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Abstract This paper consider the possibility of using some quantum tools in decision mak-
ing strategies. In particular, we consider here a dynamical open quantum system helping
two players, G1 and G2, to take their decisions in a specific context. We see that, within our
approach, the final choices of the players do not depend in general on their initial mental
states, but they are driven essentially by the environment which interacts with them. The
model proposed here also considers interactions of different nature between the two players,
and it is simple enough to allow for an analytical solution of the equations of motion.

Keywords Quantum tools for classical systems

1 Introduction

In recent years the scientific literature has seen a growing interest in the possibility of using
quantum ideas and quantum tools in the description of some aspects of several macroscopic
systems, systems which, in the common understanding, are usually thought to be purely
classical. This interest has touched very different fields of science, starting with finance,
going to ecology, passing through psychology, decision making and so on. The literature is
now very rich, and it increases almost every day. We just cite here some recent books, [1–6],
which cover some of the area mentioned above, but not only.

In this paper we will propose a dynamical approach to a very simple and well known
problem in decision making, but in a slightly modified version. Our starting point is what
was considered in [7, 8], which is a variation on the theme of the prisoners’ dilemma. This is
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just one of the several contributions existing in the literature related to decision making pro-
cesses and to brain dynamics, and it is just one of the contributions suggesting the relevance
of something quantum in this kind of problems. For instance, Manousakis in [9] suggests
that the condition describing someone who must still make a choice, could be thought as a
superposition of suitable states in a particular Hilbert space, whose coefficients are related
to the probabilities of making a particular choice among the various possibilities. He also
proposes a time evolution driven by some hyper-simplified hamiltonian. Other effective
hamiltonians are used, in similar contexts, by other authors, [10, 11]. Of course these effec-
tive hamiltonians, as such, are usually quite ad hoc and can only be used to describe some
particular aspect of the system under analysis.

Less dynamically oriented is the paper by Agrawal and Sharda [12], where the authors
focus particularly on the probabilistic aspects of the process of decision making. Still other
contributions are due, for instance, to Vitiello, Khrennikov et al. [13], and to Busemeyer
et al., [14]. In particular, in this last paper the authors confront Markov models of human
decision-making with other models somehow connected to quantum mechanics. A common
feature of almost all these papers have to do with the probabilistic interpretation of quantum
mechanics, where interference effects are quite naturally introduced and described, with
respect to what happens using classical ideas, where a similar interpretation is not as natural.
Other interesting references are given in [15–18].

Let us now go back to the problem we are interested in here. We adopt almost the same
notation as in [7, 8]. We have two players, G1 and G2, and each of them can make two
possible choices, ”0” and ”1”. For instance, 01 means that G1 has chosen ”0”, while 12
means that G2 has chosen ”1”. More compactly, this choice is indicated as 0112. In the same
way 1112 means that both G1 and G2 made the same choice, ”1”. And so on.1 Now, let us
introduce as in [7, 8] four real numbers a, b, c and d satisfying the inequalities c > a >

d > b. The payoff of G1 is a or c if G2’s choice is 02: 0102 corresponds to a payoff a, while
1102 corresponds to c. On the other hand, if G2 chooses 1, 12, G1’s payoff is b or d: 0112
corresponds to b, while 1112 corresponds to d. The situation is summarized in the following
table, [7, 8]:

This table represents the point of view of both G1 and G2. For instance, if the two players
choose 0 (0102), they both have a payoff a. Analogously, choice 1112 corresponds to the
same payoff d for G1 and G2. On the other hand, different choices of the players correspond
to different payoffs: the choice 0112 produces a payoff b for G1, and c for G2, while 1102
produces a payoff c for G1, and b for G2. The table shows that if G1 chooses 1, then he can
get the maximum payoff, c (if G2 chooses 0), or a small one, d (if G2 chooses 1). Hence
this could be the best choice, but it can also have bad consequences. On the other hand, if
G1 chooses 0, then he can have the minimum payoff, b (if G2 chooses 1), or a better one, a

(if G2 chooses 0). Hence G1 should make choice 1, hoping that G2 makes choice 0, so that
he gets the maximum payoff c. Of course, with this choice there exists also the possibility
that he gets d, which is less than a (corresponding to 0102). But, for sure, choosing 1, G1

1Notice that in any choice X1Y2 the indices 1 and 2 refer to the players, while X and Y refer to the possible
choices of the players, 0 or 1.
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will not get b, which is the lowest possible payoff. Hence, if what G1 really hopes is not to
get the lowest payoff,2 he must choose 1. A similar analysis of the table from the point of
view of G2 suggests that, if also G2 wants to avoid to get the worst payoff, he has to choose
1. Then, if G1 and G2 are rational players, meaning that they are both interested not to get
b, they should both choose 1 (1112).

