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Abstract Contextuality and nonlocality (hence nonobjectivity of physical properties) are
usually maintained to be unavoidable features of quantum mechanics (QM), following from
its mathematical apparatus. Moreover they are considered as basic in quantum information
processing. Nevertheless they raise still unsolved problems, as the objectification problem
in the quantum theory of measurement. The extended semantic realism (ESR)model offers a
way out from these difficulties by reinterpreting quantum probabilities as conditional rather
than absolute and embedding the mathematical formalism of QM into a broader mathemat-
ical framework. A noncontextual hidden variables theory can then be constructed which
justifies the assumptions introduced in the ESR model and proves its objectivity. Both linear
and nonlinear time evolution occur in this model, depending on the physical environment,
as in QM. In addition, the ESR model implies modified Bell’s inequalities that do not nec-
essarily conflict with QM, supplies different mathematical representations of proper and
improper mixtures, provides a general framework in which the local interpretations of the
GHZ experiment obtained by other authors are recovered, and supports an interpretation of
quantum logic which avoids the introduction of the problematic notion of quantum truth.

Keywords Contextuality · Nonlocality · Objectification problem · Nonobjectivity · ESR
model · “no-go” theorems · GHZ experiment · Quantum logic

1 Introduction

Since its birth quantum mechanics (QM) proved to be a theory of outstanding empirical suc-
cess, but also a source of problems and paradoxes. These mainly follow from the proposed
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interpretations of the theory, which multiplied in time and are still debated. According to
Busch et al. [1] these interpretation can be divided in two classes.

Statistical interpretations: QM refers to frequencies of measurements outcomes only. No
reference to microscopic objects should enter its language.

“Ontic”, or “realistic”, interpretations:1 QM deals with items of physical systems, or
individual objects, and their (physical) properties.

The statistical interpretations avoid many problems but can be criticized from several
viewpoints. They imply indeed an instrumentalist view and lack explanatory power. More-
over, nowadays experimental physicists often claim that they can deal with individual
objects, not only with statistical ensembles.

The realistic interpretations can be reformulated avoiding ontological commitments if
“individual object” is considered as a term of the theoretical language of QM, interpreted
(via observational language) as a click in a preparing device. But in these interpretations,
however reformulated, a crucial problem occurs: for every individual object in a given state,
there exist properties that are nonobjective (roughly speaking, that do not preexist to a mea-
surement). This feature of QM follows from “no-go” theorems as Bell-Kochen-Specker’s
[2, 3], which proves the contextuality of QM, and Bell’s [4], which proves the contextu-
ality at a distance, or nonlocality, of QM. Indeed, nonobjectivity has some well known
intriguing consequences. First of all, the objectification problem in the quantum theory
of measurement: if QM is a universal theory, nonobjectivity extends to the properties of
macroscopic objects, against evidence (this problem is illustrated by famous paradoxes, as
Schrödinger’s cat, Wigner’s friend, etc). Secondly, no intuitive model for QM can be pro-
vided (wave-particle duality), as every such model would imply objectivity of all properties.
Thirdly, quantum probabilities are nonepistemic, that is, they do not bear an ignorance inter-
pretation, for the values of nonobjective properties cannot be assigned independently of a
measurement context, that is, independently of observation (hence some interpretative prob-
lems occur when classical and quantum probabilities are mixed: in particular, proper and
improper mixtures have the same mathematical representation but different physical inter-
pretations). Finally, no truth value can be assigned to a sentence attributing a property to an
individual object in a given state of � if the property is nonobjective: hence, a non-classical
notion of truth (quantum truth) seems to be required.

Notwithstanding the problematic consequences summarized above, contextuality and
nonlocality are usually maintained to be distinguishing features of QM, independently of
the foundational approach that is adopted (e.g., the quantum logical, the operational and the
algebraic approach, Bohm’s theory, etc.). Moreover, nowdays quantum information theory
considers contextual and nonlocal correlations as basic resources for quantum information
processing and inspires new foundational approaches, as Zeilinger’s [5], Clifton-Bub-
Halvorson’s [6], etc. The acceptance of contextuality and nonlocality in all these approaches
is based not only on theoretical reasons, as the “no-go” theorems, but also on a series of
experimental results that started with the famous Aspect’s experiments [7–9].

