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Abstract Starting from a Unified Field Theory (UFT) proposed previously by the author,
the possible fermionic representations arising from the same spacetime are considered from
the algebraic and geometrical viewpoint. We specifically demonstrate in this UFT general
context that the underlying basis of the single geometrical structure P(G,M) (the princi-
pal fiber bundle over the real spacetime manifold M with structural group G) reflecting
the symmetries of the different fields carry naturally a biquaternionic structure instead of
a complex one. This fact allows us to analyze algebraically and to interpret physically in a
straighforward way the Majorana and Dirac representations and the relation of such struc-
tures with the spacetime signature and non-hermitian (CP) dynamic operators. Also, from
the underlying structure of the tangent space, the existence of hidden (super) symmetries
and the possibility of supersymmetric extensions of these UFT models are given showing
that Rothstein’s theorem is incomplete for that description. The importance of the Clifford
algebras in the description of all symmetries, mainly the interaction of gravity with the other
fields, is briefly discussed.

Keywords Unified field theories · Affine geometries · Dirac · Majorana · Poisson
manifolds · Supermanifolds

1 Fermionic Symmetry and Matter Fields

Reviewing some concepts from earlier references [2], in [1] it was discussed that according
to Wigner, from the quantum viewpoint a matter field can be defined by a spinor field
�k(xλ)where k = 1, 2; λ = 1, 2, 3, 4 and in the case of Lorentzian metric, x4 = ix0. These
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fields can be taken as elements of some internal space located at xλ of the 4 dimensional
spacetime manifold. The elementary field (“particle” was used by Weyl) is defined by the
following transformation property

� ′k(xλ) = Uk
j (x, 2)�j (xλ) (1)

where the Uk
j is the 2 × 2 matrix representation of the unitary group U(2,C) and is a

continous function of xλ. If the argumentation given byWeyl runs in the correct way, strictly
speaking and accordling to the analysis that follows, a biquaternionic structure is the most
adequate to derive the Dirac equation. From the algebraic viewpoint the only generalized
quaternion algebra over C is the ring of 2 × 2 matrices over C and moreover, the Clifford
algebra of a two-dimensional space with a nondegenerate quadratic form is central, simple
and it is a generalized quaternion algebra.

From what is written above, it is necessary to fully analyze the underlying structure of
the theory (and in particular the model) presented in [3–5, 7, 10] not only from the physical
and geometrical viewpoint but as well as first principles. The target is clear: to find the
fundamental essence of unification as the natural world presents us.

The organization of the article is as follows: Sections 2 and 3 are devoted to describe the
spacetime manifold: Dirac structure and the relation with Clifford algebras as the natural
language of the description [11]. In Section 4 the emerging character of the biquaternionic
structure and the connection with the Dirac equation is explicitly presented and analyzed.
In Section 5 the Majorana representation is introduced and discussed from the point of
view of a bi-quaternionic structure. In Sections 6, 7 and 8 physical aspects are discussed
considering the relationship between the structure of the tangent space, the signature of
spacetime and the algebra H. Section 9 deals to the study and description of the spacetime
manifold from the point of view of supersymmetry and the Poisson structures: the Rothstein
theorem is discussed in these context. Finally in Section 10 conclusions and outlook are
listed.

2 The Real Dirac Structure of the Spacetime Manifold

The principal fiber bundle (PFB) P(G, M) with the structural group G determines the
(Dirac) geometry of the spacetime. We suppose now G with the general form

G =
(

A B

−B A

)
, G+G = I4 =

(
σ0 0
0 σ0

)
(2)

A, B 2 × 2 matrices and containing a manifestly symplectic structure. Consequently, there
exists a fundamental tensor J λ

μ J ν
λ = δν

μ invariant under G with structure

J =
(

0 σ0
−σ0 0

)
(3)

of such manner that

G =
(

A B

−B A

)
= AI4 + BJ (4)

Where however, there exists a Lorentzian metric gλμ [33], i.e., the metric of a curved space-
time manifold with signature (+ − −−), that is also invariant under G due its general form
(2). Finally, a third fundamental tensor σλμ is also invariant under G where the following
relations between the fundamental tensors are