In [7, 8] this problem has been considered using quantum techniques: a mental state
vector belonging to some suitable Hilbert space is associated to each possible choice of the
players, and it is used to describe the situation. In particular, since we have here only four
possible choices, the Hilbert space is four dimensional. We will give more details, adapted
to our aims, in Section 2. The dynamics of the vector is deduced by a master equation, and
the final decision is related to the equilibrium solution of this equation.

In this paper we consider a similar system from a slightly different point of view, i.e.
from the point of view of quantum open systems. In our opinion, this choice is more realis-
tic, since we consider the possibility that the two players interact with the external world, to
make up their mind and to take their decisions. Of course, this is different from the standard
version of the two players game, where there is no interaction at all, and this is the reason
why we talk of a ”similar system”. In particular, in our case, the Hilbert space of the model
is richer than the one considered in the existing literature. In fact, most of the papers consid-
ering a quantum approach to decision making deal with finite dimensional Hilbert spaces.
This is not the case for us: in our settings, while the players will be attached to a four-
dimensional Hilbert space, the reservoir will not. But, rather than being a problem, in our
opinion this makes the structure more realistic. In fact, the presence of the reservoir mim-
ics well the very many inputs that each player normally takes into account while making
his choice. This is exactly our interpretation of the reservoir: it represents the set of rumors,
ideas, suggestions,... coming from the external world and reaching the players. For this rea-
son, the dynamics of the players is provided by an hamiltonian, written following the rules
proposed in [4], which describes not only the two players, but also the reservoir, and, above
all, the possible interactions. As we have already said, similar ideas have already been used
in the literature on decision making, see [9–11] for instance. However, in these cases, the
hamiltonian is often a very simple matrix which, of course, can only be used to describe
a particular aspect of the model. On the other hand, our hamiltonian contains rather gen-
eral information on the system, and the different ingredients of H can be easily identified.
Finally, even if, in our knowledge, this is not done in any standard (or quantum) view to
the two players game, we will also consider here the possibility of having some interaction
between G1 and G2, and we will discuss the consequences of this interaction. In particular,
we will consider the case in which the two players react in the same way and the case in
which they have opposite reactions. This will be clarified in the next section. Of course,
the presence of this interaction between the players, makes our system even more different
from the one considered in [7, 8].

The paper is organized as follows: in the following section we propose the model and we
derive its dynamics. Then we consider the cases in which G1 and G2 do not interact, and the
cases in which they do, and different possibilities are considered. The analysis of the results
and our conclusions are discussed in Section 3. Finally, to keep the paper self contained, we
discuss some important facts in quantum mechanics in the Appendix.

2This is what in the literature is called loss-aversion
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2 The Model and its Dynamics

In this section we will discuss the details of our model, constructing first the vectors of the
players, the hamiltonian of the system, and deducing, out of it, the differential equations of
motion and their solution, with particular interest to its asymptotic (in time) behavior.

In our game we have two players, G1 and G2. Each player could operate two possi-
ble choices, 0 and 1. Hence we have four different possibilities, which, following [7, 8],
we associate here to four different and mutually orthogonal vectors in a four dimensional
Hilbert space HG . These vectors are ϕ0,0, ϕ1,0, ϕ0,1 and ϕ1,1. The first vector, ϕ0,0, describes
the fact that, at t = 0, the two players have both chosen 0 (0102). Of course, this is not
a fixed choice, and can change during the time evolution of the system. Analogously, ϕ0,1
describes the fact that, at t = 0, the first player has chosen 0, while the second has chosen
1 (0112). And so on. Fϕ = {ϕk,l, k, l = 0, 1} is an orthonormal basis for HG . The gen-
eral mental state vector of the system SG (i.e. of the two players), for t = 0, is a linear
combination