Philosophers of science know, however, that no set of experimental results may determine
in a unique way a theory that explains them. Moreover, every “no-go” theorem follows
from assumptions (some of which are often left implicit) that can be questioned. Several
years ago a research was therefore started by the author, together with some collaborators,

1It must be noted that the term “realistic” is used here in a very weak sense. Well known interpretations or
modifications of QM, as Bohm’s theory, multi-world interpretations and GRW theory, are “realistic” in a
much stronger sense and will not be considered in this paper.
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with the aim of inquiring whether it was possible to recover objectivity by embedding the
mathematical apparatus of QM into a broader mathematical framework and reinterpreting
it in such a way to circumvent the “no-go” theorems. Of course, this new framework had
to satisfy a basic requirement, that is, it had to explain the experimental results mentioned
above and, more generally, the empirical success of QM. This research has been recently
completed with the proposal of a new theory called ESR (extended semantic realism) model
[10–19].

Let us resume some basic features and results of the ESR model that are discussed in this
paper.

(i) The fundamental equation of the ESR model formalizes the intuitive idea that an
essential nondetection can occur in every measurement, which depends on the set of
all properties that are objective for the individual object on which the measurement
is performed (such a set must be determined by the ESR model itself, as in QM) and
is not a consequence of flaws or lack of efficiency of the real measuring apparatuses.
Hence nondetection may occur also in the case of idealized (efficiency 1) measure-
ments, and only measurements of this kind are considered in the ESR model, for the
sake of simplicity. Based on the fundamental equation, the standard quantum proba-
bilities are reinterpreted as referring only to the set of all individual objects that are
detected when idealized measurements are performed (conditional on detection prob-
abilities). This fundamental assumption of the ESR model allows us to recover the
standard mathematical apparatus of QM within a broader mathematical framework,
in which two new probabilities are introduced, a detection probability and an overall
probability, the latter referring to the set of all individual objects that are produced
(Section 3).

It must be stressed that we have no theory, at present, to justify the funda-
mental equation and assumption of the ESR model, hence to predict the values of
the detection probabilities. Therefore these occur as parameters in the model (each
parameter depending on the state of the individual object and on the property that
is measured) to be determined experimentally. If this determination is done in a
specific case, then the ESR model yields complete prediction of the remaining prob-
abilities. The fundamental equation and assumption must be considered as a priori
hypotheses, to be justified by their physical consequences, explanatory power and
predictions.

(ii) The reinterpretation of quantum probabilities as conditional on detection has deep
consequences. Indeed, it allows to construct a hidden variables model (Section 4) that
provides a set-theoretical picture at a microscopic level from which the fundamen-
tal equation of the ESR model can be deduced, showing that all properties can be
considered objective in this model (the exact meaning of the terms “property” and
“objective” is specified in Section 2). It follows that the ESR model is a noncontex-
tual, hence a local, theory, even if its formalism embodies the formalism of QM. The
“no-go” theorems are thus circumvented. The deep reason of this result is that these
theorems rest on the standard interpretation of quantum probabilities as absolute, and
are no more valid if the foregoing reinterpretation is adopted. In particular, objectivity
of properties impliesmodified Bell’s inequalities that do not conflict with the (reinter-
preted) quantum probabilities if the values of the detection probabilities do not exceed
some upper values (Section 6).2 Also in the case of the proofs of nonlocality that do
not resort to inequalities, as Greenberger-Horne-Zeilinger’s [30] or Mermin’s [31],
the aforesaid reinterpretation invalidates the proofs and leads to an explanation of the
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experimental results predicted by QM that does not imply nonlocality and coincides
with similar explanations supplied by other authors [32] (see again Section 6).

