satisfies x2
1 + x2

2 + x2
3 = 0 from which we can define the spinor

reversely.
From the above Cartan matrix X we can extract the Pauli matrices σ1, σ2, σ3 separately

from the coefficients of x1, x2 , x3. Meanwhile Pauli matrices σ1, σ2, σ3 act as the generators
of SU(2) group mentioned above. Furthermore it is easy to test that SU(2) group reserves
the metric

| ξ0 |2 + | ξ1 |2= 
†
 . (14)

And coincidentally the n−vectors form (defined in (21)) based on Pauli matrices don’t gen-
erate new matrices, neither the multiplications nor the commutations among them, because
they themselves are closed. Now in what follows we would find the corresponding Cartan
matrix from SO(6) to SU(4)/SU(2, 2), namely the spinor representation for 4-dimension
Conformal group.

To achieve its unitary/spinor representation in 4-dimension, mimicking the relationship
between the metric x2

1 + x2
2 + x2

3 and that in (14), we shall associate the metric in (1) with
the invariant quadratic form

| z1 |2 + | z2 |2 + | z3 |2 + | z4 |2= Z†Z , (15)

by the following matrix [44],

A =

⎛

⎜⎜⎝

0 x1 + i x2 x3 + i x4 x5 + i x6
−(x1 + i x2) 0 x5 − i x6 −x3 + i x4
−(x3 + i x4) −x5 + i x6 0 x1 − i x2
−(x5 + i x6) x3 − i x4 −x1 + i x2 0

⎞

⎟⎟⎠ . (16)

Count the degrees of freedom of the groups conserving separately (1) and (15), one finds
they are both 15. Next we only need to extract the coefficients before xi’s to get the unitary
matrices as generators of SU(4), just like the method used in three dimension example (7–
13). If we want to get the generators of SU(2, 2) we need only to change the signs before x1
and x2 and those ahead of corresponding matrices, which would change the (1) and (15) to

− x2
1 − x2

2 + x2
3 + x2

4 + x2
5 + x2

6 = 0 . (17)

and

− | z1 |2 − | z2 |2 + | z3 |2 + | z4 |2= Z†Z . (18)

the latter falls into Dirac spinor like

ψ̃ = (z1, z2, z3, z4) .

It can be examined that the matrix A in (16) meets the invariant expression

T r(A†A) = 4
(
x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6

)
(19)

just like the above 3-dimension example, while the SU(4) group keeps the above trace
x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 = constant , it simultaneously reserves the metric (15). The
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above method of linking real metric to a matrix is closely analogous to the Cartan method of
constructing a spinor representation in any real space. Actually, the true spinor space for 4-d
conformal group following Cartan method should be of 8-dimension instead of 4-dimension
[3][of which in pp. 88–89]. In what follows we would take over the process of deriving all
of the n-vectors along the Cartan method [3][of which in pp. 81–83], though we work in 4-
dimension rather than 8-dimension. First we extract the matrices before xi’s in (16) , i.e.1−
vectors,

B1 =
(

i σ2 0
0 i σ2

)
, B2 =

( − σ2 0
0 σ2

)
,

B3 =
(

0 σ3
− σ3 0

)
, B4 =

(
0 i I

−i I 0

)
,

B5 =
(

0 σ1
− σ1 0

)
, B6 =

(
0 −σ2

− σ2 0

)
. (20)

where σi’s are Pauli matrices. The definition of k-vector is

Bk−vector =
∑

P

(−1)P Bn1Bn2 · · ·Bnk
, (21)

where P denotes different permutations. Apply the above formula to 2-vector, and use the
corresponding subscripts to denote the 1-vectors involved, then

B12 = B1B2 − B2B1 =
(

i σ2 0
0 i σ2

)( − σ2 0
0 σ2

)
−

( − σ2 0
0 σ2

) (
i σ2 0
0 i σ2

)
= 0 .

