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Abstract An Axially symmetric non-static space time is considered in presence of bulk
stress in scalar tensor theory formulated by Saez and Ballester (Phys. Lett.A113, 467 1985).
For solving the field equations, relation between metric potential and shear velocity is pro-
portional to scale expansion are used. Also various physical and geometrical properties of
the model have been discussed.

Keywords Scalar tensor theory · Viscous fluid

1 Introduction

Einstein’s general theory of relativity has been successful in describing gravitational phe-
nomena. It has also served as a basis for models of the universe. However since Einstein
first published his theory of gravitation, there have been many criticisms of general rela-
tivity because of the lack of certain desirable features in the theory. For example Einstein
himself pointed out that general relativity does not account satisfactorily for inertial prop-
erties of matter, i.e. Mach’s principle is not substantiated by general relativity. So in recent
years there has been lot of interest in several alternative theories of gravitation.
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The most important among them are scalar tensor theories of gravitation formulated
by [5, 10, 15]. All version of the scalar tensor theories are based on the introduction
of a scalar field ϕ into the formulation of general relativity, this scalar field together
with the metric tensor field then forms a scalar tensor field representing the gravitational
field.

In Saez-Ballester theory the metric is coupled with a dimensionless scalar field
in a simple manner. This coupling gives a satisfactory description of weak fields and suggest
a possible way to solve missing matter problem in non-flat FRW cosmologies.

The [15] field equations are

Gij − ωϕn

(
ϕ,iϕ,j − 1

2
gijϕ,kϕ

,k

)
= −8πTij , (1)

2ϕnϕi
,i + nϕn−1ϕ,kϕ

,k = 0 , (2)

where Gij = Rij − 1
2Rgij is the Einstein tensor, Tij is the stress energy tensor of the

matter, ω and n are constant, comma (,) and semicolon (;) denotes partial and co-variant
differentiation respectively.

Also energy conservation equation

T
ij
,j = 0 (3)

Is the consequence of field equations (1) and (2).
A detailed discussion of Saez-Ballester cosmological models is given in the work of [14,

15, 17, 18]. Adhav et al. [2] have studied Axially symmetric non-static domain walls in
scalar-tensor theories formulated by [5, 15].

Also several aspects of viscous fluid cosmological model in early universe have been
extensively investigated by many authors [1, 3, 19]. Anirudha Pradhan et al [13]. have
studied Accelerating Bianchi Type-I universe with time varying G and �-term in general
relativity. Bulk viscous Kantowski-Sachs cosmological model with time dependent �-term
in general relativity have been investigated by [8]. Recently [9] have presented Bianchi
type-II cosmological model in presence of bulk stress with varying �-term in general
relativity.

In this paper we have obtain non-static axially symmetric bulk stress cosmological model
in scalar tensor theory of gravitation proposed by [15]. Our paper is organized as follows:

In Section 2, we derive the field equations. In Section 3, we deal with the solution of the
field equations in presence of viscous fluid. Section 4 includes the solution for particular
cases. Section 5 is mainly concerned with the physical and kinematical properties. The last
section contains conclusion.

2 The Metric and Field Equation

We consider the axially symmetric metric [4] in the form

ds2 = dt2 − A2(t)
(
dχ2 + f 2(χ)dϕ2

)
− B2(t)dz2 (4)

with the convention x1 = χ, x2 = ϕ, x3 = z, x4 = t and A,B are functions of the proper
time t alone while f is a function of coordinate χ alone.
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The stress energy tensor in the presence of bulk stress given by Landau and Lifshitz is

T
j
i = (ρ +p)viv

j +pg
j
i −η(v

j

i;+v
j

;i +vj vlvi;l +viv
lv

j

;l )−
(

ξ − 2

3
η

)
θ

(
g

j
i + viv

j
)

,

(5)

where ρ, p, η and ξ are the energy density, isotropic pressure, coefficient of shear velocity
and bulk viscous coefficient respectively and vi is the flow vector satisfying the relations

gij v
ivj = −1 . (6)

We choose the co ordinates to be commoving, so that

v1 = 0 = v2 = v3, v4 = 1 (7)

The field equations (1), (2) and (3) for the metric (4) with the help of Eqs. (5) and (6)
can be written as

A44

A
+ B44

B
+ A4B4

AB
− ω

2
ϕnϕ2

4 = 8π

[
p − 2η

A4

A
−

(
ξ − 2

3
η

)
θ

]
(8)

2
A44

A
+

(
A4

A

)2

− f11

A2f
− ω

2
ϕnϕ2

4 = 8π

[
p − 2η

B4

B
−

(
ξ − 2

3
η

)
θ

]
(9)

f11

A2f
−

(
A4

A

)2

− 2
A4B4

AB
− ω

2
ϕnϕ2

4 = 8πρ (10)

ϕ44 + ϕ4

(
2A4

A
+ B4

B

)
+ n

2

(
ϕ2
4

ϕ

)
= 0 (11)

and

ρ4 +
[
p + ρ −

(
ξ − 2

3
η

)
θ

](
2A4

A
+ B4

B

)
− 2η

(
2

(
A4

A

)2

+
(

B4

B

)2
)

