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Abstract We axiomatize the smallest variety that contains both the variety of MV-algebras
and the variety (term equivalent to the variety) of orthomodular lattices.
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Effect algebras, which were introduced by Foulis and Bennett [8], are partially ordered par-
tial algebras closely related to the logical foundations of quantum mechanics. The standard
example is the structure of self-adjoint operators between zero and identity on a Hilbert
space, the so-called effects. Also some commonly known (total) algebras, such as ortho-
modular lattices and MV-algebras, may be regarded as particular cases of effect algebras.
We were not the first who observed that lattice-ordered effect algebras can in a natural way
be made into total algebras 〈A; ⊕, ′, 0, 1〉 of type 〈2, 1, 0, 0〉; see [2, 3]. We proved that the
class E of such algebras is a variety containing both the variety MV of MV-algebras and
the variety OM (term equivalent to the variety) of orthomodular lattices; relative to E , MV
and OM can be axiomatized by the identities x ⊕ y = y ⊕ x and x ⊕ x = x, respectively.
We also observed that E is not the join of MV and OM in the lattice of subvarieties of E .
The aim of the present paper is to axiomatize the join of the varieties MV and OM, but
we actually axiomatize the join of MV with any finitely based subvariety of E .
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First, we recall some basic facts about lattice effect algebras; for more information we
refer the reader to the book [7]. An effect algebra is a structure 〈E; +, 0, 1〉, where + is a
partial binary operation and 0,1 are two constants, satisfying the following conditions:

(i) x + y = y + x if one side is defined;
(ii) (x + y) + z = x + (y + z) if one side is defined;

(iii) for every x ∈ E there exists a unique x ′ ∈ E such that x′ + x = 1;
(iv) if x + 1 is defined, then x = 0.

This is the definition by Foulis and Bennett [8], but we should mention that effect algebras
are essentially the same as weak orthoalgebras introduced by Giuntini and Greuling [9]
who, however, attribute their introduction to Foulis and Randall. Besides, effect algebras
are equivalent to D-posets which were introduced by Kôpka and Chovanec [14].

Every effect algebra is naturally ordered by stipulating that x ≤ y iff y = x + z for some
z ∈ E; such an element z is unique and we may denote it by y − x. Thus, if x ≤ y, then
y − x is the only element such that y = x + (y − x), or more directly, y − x = (x + y′)′.
The structure 〈E; ≤,−, 0, 1〉 so obtained is a D-poset in the sense of [14].

It is worth noticing that x + y is defined iff x ≤ y ′, in which case x + y = (y′ − x)′.
An effect algebra (or D-poset) which is a lattice with respect to the natural order ≤ is

called a lattice effect algebra (or D-lattice).
Two examples of lattice effect algebras that are of particular interest to us are orthomod-

ular lattices and MV-algebras. We refer the reader to [13] for orthomodular lattices, and to
[6] for MV-algebras.

Orthomodular lattices are equivalent to lattice effect algebras satisfying the condition
that x + x is defined only if x = 0. Indeed, if 〈L; ∨,∧, ′, 0, 1〉 is an orthomodular lattice,
then the structure 〈L; +, 0, 1〉, where x +y is defined and equals x ∨y iff x ≤ y′, is a lattice
effect algebra satisfying the condition; and conversely, if 〈E; +, 0, 1〉 is such a lattice effect
algebra with induced lattice operations ∨ and ∧, then x + y = x ∨ y if x + y is defined, and
〈E; ∨,∧, ′, 0, 1〉 is an orthomodular lattice.