(iii) The term “individual object” in the ESR model does not imply that individual objects
can be pictured as point-like classical particles with trajectories (nor objectivity of
properties implies such a classical model). Hence, the interference occurring in two
slits experiments is predicted by the ESR model, which yields the same predictions
of QM because of its fundamental assumption whenever only detected objects (which
could be all produced objects in this case, see (v)) are taken into account.

(iv) Objectivity of physical properties implies that no “actualization” of physical prop-
erties that are only potential occurs when a measurement is performed. The Lüders
postulate of QM is modified and recovered in the ESR model (Section 5) but it must
not be interpreted as implying a “collapse of the wave function”, as in QM. Rather,
it describes the transformation of the state that occurs whenever an individual object
interacts with a macroscopic measuring device. This description is then used as a
starting point for hypothesizing the general laws of time evolution in the ESR model,
that basically reproduce standard quantum laws (see again Section 5).

(v) Detection probabilities, which depend on the state of the individual objects and on the
properties that are measured, are different whenever different physical systems are
considered. We expect that they are very close to 1, or just 1, for massive particles,
as heavy ions (which does not prohibit interference, see (iii)), while they should have
lower upper limits for lighter particles. In the case of the modified Bell’s inequalities
rather restrictive assumptions lead to an upper value of 0.8165 for the efficiency of
the electron’s spin measuring devices in the Bohm’s variant of the Einstein-Podolski-
Rosen thought experiment [13]. We have not yet an estimate for different particles
and experiments (such an estimate is not immediate if one does not want to intro-
duce too restrictive assumptions) as several different detection probabilities enter the
equations.

(vi) Finally, we anticipate that the predictions of the ESR model can be different from the
predictions of QM whenever overall probabilities are considered, but may be very
close to the latter and undistinguishable from them in real experiments if the values
of the parameters (detection probabilities) are close to 1. If only individual objects
that are detected are taken into account, as in Aspect’s and following experiments, the
predictions of the ESR model coincide with the predictions of QM. One can, how-
ever, conceive experiments that distinguish the two theories by considering proper
mixtures, whose mathematical representation in the ESR model is different from the
mathematical representation provided by QM (Section 5).

2An intuitive explanation of this result can be given as follows: the detection probabilities change with the
measurement that is performed, and the subset of individual objects that is detected generally is not a fair
sample of the set of all objects that are produced. This argument resembles the argument that has been often
raised to question the results of Aspect’s and similar experiments, in which fair sampling is usually assumed
[20, 21]. But unfair sampling depends on the features of real measuring devices in the latter argument: hence
it would not occur in the case of idealized measurements. It depends instead on the physical properties of the
individual objects, hence on different physical variables, in the ESR model, so that it may occur also in the
case of idealized measurements [22].
We add that the conventional interpretation of the “no-go” theorems has been questioned in particular by

several authors in the framework of a statistical interpretation of QM that maintains the standard interpreta-
tion of quantum probabilities [23–27]. The criticism of this “statistical opposition” leads to avoid nonlocality
of QM, while contextuality is preserved and explained, in the case of photons, by taking into account the
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2 On the Notion of Nonobjectivity

To make the notion of nonobjectivity adopted in this paper more precise, let us firstly recall
that a physical system � is usually associated in QM with a set S of states and a set O
of observables. The set S is partitioned into a subset P of pure states and a subset M of
mixtures. Furthermore, a (physical) property is defined as a pair F = (A,�), with A ∈ O
and � a Borel subset of the set � of all possible values of A [1, 33]. The physical system �

can then be characterized by a triple (S,F , p) [1, 34]), where F is the set of all physical
properties of � and p is a probability function

p : (S, F ) ∈ S × F −→ [0, 1]. (1)

Because of the characterization above, properties play a basic role in the foundations of
QM. For every F = (A,�) ∈ F , one says that F has truth value true (false) if and only if
the value of A belongs (does not belong) to �. If one adopts the realistic interpretation of
QM (Section 1), every F ∈ F is in principle measurable (but different properties may be not
simultaneously measurable) on an individual object α, that is, an item of �. The standard
formulations of QM usually consider only idealized measurements. These measurements
are dichotomic, have efficiency 1, and their outcomes are labeled yes and no, the former
corresponding to the value true of F and the latter to the value false.