Similarly, let’s exhaust all possibilities, then obtain other nontrivial 2-vectors

B13 = 2

(
0 − σ1
σ1 0

)
, B15 = 2

(
0 σ3

− σ3 0

)
,

B35 = 2i

(
σ2 0
0 σ2

)
, B36 = 2i

(
σ1 0
0 −σ1

)
,

B46 = −2i

(
σ2 0
0 −σ2

)
, B24 = 2i

(
0 σ2
σ2 0

)
,

B23 = −2i

(
0 σ1
σ1 0

)
. (22)

We note that the new ones which are independent of Bi’s are just B23 and B36. The same
line can be followed to carry out the 3-vectors. Ignoring the repeating ones, we find the new
3-vectors independent of both 1-vectors and 2-vectors are

B123 ∼
(

0 σ3
σ3 0

)
, B134 ∼

(
σ1 0
0 σ1

)
,

B145 ∼
(

σ3 0
0 σ3

)
, B245 ∼

(
σ3 0
0 − σ3

)
,

B345 ∼
(

0 σ2
− σ2 0

)
, B146 ∼

(
I 0
0 −I

)
,

B124 ∼
(

0 I

I 0

)
. (23)
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Computing the 4-vectors and the higher ones would not give new independent matrices.
Finally, we can rearrange all above k-vector-produced matrices as follows [44],

Ui = 1

2

(
σi 0
0 σi

)

Vμ = −1

2

(
σμ 0
0 −σμ

)

Wμ = i

2

(
0 σμ

σμ 0

)

Yμ = 1

2

(
0 σμ

−σμ 0

)
(24)

where σi , i = 1, 2, 3 are normal Pauli matrices and σ0 =
(
1 0
0 1

)
. The convention can

be changed from Minkowski to Euclidean spaces while alternatively requiring σ 2
μ = −1,

i.e. making σ0 = i and replacing definition of σi by those in [44]. The route of inquiring
the concrete matrices following Cartan method as above could be a shortcut that rarely
mentioned in literature. It is can be checked that the commutations among Ui , Vμ, Wμ, Yμ

are just those for conformal group [42, 43], accordingly the mapping from these matrices to
differential forms turns out to be

Ui ↔ γiγj −→ i

(
xj

∂

∂xk
− xk

∂

∂xj

)
−→ Mjk

Wi ↔ γ0γi −→ i

(
xi

∂

∂x0
− x0

∂

∂xi

)
−→ M0k

W0 ↔ γ5 −→ i xμ

∂

∂xμ

−→ D

Vμ + Yμ ↔ γμ(1 − γ5) −→ i
∂

∂xμ
−→ Pμ

Vμ − Yμ ↔ γμ(1 + γ5) −→ −i

(
1

2
xνx

ν ∂

∂xμ

− xμxν

∂

∂xν

)
−→ Kμ. (25)

We use −→ to represent the accurate mappings and ↔ the equivalence. After examining
the commutations by computer, we have to extend the matrix of operator D to be 1 + γ5,
due to the commutation between Pμ and Kμ.

3 The Physical Relationship Between the Two Representations
of Conformal Group

In this section we use scaling transformation as paradigm to investigate the affection of
conformal group on interaction vertex. Enlightened by applying Lorentz transformation to
Dirac equation, we first try to link physically the spatial form of scaling transformation with
its spinor/unitary form, the former representing the realistic expansions and contractions
(dilatation and shrinkage) of space-time, the latter representing the intrinsic freedom closely
analogous to spin angular momentum. Then we will generalize the results from scaling
transformation to other generators of conformal group. By this way we analyze the structure
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of conformal group and its relationship with the vertices of conventional quantum field
theory, and judge the concrete physical significance of every block of the conformal group.

As for Lorentz transformation, the transformation matrix
(
�ν

μ

)
for jμ(y) =

ψ̄(y)γ μψ(y) corresponds to a complex transformation S for ψ(y) so that the effect of the
transformed result ψ̄(y)S−1γ μSψ(y) is equivalent to ψ̄(y)�

μ
νγ

νψ(y) . Referencing the
case of Lorentz transformation, our goal in this section is to search for the correspond-
ing vertex-form 
μ so that it links with transformation S′ by S′−1
μS′ = �

′μ
ν


ν , where
S′ = e

u
2 (1+γ5), 1 + γ5 is the spinor representation of the scaling operator D, and �

′μ
ν rep-

resent tensor’s components of scaling transformation. The similar method was used in a
previous paper [45], but for totally different motivation.