= 0 , (12)

where suffix 4 at the symbolsA, B,ϕ and ρ denotes ordinary differentiation with respective
to t and θ is the shear expansion given by

θ = vi
;i . (13)

The functional dependence of the metric together with the equations (9) and (10) imply

(
f11

f

)
= k2, k2 is the constant. (14)

If k =0 then f (χ) = constant χ , 0 < χ < ∞
This constant can be made equal to 1 by suitably choosing units for ϕ. Thus we shall

have f (χ) = χ resulting in the flat model of the universe [6].
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3 Solution of the Field Equations

Using equation (14), the set of equations (8) to (12) reduces to

A44

A
+ B44

B
+ A4B4

AB
− ω

2
ϕnϕ2

4 = 8π

[
p − 2η

A4

A
−

(
ξ − 2

3
η

)
θ

]
(15)

2
A44

A
+

(
A4

A

)2

− ω

2
ϕnϕ2

4 = 8π

[
p − 2η

B4

B
−

(
ξ − 2

3
η

)
θ

]
(16)

(
A4

A

)2

+ 2
A4B4

AB
+ ω

2
ϕnϕ2

4 = −8πρ (17)

ϕ44 + ϕ4

(
2A4

A
+ B4

B

)
+ n

2

(
ϕ2
4

ϕ

)
= 0 (18)

and

ρ4 +
[
p + ρ −

(
ξ − 2

3
η

)
θ

](
2A4

A
+ B4

B

)
− 2η

(
2

(
A4

A

)2

+
(

B4

B

)2
)

= 0 (19)

Equations (15)–(18) are four independent equations in seven unknowns A,B, ρ, p, η, ξ

and ϕ. For the complete determinacy of the system, we need extra conditions.
Firstly we assume a relation in metric potential as

A = Bm , (20)

where m is real number.
and secondly we assume that the coefficient of shear velocity is proportional to the scale

of expansion,
i.e.

η ∝ θ (21)

equations (15) and (16) leads to

A44

A
+

(
A4

A

)2

− B44

B
− A4B4

AB
= 16πη

(
A4

A
− B4

B

)
(22)

Condition (21) leads to

η = l

(
2
A4

A
+ B4

B

)
, (23)

where l is proportionality constant.
Equation (22) together with Eqs. (20) and (21) leads to

BB44 + αB2
4 = 0 (24)

which can be rewritten as

d

dB
(f 2) + 2α

B
(f 2) = 0 , (25)

where
α = 2m − 16πl(2m + 1) (26)
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and
B4 = f (B) (27)

From Eq. (25) we obtain

(
dB

dt

)2

= β

B2α
, (28)

where β is the constant of integration. After a suitable transformation of co ordinates, the
metric (4) reduces to the form

ds2 =
[

T 2α

β

]
dT 2 − T 2m

[
dχ2 + f 2(χ)dϕ2

]
− T 2dz2 , (29)

where B = T.

Furthermore, to obtain the expression for Saez-Ballester scalar field ϕ, we rewrite the
equation (18) as

ϕ44

ϕ4
+ 2A4

A
+ B4

B
+ n

2

ϕ4

ϕ
= 0 (30)

after simplifying, we obtain

A2Bϕ
n
2 dϕ = c3dt . (31)

We now substitute the values of A and B , we obtain

ϕ
n
2 dϕ = c3

T 2m+1
dt (32)

Integrating, we obtain

ϕ = K1

(
1

T 2m+α

) 2
n+2 + ϕ0 , (33)

where ϕ0 is integrating constant and K1 =
[
−

(
n+2
2

) (
c3
2m

)√
β
] 2

n+2

The pressure and density for the model (29) are given by

8πp = K2
β

T 2(α+1)
+ 8πξ(2m + 1)

√
β

T (α+1)
− ω

2
ϕnϕ2

4 (34)

and

8πρ = −m(m + 2)β

T 2(α+1)
− ω

2
ϕnϕ2

4 , (35)

where K2 =
[
m2(32πl+3)−(m+1)(16πl+3α)

]
3

For the specification of ξ , we assume that the fluid obeys an equation of state of the form

p = γρ , (36)

where γ (0 ≤ γ ≤ 1) is constant.
Thus, given ξ(t) we can solve for the cosmological parameters. In most of the investiga-

tion involving bulk viscosity is assume to be a simple power function of the energy density
[7, 11, 22]

ξ(t) = ξ0ρ
q , (37)

where ξ0 and q are constant. If q = 1 equation (36) may correspond to a relative fluid [20].
However, more realistic models [16] are based on q lying in the regime 0 ≤ q ≤ 1

2 .
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Using equation (37) in (34), we obtain

8πp = K2
β

T 2(α+1)
+ 8πξ0ρ

q(2m + 1)
√

β

T (α+1)
− ω

2
ϕnϕ2

4 (38)

4 Particular Cases

Case–I: Solution for ξ(t) = ξ0
When q = 0, equation (37) reduces to ξ(t) = ξ0 =constant. Hence in this

case equation (38) with the use of Eqs. (35) and (36), leads to

8πρ(1 + γ ) = [K2 − m(m + 2)] β

T 2(α+1)
+ 8πξ0(2m + 1)

√
β

T (α+1)
− ωϕnϕ2

4 (39)

Using equation (33) above equation leads to

8πρ(1 + γ ) = [K2 − m(m + 2)]β

T 2(α+1)
+ 8πξ0(2m + 1)

√
β

T (α+1)
− ωc23

(
2m + α

2m

)2
β

T 2(2m+2α+1)
. (40)

From the above relations, we can obtain three types of physical relevant models.