The notion of objectivity can now be defined referring to an item of the physical system
that is considered, as follows.

A property F of � is objective for an individual object α if and only if its value (true/false)
is not only assigned for every measurement context (value definiteness) but also independent
of this context.

This definition implies that a property F is nonobjective whenever its value is not
assigned for every measurement context or, if assigned, depends on the context. Hence the
realistic interpretations of QM imply that QM is a nonobjective theory, in the sense that, for
every individual object α in a given state S of a physical system �, there are both properties
that can be considered objective and properties that must be considered nonobjective. To
be precise, if an individual object α is in the state S, then the property F can be considered
objective for α if p(S, F ) ∈ {0, 1}, but it is necessarily nonobjective if p(S, F ) /∈ {0, 1}
(note that this conclusion implies that F is objective for α if and only if it is objective for
every individual object in the state S).

3 The Fundamentals of the ESR Model

As anticipated in Section 1, the ESR model stems from the intuitive idea that the set of all
properties which are objective for an individual object α in a state S (to be determined by the
model itself, as in QM) may be such that α has nonzero probability of remaining undetected
when a property F is measured on it. This “no-detection” probability may vary with F and
S but does not depend on the device that is used to perform the measurement: hence, it may
be different from 0 also in the case of idealized measurements. The lack of efficiency of
real measurements superimposes to it, usually hiding it.

thresholds that occur in real detectors [28, 29]. Our present view is obviously different, for it refers to a “real-
istic” interpretation of QM and circumvents the “no-go” theorems by modifying the standard interpretation
of quantum probabilities, thus avoiding contextuality, hence nonlocality.
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To formalize the intuitive idea expounded above, the ESR model starts from the quantum
description of a physical system � in terms of states and observables, but adds a “no-
registration outcome” a0 to the set � of all possible values of any quantum observable A
[12–19]. The outcome a0 is considered as a possible result of an idealized measurement
of A and not only as the initial position of a pointer that is abandoned when the measure-
ment is performed. Hence the introduction of a0 transforms the quantum observable A into
a generalized observable A0. This generalized observable is then associated with a family
of properties of the form (A0, �), where � is a Borel subset of the set �0 = � ∪ {a0} of
all possible values of A0. When a0 does not belong to �, the property F = (A0, �) coin-
cides with the property (A,�) of QM. Therefore the subset {(A0, �) | a0 /∈ �} corresponds
bijectively to the set of all properties of � in QM and can be identified with it (hence it is
denoted by F in the following). Our intuitive idea can then be formally expressed by the
fundamental equation of the ESR model

pt (S, F ) = pd(S, F )p(S, F ). (2)

In this equation S is a state and F = (A0, �) ∈ F . Then, pt (S, F ) is the probability
that an idealized measurement of F performed on an individual object α in the state S yields
outcome yes (overall probability), pd(S, F ) is the probability that α is detected in the mea-
surement (detection probability), and p(S, F ) is the probability that the measurement yields
outcome yes when α is detected (conditional on detection probability).

The fundamental assumption of the ESR model can now be stated as follows.
AX. Let S ∈ P and F ∈ F . Then, the probability p(S, F ) coincides with the probability

of the property F in the state S supplied by QM via Born’s rule.
We stress that assumption AX concerns pure states only (mixtures require a separate

treatment, see Section 4). Furthermore, it has two relevant consequences.

(i) Conservative. The ESR model embodies the formalism of QM.
(ii) Innovative. The ESR model modifies the interpretation of the formalism of QM.

According to QM, Born’s rule supplies an absolute probability (physically interpreted
as the large number limit of the ratio n/N , where n is the number of individual objects
in the state S that display the property F ∈ F when F is measured, and N is the
number of individual objects in the state S that are produced). According to the ESR
model, if S is pure the same rule supplies a conditional probability (physically inter-
preted as the large number limit of the ratio n/Nd , where Nd ≤ N is the number of
all individual objects in the state S that are detected when F is measured).