Usually we perform the spatial Lorentz transformation on the vectors Aμ and γ μ. Obvi-
ously this combination brings about invariant formalism like Aν(q2)ψ̄(p)γνψ(p′). We
follow the convention that the same set of {γ μ} is used in different coordinate systems,
which naturally yields an equivalence transformation S satisfying [46, 47]

S−1γ μS = �μ
νγ

ν = γ ′μ, (26)

where �
μ
ν stand for the tensors’ components of the Lorentz transformation. Substituting

(26) into Aμ(x)ψ̄(x)γ μψ(x) yields

A′
μ(y)ψ̄ ′(y)S−1γ μSψ ′(y) = A′

μ(y)ψ̄(y)γ ′μψ(y). (27)

While looking for 
μ we would follow the same convention as that in the above para-
graph, i.e., in different coordinate system we use the same set of {
μ}. Then analogously,
we use the form of the above formula (26) for scaling transformation as

S′−1
μS′ = �′μ
ν


ν, (28)

where formally we have used�
′μ
ν to represent the scaling transformation to every coordinate

component [14, 16, 19][of which (2)] instead of using the usual form e−α [43]. Different
from the operator μ d

dμ appearing in renormalization group equation [25, 27, 28]

μ
d�R

dμ
+ γF �R = 0 , (29)

where γF is the anomalous scaling dimension defined by

γF = μ
d

dμ
lnZF ,

here the operator D has the usual form D = i xν∂ν , being a hermit one. With the relation
e−i α Dpμei α D = e−αpμ, i.e. [D, pμ] = −i pμ [43], we have

(
μpμ)′scaling transf orm = S′−1
μS′�′ν
μ pν = S′−1
μS′ e−i α Dpμei α D . (30)

Now let’s submit S′ = e
u
2 γ5 obtained from the last section (henceforth we use e

u
2 γ5

instead of e
u
2 (1+γ5) as scaling transformation while no confusion occurs), where u is the

infinitesimal parameter. Formally we get

S′−1
μS′�′ν
μ pν = e− u

2 γ5
μe
u
2 γ5(pμ)′scaling transf orm

= e− u
2 γ5
μe

u
2 γ5e−i α Dpμei α D

= e− u
2 γ5
μe

u
2 γ5e−αpμ

.= e− u
2 γ5
μe

u
2 γ5pμ(1 − α) . (31)
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From the experience of calculating γ−matrix and the following relations

e− u
2 γ5γ μe

u
2 γ5 �

(
1 − u

2
γ5

)
γ μ

(
1 + u

2
γ5

)
� γ μ + u γ μγ5 , (32)

e− u
2 γ5γ μγ5e

u
2 γ5 �

(
1 − u

2
γ5

)
γ μγ5

(
1 + u

2
γ5

)
� γ μγ5 + u γ μ , (33)

e− u
2 γ5γ μ(1± γ5)e

u
2 γ5 �

(
1 − u

2
γ5

)
γ μ(1± γ5)

(
1 + u

2
γ5

)
� (1± u )γ μ(1± γ5) , (34)

we find out a possible form of 
μ


μ = γ μ(1 ± γ5) while α ∼ u . (35)

The transformation in (32, 33, 34) can be replaced by e− u
2 (1+γ5) and e

u
2 (1+γ5), the results

would be the same obviously. The coefficients (1 ± u ) of (34) can be contracted now to be
1 with coefficients (1 ∓ u ) that come from the transformation of pμ. And we note that the
infinitesimal parameters u and α are not independent. By this way we set up the relationship
between the operator D and S′ = e

u
2 (1+γ5) directly.

And we know S′ = e
u
2 (1+γ5) is acting on Dirac spinor as expected. The same transfor-

mation holds for vertex 
μ Aμ, as well as 
μ pμ. The resultant vertex is different from that
of Ref. [19] due to the choice of γ5, since we have followed the convention of Quantum
Field Theory. In fact we have extended the transformation, the interaction vertex and spinor
space simultaneously, and these elements can be extended further while we involving more
generators of conformal group.

What if we perform the scaling transformation S′ succeedingly N times upon the vec-
tor vertex-form γ μ. Different from (32, 33, 34), now we employ the following formulism
without approximation

(
e− u

2 (1+γ5)
)N

γ μ
(
e

u
2 (1+γ5)

)N = γ μ coshNu + γ μγ5 sinhNu , (36)

from which one notes that the vector vertex arrives at its limits γ μ(1 ± γ5) only if
coshNu
sinhNu

→ ±1, i.e. Nu → ±∞. Nu → ±∞ means one carrying out enough steps of inflat-
ing or shrinking transformation. We call such states involving interaction vertices γ μ(1±γ5)

as extreme states, which evolve from the interaction vertex γ μ after the scale constantly
changing. And the variation of coupling constant is assumed to be absorbed into coupling
constant. It turns out that such scaling transformation doesn’t conserve the vector-dominant
interaction, or alternatively, the transformation tends to transform the relating spinor from a
normal one to a chiral one.