J ν
λ = σλμgλν, gμν = σλμJ λ

ν , σλμ = J ν
λ gμν (5)
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where

gλν = ∂g

∂gλν

(g ≡ det(gμν)) (6)

Then, the necessary fundamental structure is given by

G = L(4) ∩ Sp(4) ∩ K(4) (7)

which leaves concurrently invariant the three fundamental forms

ds2 = gμνdxμdxν (8)

σ = σλμdxλ ∧ dxμ (9)

φ = J λ
ν wνvλ (10)

where wν are components of a vector wν ∈ V ∗ : the dual vector space. In expression (5)
L(4) is the Lorentz group in 4D, Sp(4) is the Symplectic group in 4D real vector space and
K(4) denotes the almost complex group that leaves φ invariant.

For instance, G leaves the geometric (Clifford) product invariant

γμγν = 1

2
(γμγν − γνγμ) + 1

2
(γμγν + γνγμ) (11)

= γμ · γν + γμ ∧ γν = gμν + σμν (12)

where the γμ are now regarded as a set of orthonormal basis vectors, of such a manner that
any vector can be represented as v = vλγλ and the invariant (totally antisymmetric) tensor
as

εαβγ δ ≡ γα ∧ γβ ∧ γγ ∧ γδ (13)

In resume, the fundamental structure of the spacetime is then represented by P(G,M),
where G is given by (5), which leaves the fundamental forms invariant (5), implying that

∇λgμν = 0 (14)

∇νσλμ = 0 (15)

∇λJ
λ

ν = 0 (16)

where ∇λ denotes the covariant derivative of the G connection. It is interesting to note
that it is only necessary to consider two of the above three equations: the third follows
automatically. Then, we will consider (14), (15) because in some sense they represent the
boson and fermion symmetry respectively. Notice that this structure is naturally a heterotic
one carrying a H(n) representation of its own.

Remark 1 As will be clear later, there exists a kind of supermanifold underlying structure
in this UFT and also in other unified theories.

3 Interlude: Clifford Algebras as Natural Language

It has turned out that the Clifford algebras provide very promising tools for description and
generalization of geometry and physics [13–17], also [32]. As it was pointed out before
[17] there exist two kinds of the Clifford algebras, orthogonal and symplectic [18]. In the
orthogonal Clifford algebras, the symmetric product of two basis vectors v = vλγλ is the
inner product and it gives the orthogonal metric, while the antisymmetric product gives a
basis bivector. In the symplectic Clifford algebras [11], the antisymmetric product of two
basis vectors qa is the inner product and it gives the symplectic metric, whilst the symmetric
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product gives a basis bivector. Both kinds of the Clifford algebras are included into the
expressions involving the three G invariant forms. Consequently, there exist in the model a
boson ↔fermion symmetry and spacetime↔phase space. An interesting point that we use
but will not discuss in detail here, is that the generators of an orthogonal Clifford algebra can
be transformed into a basis (the Witt basis) in which they behave as fermionic creation and
annihilation operators. The generators of a symplectic Clifford algebra behave as bosonic
creation and annihilation operators as it is well know [17]. Consecuently, both kinds of
operators can be united into a single structure so that they form a basis of a ‘superspace’.

Remark 2 This important fact allows to incorporate from the very fundamental structure of
the manifold M a consistent quantum theory with a clear geometrical meaning.

4 Dirac Equation and H Structure

As we have considered previously [3–7, 10], the G-structure must describe the spinorial
field through the appearance of the Dirac equation in the tangent space. The physical choice
for the structure of G can be given by

G+G =
(

A B

−B A

) (
A −B

B A

)
=

(
a0σ0 σ · a

−σ · a a0σ0

) (
a0σ0 −σ · a

σ · a a0σ0

)
(17)

=
(

(a0σ0)
2 + (σ · a)2 0
0 (a0σ0)

2 + (σ · a)2

)
= I4 (18)

where ab are physical quantities to be determined). Then,

(a0σ0)
2 + (σ · a)2 = 1 ⇒ a 2

0 + a 2
1 + a 2

2 + a 2
3 = 1 (19)

and consequently the physical meaning of the coefficients a are immediatly determined:

a0 = p̂0

m
, a1 = i

p̂1

m
, a2 = i

p̂2

m
, a3 = i

p̂3

m
(20)

leading the relativistic relation

p̂2
0 − p̂2

1 − p̂2
2 − p̂2

3 = m2 (21)

where the introduction of the momentum operators p̂μ and the mass parameter m was
performed. For instance, from the explicit structure of G and the meaning of ab we obtain