Let us come to the mathematical apparatus of the ESR model. For every S ∈ P and F =
(A0, �) ∈ F , the introduction of the three probabilities pt (S, F ), pd(S, F ) and p(S, F ) in
place of the standard quantum probability implies that the mathematical apparatus of QM
must be extended to take into account these probabilities. Such an extension leads to new
representations of states, observables and properties.

The detection probability pd(S, F ). No theory is available at present to predict pd(S, F ).
Hence pd(S, F ) is considered as a parameter in the ESR model, to be determined empiri-
cally. It is only required that pd(S, F ) satisfies a mathematical condition to be stated in the
following.

The conditional on detection probability p(S, F ). Assumption AX implies that this
probability can be obtained by using standard quantum rules. Hence, as far as p(S, F ) is
concerned, the physical system � can be associated with a Hilbert space H. Moreover, a
pure state S can be represented by a one-dimensional orthogonal projection operator ρS on
H, the generalized observable A0 can be represented by the same self-adjoint operator Â
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that represents the observable A of QM fromwhichA0 is obtained, and the property F can be

represented by an orthogonal projection operator P Â(�) on H. Furthermore, the standard
quantum equation holds

p(S, F ) = T r[ρSP Â(�)]. (3)
The overall probability pt (S, F ). Bearing in mind the fundamental equation of the ESR

model and the mathematical representation of p(S, F ), one obtains

pt (S, F ) = T r[pd(S, F )ρSP Â(�)]. (4)

Hence one puts
pt (S, F ) = T r[ρSTS,A0(�)]. (5)

The linear operator TS,A0(�) = pd(S, F )P Â(�) is positive and bounded by 0 and 1
(effect). One then assumes that a mapping pd

S,A0
(λ) of the set � of all possible values of A

into [0, 1] exists such that

TS,A0(�) =
∫
�

pd
S,A0

(λ)P Â(dλ). (6)

Equation (6) states the mathematical condition on pd(S, F ) mentioned above.
Equations (4)–(6) imply that, as far as pt (S, F ) is concerned, the pure state S can still be

represented by ρS . The property (A0, �) is represented instead by a family
{
TS,A0(�)

}
S∈P

of effects. Moreover, let B(�) be the set of all Borel subsets of � and B(H) the set of all
bounded positive operators onH. Then, the generalized observable A0 is represented by the
family of commutative operator valued measures

TA0 = {
TS,A0 : � ∈ B(�) −→ TS,A0(�) ∈ B(H)

}
S∈P . (7)

Putting together the representations of properties to be used to evaluate the probabilities
pS(F ) and pt (S, F ) in the case of pure states, one obtains that a complete mathematical
representation of a property F = (A0, �) ∈ F is provided in the ESR model by the pair(

P Â(�),
{
TS,A0(�)

}
S∈P

)
. (8)

Analogously, a complete representation of the generalized observable A0 is provided by
the pair

(Â,TA0) =
(
Â,

{
TS,A0 : � ∈ B(�) −→ TS,A0(�) ∈ B(H)

}
S∈P

)
. (9)

The following remarks are then important.

(i) In the representation of F the first element of the pair coincides with the standard
representation of F in QM. In the representation of A0 the first element of the pair
coincides with the standard representation of the quantum observable A from which
A0 is obtained.

(ii) In both representations the second element is a family, parametrized by the set of pure
states. Hence, as far as pt (S, F ) is concerned, the representation of a property, or of an
observable, is not given once for all, because it depends on the state of the individual
object on which the property, or the observable, is measured.

4 H.V. Models and Objectivity

We have already explained in Section 1 that the main aim of the ESR model is supplying an
objective theory, embodying from one side the basic formalism of QM and avoiding, on the
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other side, the problems following from nonobjectivity. Let us therefore discuss the crucial
issue of nonobjectivity.