We have derived the above limits with the relation e−i α Dpμei α D = e−αpμ, i.e.
[D, pμ] = −i pμ [43], The Pμ plays the role of the production operator or annihilation
operator of D from the point of view of quantum mechanics. Analogously, we may notice
another similar relationship among conformal group by the commutation [Mμν,Kρ] =
i(gνρKμ −gμρKν), however we fail to get the variation of vertex γ ρ(1±γ5) with the trans-
formation e

u
2 γμγν (operation of Mμν in spinor space). So the analog cannot be followed by

any other commutations of conformal group. The details are as follows. While the angular
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momentum transformation is written to be S = e
u
2 γμγν , its effect on vector vertex γ μ [we

label it by 
μ]


μ′ = e− u
2 γργσ 
μe

u
2 γργσ ≈

(
1 − u

2
γργσ

)

μ

(
1 + u

2
γργσ

)
≈ γ μ + u

(
gμ

ρ γσ − gμ
σ γρ

)

P ′
μ = e−iaMρσ PμeiaMρσ = Pμ + ia[Pμ,Mρσ ] = Pμ − a(gμρPσ − gμσ Pρ). (37)

Combining the above transformations yields

(

μPμ

)′ = [
γ μ + u

(
gμ

ρ γσ − gμ
σ γρ

)] [Pμ − a(gμρPσ − gμσ Pρ)]
= 
μPμ + u

(
gμ

ρ γσ − gμ
σ γρ

)
Pμ − aγ μ(gμρPσ − gμσ Pρ)

= 
μPμ + (u + a)(γσ Pρ − γρPσ ) , (38)

when u ∼ −a, one obtains
(

μPμ

)′ = 
μPμ. If replacing γ μ axil-vector vertex yeilds
γ μ(1 ± γ5), we would get the same results


μ′ = e− u
2 γργσ 
μe

u
2 γργσ ≈

(
1 − u

2
γργσ

)

μ

(
1 + u

2
γργσ

)
≈ 
μ + u

(
gμ

ρ 
σ − gμ
σ 
ρ

)

P ′
μ = e−iaMρσ PμeiaMρσ = Pμ + ia[Pμ, Mρσ ] = Pμ − a(gμρPσ − gμσ Pρ) . (39)

Combining the above transformations yields

(

μPμ

)′ = 
μPμ + (u + a)(
σ Pρ − 
ρPσ ) . (40)

As for the kinetic term of an extended particle in the extreme state where the scale trans-
formation is repeated infinite times, the momentum becomes light-cone like and the kinetic
mass tends to zero since,

m2
kinetic = (
μpμ)(
νp

ν) = γμ(1−γ5)p
μγν(1−γ5)p

ν = p2(1+γ5)(1−γ5) = 0 , (41)

here the m2 = 0 may just have comparable meaning while its momentum is very large
and its mass can be ignored approximately, we call such mass as kinematic mass. So we
conclude the extreme vertices γ μ(1 ± γ5) give rise to no mass, and to make a fermion
massive, we have to use the group method to make the interaction vertex leave the form
γ μ(1±γ5). However since that the limits γ μ(1±γ5) of interaction form are invariant under
transformation e

u
2 (1+γ5), it is impossible for e

u
2 (1+γ5) to make the extreme states γ μ(1±γ5)

leave its form. To make a fermion leave this state to get mass, it is necessary to consider
further the other generators of conformal group. Whereas according to our knowledge of
commutations among the generators of conformal group, there is no much room to choose
another generator. For the vertex γ μ(1 − γ5) we may choose the generators Kμ, otherwise
for γ μ(1 + γ5) we may choose Pμ. For example, for 
μ = γ μ(1 − γ5) we have,


μ′ = e
u
2 γρ(1+γ5)γ μ(1 − γ5)e

u
2 γρ(1+γ5)

= [1 + u

2
γρ(1 + γ5)]γ μ(1 − γ5)[1 − u

2
γρ(1 + γ5)]

= γ μ(1 − γ5) + u

2

[
γρ(1 + γ5), γ

μ(1 − γ5)
] − u2

4
γρ(1 + γ5)γ

μ(1 − γ5)γρ(1 + γ5)

= γ μ(1 − γ5) + 2u
[
gμ

ρ (1 − γ5) − γ μγρ

] − u2γργ μγρ(1 + γ5) , (42)
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when u −→ 0, 
μ′ −→ (
γ μ + 2ug