� =
1∑

k,l=0

αk,lϕk,l , (2.1)

where we assume that
∑1

k,l=0 |αk,l |2 = 1 in order to normalize the total probability. Indeed
|α0,0|2 is the probability that SG is, at t = 0, in a state ϕ0,0, i.e. that both G1 and G2 have
chosen 0. Notice, incidentally, that � = �1⊗�2, where �k = x

(k)
0 ϕ

(k)
0 +x

(k)
1 ϕ

(k)
1 , k = 1, 2,

and where αk,l and x
(k)
j are related in an obvious way: α0,0 = x

(1)
0 x

(2)
0 , α1,0 = x

(1)
1 x

(2)
0 ,

α0,1 = x
(1)
0 x

(2)
1 and α1,1 = x

(1)
1 x

(2)
1 . We see that the vectors describing G1 and G2 are

independent, and � is the tensor product of the two.
The first essential difference with respect to what is done in [7, 8] is now the way in which

these vectors are constructed: we consider two fermionic operators, see Appendix, i.e. two
operators b1 and b2, satisfying the following canonical anti-commutation rules (CAR):

{bk, b
†
l } = δk,l 1, {bk, bl} = 0, (2.2)

where k, l = 0, 1, 1 is the identity operator, and {x, y} = xy + yx. Then we take ϕ0,0 as
the vacuum of b1 and b2: b1ϕ0,0 = b2ϕ0,0 = 0, and construct the other vectors out of it:

ϕ1,0 = b
†
1ϕ0,0, ϕ0,1 = b

†
2ϕ0,0, ϕ1,1 = b

†
1 b

†
2ϕ0,0.

The explicit expressions of these vectors and operators can be found in many textbooks

in quantum mechanics, see [19] for instance: ϕk,l = ϕ
(1)
k ⊗ ϕ

(2)
l , where ϕ0 =

(
1
0

)
and

ϕ1 =
(

0
1

)
. Then,

ϕ1,0 = ϕ
(1)
1 ⊗ ϕ

(2)
0 =

(
0
1

)
⊗

(
1
0

)
, ϕ1,1 = ϕ

(1)
1 ⊗ ϕ

(2)
1 =

(
0
1

)
⊗

(
0
1

)
,

and so on. The matrix form of the operators bj and b
†
j are also quite simple. For instance,

b1 =
(

0 1
0 0

)
⊗

(
1 0
0 1

)
, b2 =

(
1 0
0 1

)
⊗

(
0 1
0 0

)
,

and so on.
Let now n̂j = b

†
j bj be the number operator of the j -th player: the CAR above imply that

n̂1ϕk,l = kϕk,l and n̂2ϕk,l = lϕk,l , k, l = 0, 1. Then, as already stated, the eigenvalues of
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these operators correspond to the choice operated by the two players at t = 0: for instance,
ϕ1,0 corresponds to the choice 1102, just because one is the eigenvalue of n̂1 and zero is the
eigenvalue of n̂2.

Remark One might wonder why, in the description of our model, we use fermionic rather
than bosonic operators, as we have done in several other applications in recent years, [4].
This is easily understood, since the eigenvalues of the fermionic number operators n̂j are
exactly 0 and 1, which are the only possible choices of the players. On the other hand, see
[20], the eigenvalues of the bosonic number operators are all the natural numbers (including
0): too many for us!

Our main effort now consists in giving a dynamics to the number operators n̂j , following
the scheme described in [4]. Therefore, what we first need is to introduce a hamiltonian H

for the system. Then, we will use this hamiltonian to deduce the dynamics of the number
operators as n̂j (t) := eiHt n̂j e

−iH t , and finally we will compute the mean values of these
operators on some suitable state which is needed to describe, see below, the status of the
system at t = 0. The rules needed to write down H are described in [4]. The main idea
here is that the two players are just part of the full system: in order to take their decision,
they need to be somehow informed. In fact, it is really the information which creates the
final decision. Hence, SG must be open, meaning with this that there must be a reservoir
R = R1 ⊗R2, interacting with G1 and G2, which is responsible for this sort of information.
The reservoir, compared with SG , is expected to be a very large system since the information
is created by several different sources. A possible hamiltonian is therefore the following:

⎧
⎪⎨

⎪⎩

h = H0 + HI ,

H0 = ∑2
j=1 ωjb

†
j bj + ∑2

j=1

∫
R

�j(k)B
†
j (k)Bj (k) dk,

HI = ∑2
j=1 λj

∫
R

(
bjB

†
j (k) + Bj (k)b

†
j

)
dk.