The proof of the objectivity of the ESR model is obtained by showing that this model
admits noncontextual (hence local) hidden variables (h.v.) models (at variance with earlier
formulations [10–18], the latest version of the ESR model [19] does not introduce h.v. from
the beginning). To this end a set Fμ of microscopic properties of the physical system � is
introduced which is in one-to-one correspondence with the set F of (macroscopic) prop-
erties. For every individual object α, the set Fμ is then partitioned into two subsets, the
subset s of all the microscopic properties that are possessed by α and the subset Fμ \ s of
all the microscopic properties that are not possessed by α. The subset s is called the micro-
scopic state of α. Then, an overall probability, a detection probability and a conditional on
detection probability are introduced referring to the microscopic state s of α rather than to
its (macroscopic) state S. By introducing the further probability p(S | s) that an individual
object α in the state S is in the microscopic state s, one can deduce the fundamental equation
of the ESR model, thus obtaining the desired noncontextual h.v. model.

Because of the above result and of the one-to-one correspondence between Fμ and F ,
one concludes that all properties in F can be considered objective in the sense specified in
Section 2. Hence the ESR model is an objective theory. It follows that all probabilities can
be considered epistemic, so that no objectification problem occurs. Of course, this result
finds its roots in the reinterpretation of quantum probabilities as conditional on detection
rather than absolute (Section 3), which allows to circumvent the “no-go” theorems of QM
(Sections 11 and 6).

5 Mixtures, Generalized Lüders Postulate and Time Evolution

To complete our presentation of the ESR model three main issues must still be discussed.
Indeed we have not yet considered mixtures, changes of state induced by measurements and
time evolution. Let us briefly deal with these topics.

According to many authors [1, 34–36] there are in QM both proper and improper mix-
tures, which are mathematically represented in the same way (density operators) but have
different operational definitions. In short, the preparation of an individual object α in a state
M that is a proper mixture of pure states can be described as follows: first, prepare a set Q
of ensembles of individual objects such that each ensemble consists of individual objects
in the same pure state, different ensembles corresponding to different pure states; second,
prepare a new ensemble by mixing the ensembles ofQ without registering the state of each
individual object; third, choose an individual object α in the final ensemble. One can then
introduce the probability that α is in a prefixed pure state S belonging to the set of all states
associated with the ensembles of Q. This probability is epistemic, for it has an ignorance
interpretation (the state of α would be known if it had been registered when preparing the
mixture M). Now, M is represented in QM by a density operator, say ρM , which can be
described in an infinite number of ways as a convex combination of projection operators
representing pure states. If one chooses to decompose ρM in terms of the pure states associ-
ated with the ensembles ofQ, then the coefficient of S in this decomposition coincides with
the foregoing epistemic probability.

The preparation of an individual object α in a state N that is an improper mixture is
obtained instead by considering a composite physical system, preparing an ensemble of
items of such a system in a given state (take a pure state for the sake of simplicity), selecting
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one of the component subsystems and considering the ensemble of all items of this subsys-
tem. Also the mixture N is represented in QM by a density operator, say ρN , but in this case
it does not exist any decomposition of ρN in terms of pure states whose coefficients can be
interpreted as epistemic probabilities.

At variance with QM, proper and improper mixtures have different mathematical rep-
resentations, corresponding to their different operational definitions, in the ESR model
[12, 14, 15, 19].

Proper mixtures. Each proper mixture has a rather complicated representation as a family
of pairs parametrized by the setF of properties. Each pair in the family consists of a density
operator and a detection probability. The explicit form of these mathematical entities is
given in [12, 14, 15] and will not be reported here for the sake of brevity.

Improper mixtures. These mixtures can be represented by the same density operators that
represent them in QM. Assumption AX can be extended to improper mixtures by substi-
tuting the subset P of all pure states with the subset P ∪ N , where N is the subset of all
improper mixtures. The representations of properties and observables can then be extended
to improper mixtures by introducing the same substitution. Hence improper mixtures are
considered as generalized pure states in the ESR model.