μ
ρ

)
(1 − γ5) − 2uγ μγρ and when u −→ ∞, 
μ′ −→

−u2γργ μγρ(1 + γ5). Then combine the above equation with the spatial transformation
P ′

μ = e−iaKρ PμeiaKρ ≈ [1− iaKρ]Pμ[1+ iaKρ] = Pμ + ia[Pμ, Kρ] = Pμ +2a(gμρD−
Mμρ), we have

(

μPμ

)′ ≈ [(
γ μ + 2ugμ

ρ

)
(1 − γ5) − 2uγ μγρ

] [Pμ + 2a(gμρD − Mμρ)]
≈ 
μPμ + 2u

[
gμ

ρ (1 − γ5) − γ μγρ

]
Pμ + 2aγ μ(1 − γ5)(gμρD − Mμρ) .(43)

The generator Pμ would have similar effect on vertex γ μ(1 + γ5). The generator Kμ(Pμ)

first makes the bosons getting mass by transmitting space-time from space-like to time-
like, then it makes fermions (with chiral interaction vertex, meaning the fermions have no
dynamical mass) leave the vertex, i.e. makes fermions massive.

4 Generating Fermion Mass Term with the Help of Conformal Group

Conventionally only linearly flat unitary-complex-space is used in quantum theory. In our
model we have instead tried to express some of the effects, such as interaction or symme-
tries breaking etc., by curved complex-space in the strong interaction or strong correlation
regime. Once a space is curved, particles become living in a larger space with larger sym-
metry group. Here we find that the space-curving can also be helpful in understanding the
mass generation. Mathematically, we explain the mass generation in two steps. The first
is how a boson becomes massive with the help of conformal transformation, the second
is how a massless fermion gets massive from the massive boson. Coincidentally, we find
the two steps could be ascribed to the same generators of conformal group. Furthermore,
we will discuss the first step by photons pair production [29–40], γ + γ −→ e+e−. The
previous works on photons pair production mainly focus on calculating the amplitude in
semi-classical level. In this paper we don’t get involved in the concrete calculation of the
amplitude of the process, but instead focus on how the process could be in accordance with
the inequality �E2 − �B2 �= 0.

To interpret the first step, let’s carry some simple calculation of energy-momentum of
classical electromagnetic field. It is well known that the energy density of electromagnetic
field is

� = 1

2
( �E2 + �B2) ,

and the momentum of electromagnetic fields is Poynting vector

�S = �E × �B ,

using the formula

(�a × �b) × �c = (�a · �c)�b − (�b · �c)�a ,

we obtain

� 2 − �S2 = 1

4
( �E2 + �B2)2 − ( �E × �B)2

= 1

4
( �E2 + �B2)2 − ( �E × �B) · ( �E × �B)
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= 1

4
( �E2 + �B2)2 − ( �E × �B × �E) · �B

= 1

4
( �E2 + �B2)2 − [( �E · �E) �B − ( �E · �B) �E] · �B

= 1

4
( �E4 + 2 �E2 �B2 + �B4) − ( �E · �E)( �B · �B)

= 1

4
( �E4 − 2 �E2 �B2 + �B4)

= 1

4
( �E2 − �B2)2 ,

which to some extent mimics the general relationship of energy and momentum p2
0 − �p2 =

m2. And the result �E2 − �B2 �= 0 corresponds to boson mass according to our conclu-
sion of previous paper. We note that the free electromagnetic field satisfies � 2 − �S2 =
1
4 (

�E2 − �B2)2 = 0 since | �E |=| �B | in nature unit. And if the photons participate in
the reaction γ + γ −→ e+e−, then maybe a photon meets �E2 − �B2 �= 0, subsequently
( �E2− �B2)2 > 0 and thus� 2−�S2 > 0 , which is the typical time-like relationship of energy-
momentum. This suggests that somehow a photon has gained its mass by the stimulation of
another photon. In view of the above analysis, we regard one ultra-high-energy (laser) pho-
ton stimulates another light-cone photon to make it transit to time-like [36–40] . We find
the conformal group can be responsible for such transition from space-(light-cone-)like to
time-like .