MV-algebras are equivalent to MV-effect algebras, i.e., lattice effect algebras satisfying
(x ∨ y) − y = x − (x ∧ y) for all x, y. Though we do not want to go into details here, we
need to mention that every MV-algebra 〈A; ⊕, ′, 0, 1〉 bears a lattice order which is given
by x ≤ y iff x′ ⊕ y = 1 iff y = x ⊕ z for some z ∈ A. Now, if 〈A;⊕, ′, 0, 1〉 is an
MV-algebra, then 〈A;+, 0, 1〉, where x + y is defined and equals x ⊕ y iff x ≤ y′, is an
MV-effect algebra; and conversely, if 〈E;+, 0, 1〉 is an MV-effect algebra, then by setting

x ⊕ y = (x ∧ y′) + y (1)

we obtain an MV-algebra 〈E; ⊕, ′, 0, 1〉 with the same lattice order as 〈E; +, 0, 1〉.
Using (1), an arbitrary lattice effect algebra can be made into a total algebra. So let E be

the class of all (total) algebras A = 〈A; ⊕, ′, 0, 1〉 of type 〈2, 1, 0, 0〉 that arise from lattice
effect algebras by means of (1). It is useful to define two more total operations, as follows:

x 
 y = (x′ ⊕ y)′ and x � y = (y ⊕ x ′)′. (2)

In the language of lattice effect algebras we have

x 
 y = (x ∨ y) − y and x � y = x − (x ∧ y), (3)
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and it is straightforward to show that all algebras in E satisfy the identities

x ⊕ 0 = x, (4)

x′′ = x, (5)

(x 
 y) ⊕ y = (y 
 x) ⊕ x, (6)

(((x ⊕ y) 
 y) ⊕ z)′ ⊕ (x ⊕ z) = 1, (7)

and the quasi-identity

x ⊕ y ≤ z′ ⇒ (x ⊕ y) ⊕ z = x ⊕ (z ⊕ y). (8)

On the other hand, we proved in [3] that if an algebra A = 〈A; ⊕, ′, 0, 1〉 satisfies the
identities (4)–(7), then the rule x ≤ y iff x′ ⊕ y = 1 (equivalently, x 
 y = 0 or x � y = 0)
defines a bounded lattice, with bounds 0 and 1, where

x ∨ y = (x 
 y) ⊕ y and x ∧ y = (x ′ ∨ y′)′ = x � (x � y).

In [3], as well as in some other papers, we called these algebras “basic algebras”. Moreover,
if A satisfies also (8), then the partial algebra 〈A; +, 0, 1〉 obtained by restricting ⊕ as in
the case of MV-algebras, i.e., x + y is defined and equals x ⊕ y iff x ≤ y′, is a lattice effect
algebra with the same natural order as A, which entails that the total algebra associated with
〈A; +, 0, 1〉 via (1) is the initial algebra A.

The quasi-identity (8) may be replaced with an identity; for example, it suffices to write
(x ⊕ y)′ ∧ z instead of z. Hence the class E is a variety.

Recalling that MV-algebras correspond to MV-effect algebras, it is evident by (3) that the
variety of MV-algebras MV is the subvariety of E axiomatized by the identity x
y = x�y,
which is in view of (2) equivalent to x ⊕ y = y ⊕ x. MV-algebras are usually defined as
algebras A = 〈A; ⊕, ′, 0, 1〉 such that 〈A; ⊕, 0〉 is a commutative monoid, satisfying the
identities (5), (6) and 1 ⊕ x = 1 = 0′; see [6].

We have seen that orthomodular lattices correspond to lattice effect algebras satisfying
the condition that x ≤ x′ implies x = 0. In the language of E , this is equivalent to the
identity x∧x′ = 0, and in turn to x⊕x = x. We let OM denote the subvariety of E defined
by x ∧ x′ = 0 or x ⊕ x = x. Note that the total addition in orthomodular lattices is given by
x ⊕ y = (x ∧ y ′) ∨ y, which is not the same as x ∨ y.

The variety E is congruence distributive, because its members are lattice based algebras.
In fact, E is an arithmetical variety; see [3]. Congruence distributivity implies that for any
two subvarieties V1,V2 of E one has Si(V1 ∨ V2) = Si(V1) ∪ Si(V2), where Si(K) denotes
the class of subdirectly irreducible algebras in the respective class K. Since there exist
subdirectly irreducible algebras in E which are neither in MV nor in OM, it follows that
E is not the join MV ∨ OM. For instance, a non-trivial horizontal sum of non-Boolean
MV-algebras is a simple algebra in E , but it is neither an MV-algebra nor an orthomodular
lattice.