Gv = u (22)

Gtu = v (23)

with u =

⎛
⎜⎜⎝

u0

u1

u2

u3

⎞
⎟⎟⎠and v =

⎛
⎜⎜⎝

v0

v1

v2

v3

⎞
⎟⎟⎠ . Explicitly in the abstract form, we have (h = 0, 1)

(
A B

−B A

) (
uh

uh+2

)
=

(
vh

vh+2

)
(24)

(
A −B

B A

)(
vh

vh+2

)
=

(
uh

uh+2

)
(25)
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Then, having 4D real vector space with G as its automorphism such that G ⊂ L(4)
determines the real structure of the Dirac equation in the form

(γ0p0 − iγ · p)u = mv (26)

(γ0p0 + iγ · p)v = mu (27)

with

γ0 =
(

σ0 0
0 σ0

)
, γ =

(
0 −σ

σ 0

)
(28)

where σ are the Pauli matrices and p = (p̂1, p̂2, p̂3)

4.1 Biquaternionic Structure

Considering the above, we see the possibility that, writing u and v in the following form

ηh = uh + iuh+2 (29)

ξh = vh + ivh+2 (30)

the Dirac equation becomes
Qη = ξ and Qξ = η (31)

where Q and Q are the following elements of the field of the biquaternions

Q = a0σ0 − iσ · a = A − iB (32)

Q = a0σ0 + iσ · a = A + iB (33)

where the upper bar is quaternionic conjugation
The Clifford algebra in real Minkowski space isH2 but its complexification isH2 ⊗C =

C4, which is the Dirac algebra. One may use the differential form basis and the vee (∨)

product in order to derive results for the Dirac gamma matrices which are useful in quantum
field theory. It is interesting to see that the complexification of the quaternionic structure
is necessary to incorporate in any theory of massive particles with spin 1/2 when we have
(C, 4, (1, −1 − 1 − 1)) [12–16].

5 Majorana Representation for Symmetric Equation

Despite having a real representation of the Dirac equation from the G structure, we see that
it is possible to perform a unitary transformation to G for which the Dirac equation becomes
with real coefficients and symmetric for both: fermions and antifermions. Consequently, it
will be important to know how this transformation affects the underlying structure of the
spacetime from the quaternionic viewpoint. The explicit unitary transformation is

U = U−1 = 1√
2

(
1 σ2
σ2 −1

)
(34)

and it was given by Ettore Majorana in 1937 [9]. The transformation changes the four
dimensional structure of G, namely a0I4 +γ ·a (γ in the standard form [8]) to a0I4 +γ ′ ·a
with

γ ′
3 → −iσ1 ⊗ σ0 (35)

γ ′
2 →

(
0 −σ2
σ2 0

)
(36)

γ ′
1 → iσ3 ⊗ σ0 (37)
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and in order to be complete β ′ →
(

0 σ2
σ2 0

)
. Explicitly

G′ →
(

a0σ0 + i(σ3a1 + σ1a3) −σ2a2
σ2a2 a0σ0 + i(σ3a1 + σ1a3)

)
(38)

GT ′ →
(

a0σ0 − i(σ3a1 + σ1a3) σ2a2
−σ2a2 a0σ0 − i(σ3a1 + σ1a3)

)
(39)

Notice that G′ and GT ′ (
G′GT ′ = GT ′G′ = I4

)
are related by complex conjugation, as

expected due to the performed Majorana transformation, being the relativistic relation of
previous sections without changes.

6 Non-Compact Fundamental H-Structure, G and the 2+2 Spacetime

In Ref. [31] we have presented a Majorana-Weyl representation that is given by the 2 by 2
following operators

σα =
(
0 1
1 0

)
, σβ =

(
0 −1
1 0

)
, σγ =

(
1 0
0 −1

)
, (40)

where the required condition over such matrices σα ∧ σβ = σγ , σβ ∧ σγ = σα and σγ ∧
σα = −σβ , evidently holds (Lie group, with α, β, γ :fixed indices) given the underlying
non-compact SL(2R) symmetry.