The second step is to transform a massless state “like neutrino” to a massive one “like
electron” [48]. Since even for a massive boson it can decay into many massless ener-
getic fermions, at least from mathematics it is possible. With the analysis of the last
section, we note that the massless state seems to occur effectively at the limits of very
high energy while the mass of fermion is very small comparing with the kinetic energy.
At the limits, the fermions interact with each other by the vertex γ μ(1 ± γ5), coinci-
dentally the neutrinos pick the γ μ(1 − γ5). So the interaction vertex deviating from the
form γ μ(1 − γ5) is a sign of “neutrino” getting its mass. With the analysis of the pre-
vious section, we know that the dilatation transformation cannot play the role in varying
the interaction vertex, since e

u
2 (1+γ5) reserves the vertex γ μ(1 − γ5)Aμ [e

u
2 (1+γ5) can

only ex-change the spinor between helicity representation and spin representation. See
Appendix A.]. Neither can the momentum transformation Mμν = e

u
2 γμγν change the ver-

tex γ μ(1 − γ5), as evidenced in the last section. So let’s turn to the transformation e
u
2 Kν

, while the e
u
2 Kν keeps directly the vertex γ μ(1 − γ5), it does not keep the whole form

γ μ(1 − γ5)Aμ invariant, nor does the generator Pμ keep the whole form γ μ(1 + γ5)Aμ.
Thus we choose Kμ as a candidate to make γ μ(1 − γ5)Aμ leave γ μ(1 − γ5) and begin
to run. It runs to normal interaction vertex γ μ, as shown in (43), which is for massive
fermions.

Now let’s come back to the equation of our model. In our previous paper [1], we have
laid two ways of generating fermion mass term in EoM, which are just the possibilities
from the viewpoint of mathematics. Now with the deep insight of physics, we recognize
that the second one must be the candidate for the mass term, i.e. calculating a remaining
integral in the equation. Now we will treat the candidate term −i

∫
Aν∂λ ∂νψ dxλ in the
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EoM. Considering the hermit of the operators i∂λ, i∂ν , and apart from the coefficients, we
have

∫
Aν∂λ ∂νψ dxλ

=
∫

dxλ∂λ (∂νAν)ψ

=
∫

(dt
∂

∂t
− d �x · �∇) (

∂

∂t
A0 − �∇ · �A)ψ . (44)

If we omit the term �∇ · �A by considering the Columb gauge as used previously [1], then the
above equation yeilds

∫
(dt

∂

∂t
− d �x · �∇) (

∂

∂t
A0)ψ

=
∫

[dt
∂2

∂t2
A0 − ∂

∂t
(d �x · �∇A0)]ψ

=
∫

[dt
∂2

∂t2
A0 − d �x · ∂

∂t
( �E + ∂

∂t
�A)]ψ

=
∫

[dt
∂2

∂t2
A0 − d �x · ∂2

∂t2
�A − d �x · ( �∇ × �B − �J )]ψ

=
∫

[dt
∂2

∂t2
A0 − d �x · ∂2

∂t2
�A − d �x · ( �∇ × �∇ × �A − �J )]ψ

=
∫

[dt
∂2

∂t2
A0 − d �x · ∂2

∂t2
�A − d �x · (−�∇2 �A − �J )]ψ

=
∫

[dt
∂2

∂t2
A0 − d �x · (

∂2

∂t2
�A − �∇2 �A) + d �x · �J ]ψ

=
∫

[dt
∂2

∂t2
A0 − d �x · � �A + d �x · �J ]ψ

=
∫

[dt
∂2

∂t2
A0 + m2d �x · �A + d �x · �J ]ψ

= (λ1m
2φ + λ2L)ψ , (45)

where we propose ψ is almost flat (thus unchanged) under perturbative condition, φ is a
flux relating to concrete situation, and L is an angular moment. The imaginary number i

is absorbed by d �x since we have carried the conformal transformation operated by Kμ,
which makes space-time varying from space-like to time-like, i.e. isotropically interpreted
by xμ → ixμ [20]. In the last two equalities of (45) we have used the equation referring to
(9.27) of previous paper [1]

�A · � �A = �B2 − �E d= −m2 �A2 , (46)

where the equation holds only while the considered transverse filed (Coulomb gauge) has
no source, thus no scalar component [47] (of the first chapter). Now we discuss the mass
term problem under same situ, so follows the same conditions. The conditions seem not so
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general, however at least they reflect certain aspects of physics, actually the Coulomb gauge
∇ · �A = 0 plus radiation fields method can resolve a wide class of pratical problems.