Let us come to the change of state induced by a measurement. In QM the Lüders postulate
selects a subset of ideal first kind measurements that change a state according to a prefixed
rule [33]. This postulate is generalized in the ESR model by considering a dichotomic mea-
surement M of a property F = (A0, �) ∈ F on an individual object α in the state S, with
S ∈ P ∪ N . Then M is an idealized measurement of F if, whenever the yes outcome is
obtained, the state SF after the measurement is represented by the density operator

ρSF
= TS,A0(�)ρST

†
S,A0

(�)

T r
[
TS,A0(�)ρST

†
S,A0

(�)
] . (10)

By analogy with QM, the rule expressed by the equation above is called the generalized
Lüders postulate. It must be stressed that it does not apply to proper mixtures. However, the
representation of the final state in the case of proper mixtures can be deduced from (10). Its
mathematical form is rather complicated [12, 14, 15] and will not be reported here.

It is important to recall that the objectivity of the ESR model implies that no “collapse
of the wave function” occurs in this model, as we have seen in Section 1. Rather, the gen-
eralized Lüders postulate supplies an example of the change of state of an individual object
interacting with another individual object (the measuring apparatus). This example provides
some suggestions for the dynamics of the composite system of two individual objects. In
particular, a crucial difference from time evolution in QM occurs because the generalized
Lüders postulate introduces a change of state also in the case of individual objects that are
not detected by the measurement.

Bearing in mind the above example we have recently discussed time evolution in the
framework of the ESR model [19]. Also the details of this treatment will not be reported
here, and we limit ourselves to resume our conclusions.

Firstly, let us consider a physical system in a state S ∈ P ∪ N .

(i) If the physical system is closed, one can assume that it undergoes linear Hamiltonian
evolution, as in QM.

(ii) If the physical system is open, its time evolution may be linear or not, depending on
its interaction with the environment, as in QM.

(iii) The time evolution induced by an idealized measurement is necessarily nonlinear.
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The above results show that time evolution in the ESR model matches time evolution in
QM, but for the distinguishing feature in item (iii).

Secondly, let us consider time evolution of a physical system in a state S ∈ T , where T
is the set of all proper mixtures. One can then prove that time evolution can be deduced in
this case from the time evolution discussed above.

6 Empirical Consequences and Applications

The empirical success of QM imposes a fundamental constraint on every attempt at mod-
ifying QM to avoid the problems following from nonobjectivity. The predictions of QM
that have been experimentally verified must in fact be reproduced by the new theory within
the limits of the experimental errors. On the other side, the new theory should also pro-
vide some testable predictions that make it empirically different from QM, allowing one to
check which theory is correct. The ESR model satisfies both these conditions. Indeed, the
predictions of the ESR model in experiments on overall probabilities are formally different
from the predictions of QM, but, if the state S of the individual objects that are considered
is a pure state or an improper mixture, they may be close to the quantum predictions when-
ever the detection probabilities are close to 1. Moreover the predictions of the ESR model
in experiments on conditional on detection probabilities (as Aspect’s experiments, in which
non-detected individual objects are not taken into account [7, 8]) are identical to the predic-
tions of QM. The predictions of the ESR model in experiments on overall probabilities in
which the state S of the individual objects that are considered is a proper mixture may be
instead very different from the predictions of QM and single out a class of experiments that
can distinguish the two theories.

We add that the ESR model has been used to deal with some well known problematical
issues in QM, to check its predictions. The obtained results can be resumed as follows.

(i) The “no-go” theorems. Because of assumption AX (Section 3) the “no-go” theorems
of QM do not hold in the ESRmodel [11–13, 18]. We illustrate this result by summarily
discussing some examples.