The concept that plays a central role in our proof is compatibility (see [7], Sect. 1.10). In
general, two elements x, y in an effect algebra are said to be compatible, in symbols x ↔ y,
if there exist x1, y1, z such that x = x1 + z, y = y1 + z and x1 + z + y1 is defined. It is
obvious that 0 ↔ x ↔ 1 and x ↔ x′ for any x. Also, if x ≤ y or y ≤ x, then x ↔ y.
Another important fact that we will use repeatedly is that x ↔ y iff x ↔ y′. In lattice effect
algebras we have

x ↔ y iff (x ∨ y) − y = x − (x ∧ y) iff (x ∨ y) − y ≤ x iff x − (x ∧ y) ≤ y′,
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and hence, in the language of the variety E ,

x ↔ y iff x 
 y = x � y iff x 
 y ≤ x iff x � y ≤ y ′.

Since x ↔ y iff x ↔ y′, it is also true that

x ↔ y iff x ⊕ y = y ⊕ x iff x ≤ x ⊕ y.

Consequently, since MV-effect algebras are lattice effect algebras where x ↔ y for all x, y,
the variety MV may be axiomatized, relative to E , by any of the identities x 
 y = x � y,
x 
 y ≤ x, x � y ≤ y ′, x ⊕ y = y ⊕ x or x ≤ x ⊕ y.

A block of an effect algebra is a maximal set of mutually compatible elements. For lattice
effect algebras Riečanová [17] proved that if x, y are compatible with a given z, then so are
x∨y, x∧y, x+y (when defined) and x−y (when defined). It follows that every block B of
any algebra A ∈ E is a subuniverse of A, and obviously, the subalgebra B is an MV-algebra.
The intersection of the blocks of A is called the compatibility centre and we denote it by
K(A). Clearly, K(A) = {a ∈ A | a ↔ x for all x ∈ A} and K(A) is a subuniverse of A.

Though the addition ⊕ is neither commutative nor associative,1 we may unambiguously
write n · x = x ⊕ · · · ⊕ x (with n occurrences of x) for any positive integer n ∈ N, because
every element x belongs to a block which is in fact an MV-algebra. We will mostly write
just nx instead of n · x.

By [3], the variety E is congruence regular, i.e., any congruence θ of an algebra A ∈ E
is determined by each of its classes [a]θ , and in particular, by [0]θ . We say that I ⊆ A is
an ideal2 of A if I = [0]θ for some congruence θ of A. Pulmannová and Vinceková [16]
proved that ∅ �= I ⊆ A is an ideal if and only if

(i) x ⊕ y ∈ I for all x, y ∈ I ;
(ii) x 
 y ∈ I for all x ∈ I and y ∈ A.

An alternative characterization of ideals can be found in [5]. Of course, if A ∈ MV , then
the condition (ii) amounts to saying that I is downwards closed.

For any ideal I of an algebra A ∈ E , the only congruence θ(I ) with the property that
[0]θ(I ) = I is given by

〈x, y〉 ∈ θ(I ) iff x 
 y, y 
 x ∈ I iff x � y, y � x ∈ I.

When ordered by set inclusion, the ideals of A ∈ E form a distributive lattice that is iso-
morphic to the congruence lattice of A under the mutually inverse assignments I �→ θ(I )

and θ �→ [0]θ .
In general, we do not have a reasonable description of the ideal Ig(X) generated by a

given subset X ⊆ A, but if X is an ideal of the compatibility centre or X = {a} where
a ∈ K(A), then Ig(X) can be described easily:

Lemma 1 (cf. [12], Prop. 1) Let A ∈ E . If J is an ideal of the MV-algebra K(A), then
Ig(J ) = {x ∈ A | x ≤ a for some a ∈ J }. In particular, for any a ∈ K(A), Ig(a) = {x ∈
A | x ≤ na for some n ∈ N}.