To understand the λ1 and λ2 physically, let’s analyze the first term and the second term in
the last equality of (45). The first term is more like for hadrons, or for another kind of com-
posite particle. At first sight, the square of fermion mass being proportional to the square
of boson mass looks strange. However, this might become possible if we look into Higgs-
mechanism [47] (eqs. (19.8) and (19.4)), with relations ml = υgl/

√
2 , and mW = 1

2υg,
where g and gl being adjusting parameters and υ a part of a scalar fields. The two relations
suggest the reasonability of the formula like m2

f ermion ∝ m2
boson. On the other hand, we

can analyze the dimension of the first term. Concerning the geometrical phase factor like

exp[i e
�

∮ �A · d�r], the dimension of magnetic flux is
[
�

e

]
. And concerning the definition of

magnetic moment �μ = e
mf

�S (�S is the spin, mf is the fermion mass), the dimension of mag-

netic moment is
[
�e
mf

]
. Therefore the ratio of the flux and magnetic moment has dimension

like
[
�

e
/
(

�e
mf

)]
=

[
mf

e2

]
, i. e. if alternatively we write the first term as λ′

1
φ
μ
(where μ is

the absolute value of magnetic moment) then the [λ′
1 = λ1m�e] is the proportional coefi-

cient of flux and magnetic moment, which is coincident with the view that this mass term
is for a composite particle. We also observe that in natural unit λ′

1 differ from λ1 in a mass
factor, where λ1 itself has the dimension reciprocal of magnetic flux. Please caution that
although we constantly mention the electric or magnetic fields, they are not the true electro-
magnetic fields. We just employ the analorgy between Abelian field and non-Abelian field,
our interest is non-Abelian field.

The second term may be for an elementary particle. The term mimics the result M2 ∝
μ2L + α (μ2, α constants) from Regge poles [49]. From this analogy the parameter λ2
has the dimension of mass square, since angular momentum L is dimensionless. At present
stage we may further surmise that the first term, which represents the mass of a hadron
fermion and thus is dependent on interaction, may be related to DCSB [50, 51]. And the
second term may possibly link with our suggested process γ + γ −→ e+e−, in which
the photon in curved complex space is split into elementary particles. At the same time the
electro-field and magnetic field are wrapped: the electro-field wrapping to form charges,
and the magnetic field wrapping to form spins relating to masses. Thus both the first and
second terms of the equation correspond to similar pictures, the picture of curved (wrapped)
complex-space. This conclusion may help us make the mass problem calculable, not just
as legitimate parameters confirmed by DCSB and Higgs mechanism. And also we should
caution that here the obtained mass may be just ”effective mass”, since classically there is
no system mimicking the strong interaction and strong correlation, and all that we have at
hand are just the experiences of treating strong interaction in previous literature [52–54],
which must be relevant to topology. And mostly topology is relating to magnetic flux.

5 Conclusions and Discussions

In this paper we have analyzed the effect of conformal group on interaction vertices, espe-
cially on the vector vertex and the chiral vertex, and then pointed out the relationship
between conformal group and generation of mass term. If only concerning mass-term prob-
lem in EoM, the structure group would not be smaller than conformal group. Based on our
analyses, the scaling transformation allows a special chiral-like vertex γ μ(1 ± γ5) to be
invariant. And normal vector vertex becomes running under such scaling transformation.
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So with the scaling transformation only, one cannot endow a massless fermion like ”neu-
trino” with mass, since scaling transformation happens to keep the chiral interaction form,
and cannot make fermions like ”neutrino” deviate from the vertex form [48]. So we have to
involve other generators of conformal group to transform the interaction vertex, for example,
the generator Kμ. And coincidentally, we find Kμ can also be responsible for transforming
space-time from space-like to time-like, which in physics should occur before transform-
ing fermions from massless to massive. With the above cognition, we get the mass term
by directly calculating the integral occurred in original paper, which falls into one of the
possibilities of our original surmise.

According to the formula we get, we present a plausible understanding of the gener-
ation of mass term. Since we have obtained the mass by directly calculating the integral
in original equation, we believe the mass term is generated by the curvature (wrapped)
of complex space. The wrapping of complex space shows its effect by deforming electro-
field and magnetic field if we use the shortcut process γ + γ −→ e+e− as paradigm.
The progress implies that the photon in curved complex space is split into particle pairs,
and at the same time the electro-field and magnetic-field of the photon are wrapped:
the electro-field forms charge, and magnetic field forms spin. This conclusion may help
us make the mass problem calculable, not just as legitimate parameters in DCSB and
Higgs mechanism. Of course it is necessary to confirm physically whether spin or mag-
netic flux actually holds mass. And we should caution that here the obtained mass
may be just ”effective mass”, which roots obviously in interaction. We conceive that
this result might be helpful in understanding spectra problem of hadrons, whose mass
may be proportional to (chromo-)magnetic flux. The further work along this line is in
progress.