Sub-case (i): When γ = 0 and ρ > 0, equation (36) yields
p = 0 (dust distribution) thus we obtain,

8πρ = [K2 − m(m + 2)] β

T 2(α+1)
+ 8πξ0(2m + 1)

√
β

T (α+1)
− ωc23

(
2m + α

2m

)2

β

T 2(2m+2α+1)
. (41)

Sub-case (ii): When γ = 1, equation (36) yields

p = ρ

which is known as Zeldovich fluid or stiff fluid model [21] Using this
value of p, equation (40) yields,

8πρ = [K2 − m(m + 2)] β

2T 2(α+1)
+ 4πξ0(2m + 1)

√
β

T (α+1)
− ωc23

(
2m + α

8m

)2

β

T 2(2m+2α+1)
(42)

Sub-case (iii): When γ = 1
3 , equation (36) yields

ρ = 3p

known as radiating dominated model. thus equation (40) yields,

8πρ = 3 [K2 − m(m + 2)] β

4T 2(α+1)
+ 6πξ0(2m + 1)

√
β

T (α+1)
− ωc23

(
2m + α

2m

)2

3β

4T 2(2m+2α+1)
. (43)

Case–II: Solution for ξ(t) = ξ0ρ
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When q = 1, equation (37) reduces to ξ(t) = ξ0ρ, hence in this case equation (38) with
the use of Eqs. (35) and (36), leads to

8πρ =
⎡
⎣ 1

1 + γ − ξ0(2m+1)
√

β

T (α+1)

⎤
⎦ [K2 − m(m + 2)]β

T 2(α+1)
−

⎡
⎣ 1

1 + γ − ξ0(2m+1)
√

β

T (α+1)

⎤
⎦ × ωϕnϕ2

4

(44)
Using equation (33), above equation leads to

8πρ =
[

1

1+γ− ξ0(2m+1)
√

β

T (α+1)

]
[K2−m(m+2)]β

T 2(α+1) −
[

1

1+γ− ξ0(2m+1)
√

β

T (α+1)

]

×ωc23

(
2m+α
2m

)2
β

T 2(2m+2α+1)

(45)

From the above relations, we can obtain three types of physical relevant models:

Sub-case (i): When γ = 0 and ρ > 0, equation (36) yields
p = 0 (dust distribution)
thus we obtain

8πρ =
[

1

1− ξ0(2m+1)
√

β

T (α+1)

]
[K2−m(m+2)]β

T 2(α+1) −
[

1

1− ξ0(2m+1)
√

β

T (α+1)

]

×ωc23

(
2m+α
2m

)2
β

T 2(2m+2α+1)

(46)

Sub-case (ii): Whenγ = 1, equation (36) yields

p = ρ

which is known as Zeldovich fluid or stiff fluid model [21]
Using this value of p, we get

8πρ =
[

1

2− ξ0(2m+1)
√

β

T (α+1)

]
[K2−m(m+2)]β

T 2(α+1) −
[

1

2− ξ0(2m+1)
√

β

T (α+1)

]

×ωc23

(
2m+α
2m

)2
β

T 2(2m+2α+1)

(47)

Sub-case (iii): When γ = 1
3 , equation (36) yield

ρ = 3p

known as radiating dominated model.
Using this value, we get

8πρ =
[

1
4
3− ξ0(2m+1)

√
β

T (α+1)

]
[K2−m(m+2)]β

T 2(α+1) −
[

1
4
3− ξ0(2m+1)

√
β

T (α+1)

]

×ωc23

(
2m+α
2m

)2
β

T 2(2m+2α+1)

(48)
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5 Some Physical and Kinematical Properties

In this section we discuss some physical and kinematical properties of the velocity vector
viof the metric (29), the spatial volume (V ), the scalar expansion (θ), the shear scalar (σ)

and deceleration parameter (q) of the fluid are given by

V = √−g = T 2m+1 (49)

θ = (2m + 1)
β1

T (α+1)
(50)

σ =
√

7

18
(2m + 1)

β1

T (α+1)
∵ β1 = √

β (51)

and

q = 2 + 3α − 2m

1 + 2m
(52)

The spatial volume of the model given by Eq. (49) shows the anisotropic expansion of
the universe with time. For the model, expansion scalar θ , and shear scalar σ tends to zero
as T → ∞. The positive value of deceleration parameter indicates the model decelerates in
the standard way.

6 Conclusion

In this paper, we have considered [15] field equations in the presence of an axially sym-
metric bulk stress source. To get a determinate solution of the field equations, we have
assumed the relation between metric potential and shear viscosity is proportional to the scale
expansion.
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