Let us firstly consider the proofs of the Bell theorem that resort to inequalities. We
have shown in this case that Bell’s inequalities do not hold in the ESR model at a macro-
scopic level, notwithstanding objectivity (they hold instead in the h.v. models discussed in
Section 4, at a purely theoretical microscopic level). Indeed, dichotomic observables must
be substituted by thrichotomic observables, because a no-registration outcome must be
added in the set of all possible values of each observable (Section 3) Hence the original
Bell’s inequality must be replaced by the modified Bell’s inequlity

|E(A0(a), B0(b)) − E(A0(a), B0(c))| ≤ 1 + E(A0(b), B0(c)). (11)

The symbols E(A0(a), B0(b)), E(A0(a), B0(c)) and E(A0(b), B0(c)) in (11) denote
the expectation values of products of the trichotomic observables A0(a), A0(b), B0(b) and
B0(c) depending on the parameters a, b and c. Let us then consider a composite physical
system�made up of two spin-1/2 systems�1 and�2, and let the state S of� be the singlet
spin state. Let the quantum observables A(x) and B(y) (x = a, b; y = b, c) from which
the generalized observables A0(x) and B0(y) are obtained be the observables “spin of �1
along the x direction” and “spin of �2 along the y direction”, respectively. By introducing
the simplifying assumption that A0(x) and B0(y) are such that the detection probability of
any spin property in the singlet state depends on the generalized observable but not on its
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value, we obtain from (11)

| − pd(S, A0(a))pd(S, B0(b))a · b + pd(S,A0(a))pd(S, B0(c))a · c |
≤ 1 + pd(S,A0(b))pd(S, B0(c))b · c (12)

Inequality (12) does not imply, a priori, any contradiction. It establishes instead a condi-
tion that must be fulfilled by the detection probabilities that occur in it. An estimate under
rather restrictive assumptions (in particular, the four detection probabilities in (12) are sup-
posed to be identical) leads to an upper value of 0.8165 for the detection efficiency of spin
measurements on items of �1 and �2 [13], as reported in Section 1.

Secondly, let us consider the proofs of the Bell-KS and Bell theorems that do not resort
to inequalities. All these proofs proceed ab absurdo (see, e.g., [30, 31]). They select some
different quantum laws linking together physical properties of an item α of a composite
physical system, assume that they must hold simultaneously, and show that a contradiction
occurs if all properties of α are supposed to be objective. Contextuality or nonlocality then
follow, depending on the physical system that is considered. It is important to note, how-
ever, that the laws that are chosen cannot be checked simultaneously. Indeed each of them
contains some observables that are incompatible with some of the observables that occur
in the other laws. Let us come now to the ESR model. Each of the aforesaid laws holds in
this model for every individual object that is detected when the law is checked, because of
assumption AX. But the sets of objects that are detected are generally different when dif-
ferent laws are checked. Therefore if a measurement is performed on α to check one of the
laws and α is detected, then the law will be confirmed, but one cannot simultaneously check
all the remaining laws and cannot exclude that the objective properties of α are such that α
would have not been detected in some of these checks. In fact, the contradiction mentioned
above implies that α must necessarily remain undetected in at least one check of this kind.
Thus, the assumption that all laws must simultaneously be valid for α does not hold in the
ESRmodel, which invalidates the aforesaid proofs of contextuality and nonlocality, hence of
nonobjectivity.

(ii) The GHZ experiment. The general h.v. models for the ESR model can be used
to produce h.v. models for specific physical situations and experiments. In partic-
ular, it has been recently proved that the finite “toy models” contrived by Szabó
and Fine [32] to provide a local explanation of the Greenberger-Horne-Zeilinger
(GHZ) experiment can be obtained as special cases of the general h.v. models
[16].

(iii) Quantum logic and quantum truth. It has also been recently shown that quantum
logic can be embedded into a suitable extended classical logic, the embedding pre-
serving the logical order but not the algebraic structure [17]. This result must be
considered as purely formal if one accepts the standard interpretation of QM, but
acquires a physical interpretation in the ESR model because of objectivity of proper-
ties. Objectivity indeed allows one to consider the set of individual objects formally
associated with every F ∈ F as the set of all objects that possess the property F. It fol-
lows that no notion of quantum truth, different from classical truth and incompatible
with it is needed in the ESR model. Rather, quantum logic can be seen as a mathe-
matical structure formalizing the metalinguistic notion of verifiability in a quantum
framework.
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University Press, Växjö (2003)
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