As we have seen previously, the G-structure must describe the spinorial field through the
appearance of the Dirac equation in the tangent space. The physical choice for the structure
of G can be given by

G+G =
(

A B

−B A

) (
A −B

B A

)
=

(
a0σ0 σ · a

−σ · a a0σ0

) (
a0σ0 −σ · a

σ · a a0σ0

)
(41)

=
(

(a0σ0)
2 + (σ · a)2 0
0 (a0σ0)

2 + (σ · a)2

)
= I4 (42)

where we remind that ab are physical quantities. Then, only from the G-structure and not
from any extra assumption, we have as before

(a0σ0)
2 + (σ · a)2 = 1 ⇒ a 2

0 + a 2
1 − a 2

2 + a 2
3 = 1 (43)

notice the change of sign of a2
2due to the non compact substructure introduced by σ 2

β =
(−iσ2)

2 = −1; consequently the physical role of the coefficients a cannot be easily
identified as before. We have here two possibilities:

i) if the definition is the same for the ab, we have

a0 = p̂0

m
, a1 = i

p̂1

m
, a2 = i

p̂2

m
, a3 = i

p̂3

m
(44)

leading to the relativistic relation

p̂2
0 − p̂2

1 + p̂2
2 − p̂2

3 = m2 (45)

where the introduction of the momentum operators p̂μ and the mass parameter m was
performed. In such a case, evidently the signature of the spacetime is (+ − +−)
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The structure of the Dirac equation has now the form

(γ0p0 + iγ2p̂2 − iγ · p)u = mv (46)

(γ0p0 + iγ2p̂2 + iγ · p) v = mu (47)

with

γ0 =
(

σ0 0
0 σ0

)
, γ =

(
0 −σ

σ 0

)
(48)

where σ are the representation given now by matrices (40) and p = (p̂1, p̂3)

ii) if the definition for the ab is

a0 = p̂0

m
, a1 = i

p̂1

m
, a2 = p̂2

m
, a3 = i

p̂3

m
(49)

leading to the relativistic relation

p̂2
0 − p̂2

1 − p̂2
2 − p̂2

3 = m2 (50)

where the introduction of the momentum operators p̂μ and the mass parameter m was
performed. In such a case, evidently the signature of the spacetime is conserved as
(+ − −−)with an evident emergent non hermiticity of the respective dynamical operators.

The structure of the Dirac equation has now the form

(γ0p0 − γ2p̂2 − iγ · p) u = mv (51)

(γ0p0 + γ2p̂2 + iγ · p) v = mu

with

γ0 =
(

σ0 0
0 σ0

)
, γ =

(
0 −σ

σ 0

)
(52)

where σ are the representation given now by matrices (40) and p = (p̂1, p̂3) .

Remark 3 From the point of view of Unification there exists a kind of “duality” between
non-hermitian structures and spacetime signatures (this fact can be crucial to understand
what happens in high dimensional theories where exist an interplay between “duality,
spacetime signature and spinors phase transitions” as described in [30])

7 Relation Between Spacetime Signatures and Related Dynamics

From the argumentation given before, if certainly there exists a precise relation between the
spacetime signatures, physically we have two related dynamics. As it is well known, the
Palatini variational principle determines the connection required for the space-time sym-
metry as well as the field equations. As we have shown in [3–5], if by construction any
geometrical Lagrangian or action yields the G-invariant conditions (namely, the intersec-
tion of the 4-dimensional Lorentz group L4, the symplectic Sp(4) and the almost complex
group K(4)), as an immediate consequence the gravitational, Dirac and Maxwell equations
arise from a such geometrical Lagrangian Lg as a causally connected closed system. From
the tangent space viewpoint, the self-consistency is given by [3–7]

fμν ≡ 1

2
εμνρσ σρσ = ∗σμν (53)

where σνλ is related to the torsion by
1

6
(∂μσνλ + ∂νσλμ + ∂λσμν) = T ρ

νμσρλ and fμν can

plays naturally the role of electromagnetic field. As the simplest illustration, due to the fact
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that we are in the tangent space, the second order version of the Dirac eq. takes the familiar
form:

{(
P̂μ − eÂμ

)2 − m2 − 1

2
σμνfμν

}
uλ = 0 (54)