We have achieved the conclusion that in our theory the minimal group should be
the entire conformal group. On mathematical side the conformal group has been inves-
tigated thoroughly from different aspects [9], and its application to physics especially to
quantum field once was also widely considered. However the application is not so sat-
isfactory because hitherto no other perfect quantum system than photon field [11, 12]
has been found so that the corresponding Lagrangian is conformally invariant, unless
the mass of the involved particles are null [2, 13–18]. In our treatment we turn from
searching for invariant dynamics to how the conformal group makes physics quantities run-
ning, so as to match the renormalization results that some of the physics constants vary
regularly with the energy scale, for instance charge, mass, and Green functions. Accord-
ing to our analysis, the scaling transformation can somehow cause variation of coupling
constants and masses. And in this paper, we have also discussed the function of gener-
ators Kμ and Pμ which conformally change the interaction vertex from a chiral one to
a non-chiral one. The action performed by generators Pμ or Kμ may be caused by the
external non-hermite stimulation. Basically it is with such stimulations that the value of
�E2 − �B2 changes from 0 to �= 0. Then by certain decaying process, fermion mass is
generated. In summary, we get to the conclusion that the running of interaction vertex
corresponds to certain kinds of curving of complex space, which is certainly governed
by generators of conformal group. Conformal group might live for curving, but not for
invariance.
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Appendix A. How e
u
2 γ5 Exchange the Fermion Spinors Between Helicity

Representation and Spin Representation

We recognize here that the performance of e
u
2 γ5 can only exchange the fermion spinors

between helicity representation and spin representation, or vice versa. Accordingly such
transformation cannot yield the generation of spinor, or the mass of fermions. In what
follows we present the example of how e

u
2 γ5 changes the representation of spinors.

Despite of the algebric structure, while m = 0 the spinor could be any “vector-form”

homogenously because the term
(
a b c d

)
m

⎛

⎜⎜⎝

a

b

c

d

⎞

⎟⎟⎠ is equal to null. Nevertheless, when

m �= 0 , the term spinor(vector)

⎛

⎜⎜⎝

a

b

c

d

⎞

⎟⎟⎠ cannot be selected arbitrarily, since the condition

(
a b c d

)
m

⎛

⎜⎜⎝

a

b

c

d

⎞

⎟⎟⎠ = m should be satisfied. The most simple option is

⎛

⎜⎜⎝

a

b

c

d

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠,

or some analog like

⎛

⎜⎜⎝

0
1
0
0

⎞

⎟⎟⎠ can be used. Subsequently we will focus on the transformation

from the special spinor

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ to its helicity form in arbitrary reference coordinates.

Firstly, we refer to the Dirac equation for a rest particle

γ0ψ = mψ , (47)

whose solution is

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ or

⎛

⎜⎜⎝

0
1
0
0

⎞

⎟⎟⎠ for normal particles, and

⎛

⎜⎜⎝

0
0
1
0

⎞

⎟⎟⎠ or

⎛

⎜⎜⎝

0
0
0
1

⎞

⎟⎟⎠ for anti-

particles. One also notes that
(
1 0 0 0

)
γ0

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ = m from (47). This knowledge

legitimates the writing from the rhs to lhs of (47). That means we can generate spinor via
mass term

m = (
1 0 0 0

)
m

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ = (
1 0 0 0

)
γ0

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ . (48)
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Assume that the motion of fermion is along z direction, one solution of Dirac equation

(� p − m)ψ = 0 in helicity representation is ψ =

⎛

⎜⎜⎝

sth

0
sth

0

⎞

⎟⎟⎠. Further the transformation

responsible for the variation from

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ to

⎛

⎜⎜⎝

sth

0
sth

0

⎞

⎟⎟⎠ is e
u
2 γ5 , explicitly

e
u
2 γ5

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

cosh u
2

0
sinh u

2
0

⎞

⎟⎟⎠ , (49)

succeeding transformation e
u
2 γ5 could be employed if necessary. Then the resultant spinor

doesn’t satisfy the (47) any longer, which matches our common knowledge of quantum field
theory.
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