1In fact, ⊕ is commutative iff it is associative, which happens exactly in MV-algebras.
2In the literature on (lattice) effect algebras, the name “ideal” is often used for subsets which are closed
with respect to + and downwards closed, while our ideals defined above correspond to the so-called “Riesz
ideals”.
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Proof The first part is but a translation of [12], Prop. 1, into the language of the variety
E . Since K(A) is an MV-algebra, it is obvious that for any a ∈ K(A), the ideal of K(A)

generated by a is {x ∈ K(A) | x ≤ na for some n ∈ N}, and consequently, the ideal of A

generated by a is {x ∈ A | x ≤ na for some n ∈ N}.

We should notice that in any algebra A ∈ E we have

x ≤ y ⇒ x ⊕ z ≤ y ⊕ z, x 
 z ≤ y 
 z and z � y ≤ z � x, (9)

which follows directly from (1) and (3). In particular, we have y ≤ x ⊕ y, x 
 y ≤ y ′ and
x � y ≤ x. We will also need the identity

(x ∧ y) ⊕ z = (x ⊕ z) ∧ (y ⊕ z), (10)

which is over E equivalent to the identities (x ∨y)
z = (x 
z)∨ (y 
z) and x � (y ∧z) =
(x � y) ∨ (x � z). It is not hard to show (cf. [7], Prop. 1.8.6) that any lattice effect algebra
satisfies the equality (x ∧ y) + z = (x + z) ∧ (y + z) provided x + z, y + z are defined,
whence it follows that the identity (10) holds in every algebra in E . In fact, (9) and (10) hold
in all “basic algebras” (i.e., algebras satisfying (4)–(7), see [15]).

Lemma 2 Let A ∈ E . If a1, . . . , an, b ∈ A are such that ai ↔ b and ai ∧ b = 0 for each
i = 1, . . . , n, then s(a1, . . . , an) ↔ b and s(a1, . . . , an) ∧ b = 0 for every additive term3

s(x1, . . . , xn).

Proof We know that if ai ↔ b for every i = 1, . . . , n, then also any “sum” of the ai’s
is compatible with b. The rest is an easy induction: Suppose that s = p ⊕ q where p, q

are additive terms for which the statement holds true. Let c = p(a1, . . . , an) and d =
q(a1, . . . , an). Then b ∧ c = b ∧ d = 0 and, since b ↔ d and using (10), we have
b∧s(a1, . . . , an) = b∧(c⊕d) = b∧(b⊕d)∧(c⊕d) = b∧((b∧c)⊕d) = b∧d = 0.

Lemma 3 Let A ∈ E and a ∈ A. Suppose that (x 
 (x ⊕ y)) ∧ a = 0 for all x, y ∈ A.
Then a ∈ K(A) and the polar a⊥ = {x ∈ A | x ∧ a = 0} is an ideal of A such that
Ig(a) ∩ a⊥ = {0}.

Proof We have x ⊕ y = y ⊕ x whenever x ≤ y ′. Hence, by (8), x′ ⊕ y ≤ a ⊕ (x′ ⊕ y) =
(a′ 
 (x′ ⊕ y))′ implies

((x 
 y) ∧ a)′ = (x′ ⊕ y) ∨ a′ = [a′ 
 (x′ ⊕ y)] ⊕ (x′ ⊕ y)

= (x′ ⊕ y) ⊕ [a′ 
 (x′ ⊕ y)] = x′ ⊕ ([a′ 
 (x′ ⊕ y)] ⊕ y),

whence ((x
y)∧a)�x = x′
((x
y)∧a)′ = x′
(x′⊕z) where z = (a′
(x′⊕y))⊕y.
But then ((x 
 y) ∧ a) � x ≤ a yields ((x 
 y) ∧ a) � x = (x′ 
 (x′ ⊕ z)) ∧ a = 0 by the
assumption about a. Thus (x 
 y) ∧ a ≤ x for all x, y ∈ A.