{(
P̂μ − eÂμ

)2 − m2 + e� · H − ieα · E
}

uλ = 0 (55)

where we have introduced

σμν = (α, i�), f μν = (−E,H) (56)

(corresponding to Galilean-type coordinates) and the fact that the momentum p̂ = P̂μ−eÂμ

is generalized due to the gauge freedom and the existence of a vector torsion hα (see also
Appendix) that in the case of ref. [3–5, 7, 10] is the dual of a totally antisymmetric torsion
field hα = ε

νρσ
α T νρσ . The torsion field appears as a consequence of the existence in the

very structure of the tangent space, of the third fundamental tensor σλμ . From the above
“euristic” perspective we make the following remarks:

i) The equation is symmetric: for uλ and the same obviously for vλ(remember that � =
u + iv).

ii) Because the geometrical propierties of the tangent space (G-structure) are translated
to the fields and viceversa, physically the contraction σμνfμν represents the interplay
between spin and electromagnetic field,

iii) In the case of 2+2 signature the “electromagnetic field” has 4 electric components
and 2 magnetic ones, and in the case with 3+1 signature the quantity E2 + H 2

(e.g. “energy”) can be negative due to the non-hermitian character of the generalized
momentum operators.

Here we can make some interlude with respect to the above results, particularly item
iii). Interestlingly with the point of view of symmetry structure induced by G, we find
a convergence of some isolate (from recent references) results. Some of these conse-
quences (enumerated below) of that paper involving a (2 + 2) “by hand” signatures, can
be explained due to the existence of the SL(2R) symmetry of a “hidden” (bi)quaternionic
structure:
1) Bars from the viewpoint of 2t-physics [21] considered as a minimal model the structure

of (2+2)-physics
2) Since time ago, it was suspected, looking at some structures in string theory, two dimen-

sional black holes [22] and conformal field theory [23], that the (2+2)-signature is
deeply linked to the SL(2,R)-group.

3) the (2+2)-signature is conjectured as an important physical concept in a number of
physical scenarios, including the background for N = 2 strings [24, 25] (see also
Refs [26]), Yang-Mills theory in Atiyah-Singer background [28] (see also Refs. [29]
for the mathematical importance of the (2+2)-signatures), Majorana-Weyl spinor in
supergravity [27]

In the next Section we will bring the conceptual and mathematical consistency to the
above issues.
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8 G-Structure, Spacetime and Fields at Tp(M)

It is well known that to every Lie algebra a local Lie group corresponds only being the G-
structure a global affair (important issue without answer till today). Starting from the six
dimensional group SL(2C) it contains

σ1 = 1

2

(
0 i

i 0

)
, σ2 = 1

2

(
0 1

−1 0

)
, σ3 = 1

2

( −i 0
0 i

)
(57)

ρ1 = 1

2

(
0 1
1 0

)
, ρ2 = 1

2

(
0 −i

i 0

)
, ρ3 = 1

2

( −1 0
0 1

)
(58)

The bispinor can be constructed on the tangent space Tp(M) by complexification

� ′B = UB
A (P )�A(P ) A,B = 1, 2 (59)

where, due to the Ambrose-Singer theorem [18], the key link of the theory is given by

UB
A (P ) = δB

A + RB
Aμνdxμ ∧ dxν (60)

= δB
A + ωk(Tk)

B
A

then
RB

Aμνdxμ ∧ dxν ≡ ωk(Tk)
B
A (61)

immediately we can make the folllowing observations:

i) there exists a true and direct correspondence Manifold group structure, tangent space,
curvature and physical fields.

ii) the reason of the interplay described in i) is due to the unified character of the theory:
all the “matter and energy” content come from the same spacetime manifold.

iii) the underlying (super) symmetry is quite evident from the link given above: the curva-
ture involves fermionic and bosonic structues (e.g. mixed indices), then is not difficult
to see that other fields with different amount of spin can appear. Even more, due to
the geometrical and group theoretical meaning of the above expression, the possible
transformations have local (diffeomorphyc) character that make the role of the super-
symmetry and the role of the supergravity and superspace concept to be taken under
consideration.

9 Incompleteness of Rothstein’s Theorems: Physics Geometrization
vs. Supermanifold Construction

9.1 Poisson Structure, Quantization and Supersymmetry

Symplectic geometry grew out of the theoretical study of classical and quantum mechanics.
At first it was thought that it differs considerably from Riemannian geometry, which devel-
oped from the study of curves and surfaces in three dimensional Euclidean space, and went
on to provide the language in which General Relativity is studied. This fact was understand-
able given that symplectic geometry started from the study of phase spaces for mechanical
systems but, with the subsequent seminal works of Cartan that introduce the symplectic
structure into the geometry of the spacetime calculus, that thinking changed radically.

The existence of a symplectic structure on a manifold is a very significant constraint
and many simple and natural constructions in symplectic geometry lead to manifolds
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which cannot possess a symplectic structure (or to spaces which cannot possess a mani-
fold structure). However these spaces often inherit a bracket of functions from the Poisson
bracket on the original symplectic manifold. It is a (semi-)classical limit of quantum the-
ory and also is the theory dual to Lie algebra theory and, more generally, to Lie algebroid
theory.

Poisson structures are the first stage in quantization, in the specific sense that a Poisson
bracket is the first term in the power series of a deformation quantization. Poisson groups
are also important in studies of complete integrability.

From the point of view of the Poisson structure associated to the differential forms
induced by the unitary transformation from the G-valuated tangent space implies automati-
cally, the existence of an even non-degenerate (super)metric. The remaining question of the
previous section was if the induced structure from the tangent space (via Ambrose-Singer
theorem) was intrinsically related to a supermanifold structure (e.g.hidden supersymmetry,
etc.). Some of these results were pointed out in the context of supergeometrical analysis by
Rothstein and by others authors [17, 19, 20], corroborating this fact in some sense. Conse-
quently we have actually several models coming mainly from string theoretical frameworks
that are potentially ruled out. Let us see this issue with more detail: from the structure of the
tangent space Tp(M) we have seen

UB
A (P ) = δB

A + RB
Aμνdxμ ∧ dxν (62)

= δB
A + ωk(Tk)

B
A

where the Poisson structure is evident (as the dual of the Lie algebra of the group manifold)
in our case leading to the identification

RB
Aμνdxμ ∧ dxν ≡ ωk(Tk)

B
A (63)

We have in the general case, a (matrix) automorphic structure. The general translation to the
spacetime from the above structure in the tangent space takes the form

ω̃ = 1

2

[
ωij + 1

2

(
ωkl

(
�k

ai�
l
bj − �k

bj�
l
ai

)
+ gbdRd

ija

)
dψadψb

]
dxi ∧ dxj

+ωijA
j
bmdxmdxidψb + (64)

+1

2

[
gab + 1

2

(
gcd

(
�c

ib�
d
ja − �c

ja�
d
ib

)
+ ωljR

l
abi

)
dxi ∧ dxj

]
dψadψb

+gabA
b
iddψddψadxi

Because covariant derivatives are defined in the usual (group theoretical) way

Dψa = dψa − �i
ibdψbdxi (65)

Dxi = dxi − �i
aj dxj dψa (66)

we can rewrite ω̃ in a compact form as

ω̃ = 1

2

[(
ωijDxi ∧ Dxj + 1

2
gbdRd

ijadψadψbdxi ∧ dxj

)

+
(

gabDθaDθb + 1

2
ωljR

l
abidxi ∧ dxjdθadθb

)]
(67)
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At the tangent space, where that unitary transformation makes the link, the first
derivatives of the metric are zero, remaining only the curvatures, we arrive to

ω̃ = 1

2

[(
ηij + 1

2
εbdRd

ijadψadψb

)
dxi ∧ dxj +

(
εab + 1

2
ηljR

l
abidxi ∧ dxj

)
dψadψb

]

(68)
Here the Poisson structure can be checked

ηij + 1

2
εbdRd

ijadψadψb =
(

δk
j + 1

2
εbdηklRd

ljadψadψb

)
ηki (69)

εab + 1

2
ηljR

l
abidxi ∧ dxj =

(
δc
b + 1

2
ηlj ε

cdRl
dbidxi ∧ dxj

)
εac (70)