Then x 
 a′ = (x 
 a′) ∧ a ≤ x for any x ∈ A, because we have x 
 a′ ≤ 1 
 a′ = a.
This shows that a′ ∈ K(A), whence also a ∈ K(A). Now, (i) if x, y ∈ a⊥, then x ⊕ y ∈ a⊥
by Lemma 2; and (ii) if x ∈ a⊥, then (x 
 y) ∧ a ≤ x ∧ a = 0, so x 
 y ∈ a⊥. Hence a⊥
is an ideal of A.

Finally, if x ∈ Ig(a) ∩ a⊥, then x ≤ na for some n ∈ N by Lemma 1, and x ∧ a = 0,
which entails x ∧ na = 0 by Lemma 2. Thus x = x ∧ na = 0.

3By an additive term we mean a term built up from the variables using the addition ⊕ only.
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Now, let K be a finitely based subvariety of E incomparable with MV , and suppose that
K is axiomatized, relative to E , by an identity which is of the form

t (x1, . . . , xk) = 0.

Since K is finitely based, it can always be axiomatized by a single identity of such a form.
Indeed, any identity p = q can be replaced with p � q = 0 and q � p = 0 where � is � or

, and any finite family of identities t1 = 0, . . . , tn = 0 can be replaced with the identity
t1 ∨ · · · ∨ tn = 0.

Theorem 4 If K is as above, then the join of MV and K is axiomatized, relative to E , by
the identity

(x 
 (x ⊕ y)) ∧ t (z1, . . . , zk) = 0. (11)

Proof Let K′ be the subvariety of E axiomatized by (11). Since x 
 (x ⊕ y) = 0 holds
in MV and t (z1, . . . , zk) = 0 in K, it is obvious that (11) holds in MV as well as in K.
Hence MV ∨ K ⊆ K′.

Conversely, let A ∈ Si(K′) and suppose that A /∈ K, i.e., there exist a1, . . . , ak ∈ A

such that t (a1, . . . , ak) �= 0. Let b = t (a1, . . . , ak). Then (x 
 (x ⊕ y)) ∧ b = 0 for any
x, y ∈ A, and so, by Lemma 3, b⊥ is an ideal such that Ig(b) ∩ b⊥ = {0}. Since A is a
subdirectly irreducible algebra and Ig(b) �= {0}, we have b⊥ = {0}. But x 
 (x ⊕ y) ∈ b⊥
for all x, y ∈ A, hence A satisfies the identity x 
 (x ⊕ y) = 0, i.e. x ≤ x ⊕ y. In
other words, A ∈ MV . Therefore, Si(K′) ⊆ Si(MV) ∪ Si(K) = Si(MV ∨ K), whence
K′ ⊆ MV ∨ K.

Let us return to orthomodular lattices. The variety OM is axiomatized, relative to E , by
the identity x ∧x′ = 0, i.e., the term t (x1, . . . , xk) from the above theorem is t (x) = x ∧x′,
and hence by Theorem 4 we obtain:

Corollary 5 The join ofMV andOM is axiomatized, relative to E , by the identity
(x 
 (x ⊕ y)) ∧ z ∧ z′ = 0.

Let 〈D; +, 0, 1〉 be the so-called distributive diamond, i.e., the lattice effect algebra with
universe D = {0, a, b, 1} such that a+a = 1 = b+b, while a+b and b+a are not defined.
This effect algebra has a prominent role for distributive lattice effect algebras because by
[10], every finite distributive lattice effect algebra is isomorphic to a direct product of chains
and diamonds. Let D be the corresponding algebra in E . Note that a⊕b = b and b⊕a = a.
Relative to the variety DE of distributive members of E , the variety V(D) generated by D

was axiomatized by the identity (x �y)�2z = (x �2z)� (y �2z) in [11], and by 2x = 3x

in [4]. Using Theorem 4 we can simplify the axiomatization of the join of MV and V(D)

which was given in [1]. We may take the term t (x) = 3x 
 2x.

Corollary 6 The join ofMV and V(D) is axiomatized, relative to DE , by the identity
(x 
 (x ⊕ y)) ∧ (3z 
 2z) = 0.
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3. Chajda, I., Halaš, R., Kühr, J.: Many-valued quantum algebras. Algebra Univers. 60, 63–90 (2009)
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