In expressions (64–70) the curvatures, the differential forms and the other geometrical oper-
ators depend also on the field where they are defined: R, C orH. In the quaternionicH-case
(that can correspond to the SU(2)-structure of the UFT of Borchsenius for example) the
metric is quaternion valuated with the propierty ω

†
[ij ] = −ω[ji] and the covariant derivative

can be straightforwardly defined as expressions (65, 66) but with the connection and coor-
dinates also quaternion valuated. The fundamental point in a such a case going towards a
fully reliable gravitational theory is to fix the connection in order to have a true link with the
physical situation. The matrix representation of structures (69, 70) are automorphic ones:
e.g. they belong to the identity and to the symplectic block generating the corresponding
trascendent (parameter depending) functions. Now, we will analize the above fundamental
structure under the light of the supersymplectic structure given by Rothstein (notation as in
Ref. [19, 20])

ω̃ = 1

2

(
ωij + 1

2
gbdRd

ijaθ
aθb

)
dxidxj + gabDθaDθb (71)

where the usual set of Grassmann supercoordinates were introduced: x1, ....xj ; θ1.....θd ;
the superspace metrics were defined as: ωij =

(
∂

∂xi ,
∂

∂xj

)
, gab =

(
∂

∂θa , ∂
∂θb

)
and

∇ ∂

∂xi
(θa) = Ai

ibθ
b (72)

Due to the last expression, we can put ω̃ in a compact form with the introduction of a
suitable covariant derivative: Dθa = dθa −Ai

ibθ
bdxi . With all the definitions at hands, the

Poisson structure of ω̃ in the case of Rothstein’s is easily verified

ωij + 1

2
gbdRd

ijaθ
aθb =

⎛
⎜⎜⎝δk

i + 1

2
gbdωlkRd

ilaθ
aθb

︸ ︷︷ ︸
≡B

⎞
⎟⎟⎠ ωkj (73)

The important remark of Rothstein [19, 20] is that the matrix representation of the
structureB has nilpotent entries, schematically

ω̃−1 =
[
ω−1

(
I − B + B2 − B3....

)]ij ∇i ∧ ∇j + gab ∂

∂θa
∧ ∂

∂θb
(74)

where, as is obvious Bn = 0 for n > 1 and n ∈ N

Remarks: From the above analysis, we can compare the Rothstein case with the general
one arriving to the following points:

i) In the Rothstein case only a part of the full induced metric from the tangent space is
preserved (“one way” extension [11–16, 19, 20])
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ii) The geometrical structures (particularly, the fermionic ones) are extended “by hand”
motivated, in general, to give by differentiation of the corresponding closed forms, the
standard supersymmetric spaces (e.g. Kahler, CP n, etc.) [19, 20]. In fact it is easily
seen from the structure of the covariant derivatives: in the Rothstein case there are
Grassmann coordinates instead of the coordinate differential 1-forms contracted with
the connection.

iii) In the Rothstein case the matrix representation (73) coming from the Poisson structure
is nilpotent (characteristic of Grassmann manifolds) in sharp contrast with the general
representation (68–70) coming from the tangent space of the UFT that is automorphic.

Remark 4 was noted in [13, 14] that the following facts arise:i) A Grassmann algebra, as
used in supersymmetry, is equivalent, in some sense, to the spin representation of a Clifford
algebra. ii) The questions about the nature and origin of the vector space on which this
orthogonal group acts are completely open. iii) If it is a tangent space or the space of a local
internal symmetry, the vectors will be functions of space-time, and the Clifford algebra
will be local. iv) In other cases we will have a global Clifford algebra. Consequently, the
geometric structure of the UFT presented here falls precisely in such a case.

9.2 UFT and Supermanifold Structure

The UFT structure induced from the tangent space by means of the Ambrose-Singer [18]
theorem (62, 63) verifies straigforwardly the Darboux-Kostant theorem: e.g. it has a super-
manifold structure. Darboux-Kostant’s theorem [17] is the supersymmetric generalization
of Darboux’s theorem and statement that:

Given a (2n|q)-dimensional supersymplectic supermanifold (M,AM, ω), it states
that for any open neighbourhood U of some point m in M there exists a set
(q1, ..., qn, p1, ..., pn; ξ1, ..., ξq) of local coordinates on V E(U) so that ω on U can be
written in the following form,

ω|U ≡ ω̃ =
n∑

i=1

dpi ∧ dqi +
q∑

a=1

ε

2
(ξa)2, (ε = ±1) (75)

Proof by simple inspection we can easily see that the expression (68) has the structure (75).
That means that we have locally a supersymplectic vector superspace induced (globally) by
a supersymplectic supermanifold.

10 Concluding Discussion and Perspectives

Here we discuss some of the results obtained in this work and describe their possible
generalizations. We also briefly state other results as follows

From the point of view of the geometry and unification:

• i) The cornerstone of a consistent UFT must be a G-structure (for the tangent bundle
T (M)) which reflects the symmetries of the different fields considered.

• ii) The difference between the QFT here and the standard QFT in curved spacetime
is that whilst the latter does not alter the spacetime structure (whose structure group
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remains Lorentzian), the former alters the spacetime structure radically since the struc-
ture group for the (reduced) tangent bundle is now the correspondent to the induced
QFT (the same curvature of the tangent space)

• iii) The radical difference between spacetime signature and non-hermitian dynamic
operators is induced by the same G-structure.

• iv) Torsion, through its dual four-dimensional vector, plays a key role both in the
signature of spacetime and the CP invariant character of the field dynamics.

• v) From points iii) and iv) is clear that fermionic phase transitions in the early uni-
verse as the paradigm of energy and dark matter could have a satisfactory explanation
seriously considering a theory as presented here endowed with a G structure.

From the point of view of the boson-fermion symmetries

• iv) the Darboux-Kostant theorem is fulfilled in our case showing that M fits the char-
acteristic of a general supermanifold in addition to all those the considerations given in
[13, 14, 17, 19, 20].

• v) The Rothstein theorem is incomplete to decribe the spacetime manifold being it with
a more general structure from the algebraic and geometrical viewpoint.

Outlook: there are several topics that must be analyzed in future works:

• vi) There exists a deep relation of our research with early works where quaternionic and
even octonionic structures (as theMoffat-Boer theory) were considered in the context of
gravity: will be good to make a deep study of this issue considering the boson-fermion
symmetry and the link with the quantum-gravity trouble.

• vii) the possibility, following an old Dirac’s conjecture, to find a discrete quaternionic
structure inside the Poincare group: this fact will be give us the possibility of spacetime
discretization without break Lorentz symmetries.

• viii)The introduction of group theoretical methods of compactification as in [31]
• ix) the relation with nonlinearly realized symmetries and quantization.
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Appendix: Generalized Hodge-de Rham Decomposition, the Vector
Torsion h and the Fermion Interaction

As pointed out in references [3–5, 7, 10] the torsion vector h = hαdxα (the 4-dimensional
dual of the torsion field Tβγ δ) plays multiple roles and can be constrained in several different
physical situations. Mathematically, it is defined by the Hodge-de Rham decomposition
given by the 4-dimensional Helmholtz theorem which states:

If h = hαdxα /∈ F ′(M) is a 1-form on M , then there exist a zero-form �, a 2-form
α = A[μν]dxμ ∧ dxν and a harmonic 1-form q = qαdxα on M that

h = d� + δα + q → hα = ∇α� + εβγ δ
α ∇βAγ δ + qα . (76)
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Notice that even if it is not harmonic, and assuming that qα = (Pα − eAα) is a vector, an
axial vector can be added so that the above expression takes the form

hα = ∇α� + εβγ δ
α ∇βAγ δ + εβγ δ

α Mβγ δ + (Pα − eAα) (77)

= ∇α� + εβγ δ
α ∇βAγ δ + γ 5bα + (Pα − eAα) , (78)

where Mβγδ is a completely antisymmetric tensor. In such a way, εβγ δ
α Mβγ δ ≡ γ 5bα is an

axial vector.
One can immediately see that, due to the theorem given above, one of the roles of hα is

precisely to be a generalized energy-momentum vector, avoiding the addition “by hand” of
a matter Lagrangian in the action. As it is well known, the addition of the matter Lagrangian
leads, in general, to non-minimally coupled terms into the equations of motion of the phys-
ical fields. Consequently, avoiding the addition of energy-momentum tensor, the fields and
their interactions are effectively restricted thanks to the same geometrical structure in the
space-time itself.
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