(2.3)

Here ωj and λj are real quantities, and �j(k) are real functions. In analogy with the
bj ’s, we adopt fermionic operators Bj (k) and B

†
j (k) to describe the reservoir. They depend

on j = 1, 2 (two different sub-reservoirs for the two players), and on the real variable3 k,
and they satisfy the rules

{Bi(k), Bl(q)†} = δi,lδ(k − q) 1, {Bi(k), Bj (k)} = 0, (2.4)

which have to be added to those in (2.2). Moreover each b


j anti-commutes with each B



j (k):

{b

j , B



l (k)} = 0 for all j, l and k. Here X
 stands for X or X†.

2.1 An Interlude: Why Fermionic Operators, and why this Hamiltonian?

It may be useful to recall now that, as discussed in the Appendix, the fermionic operators
considered above have a very useful characteristic for us: they can be used to construct new
self-adjoint operators, the number operators n̂j = b

†
j bj , which are diagonal in the ϕk,l’s,

and whose eigenvalues are exactly zero and one. Which, important to stress, are the only

3In principle we should use a discrete variable to label each element of the reservoirs. However, since integrals
are quite often easier to be computed than series, as usually done in the literature we consider this label to be
real.
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two possible choices of our players. As we have already said, this is the core of our choice:
we have two main possible choices of the players, and these correspond exactly to two
eigenvalues of very simple matrices. Then, as we have already discussed, a rather natural
possibility to describe the process of decision making is simply to give a dynamics to n̂j .
And our claim is that this dynamics is given (in part) by the hamiltonian (2.3). The full
hamiltonian is given below, in (2.5).

Let us now concentrate on the meaning of h, beginning with the role of the parameters
and of the functions. Of course, λj is an interaction parameter, measuring the strength of
the interaction between Gj and Rj . If, in particular, λ1 = λ2 = 0, then h = H0 and, since
[h, n̂j ] = 0, this would imply that the number operators describing the choices of the two
players stay constant in time. In other words, in this case the original choices of G1 and G2
are not affected by the time evolution.4 Both ωj and �j(k) are related to a sort of inertia
of the system, [4], i.e. to a tendency of a particular part of the system not to change too fast
its status. For instance, we will see in Section 2.1 that �j(k) is related to the time needed
by Gj to make his choice. In [4] it is also shown, in several concrete applications, that the
values of ωj and �j(k) are related to the magnitude of the oscillations of some relevant
functions of the model. For this reason, in analogy with classical mechanics, we adopt the
word inertia in connection with these quantities.

Let us now explain why we have chosen these particular forms of H0, and of HI .
H0 is a sum of diagonal operators, describing the free evolution of the operators of S =

SG ⊗ R. In fact, for instance,
∑2

j=1 ωjb
†
j bj = ∑2

j=1 ωj n̂j , which is already diagonal in
terms of the ϕk,l . Slightly more complicated, but not particularly different, is the part of H0
which refers to the reservoirs: it is also diagonal. Now, suppose that G1 and G2 are, at t = 0
in a definite state, say ϕ0,1 (i.e. 0111), and that the dynamics of the system is only given
by H0. Then, at t > 0, the two players will be still described by ϕ0,1: no change in their
decisions. This is coherent with the fact that, as we have discussed before, [H0, n̂j ] = 0.
Stated with different words, we could say that H0 is the simplest quadratic self-adjoint
operator in our fermionic operators which commutes with n̂1 and n̂2. This ensures that, in
absence of interactions, G1 and G2 do not change idea.

More interesting is the role of HI . In order to explain its meaning, we have to recall that,
see Appendix, bj and Bj (k) are lowering operators, while their adjoint b

†
j and B

†
j (k) are

raising operators. For instance, if we consider b1ϕ1,0, we obtain ϕ0,0. Then, the action of
b1 modify the original choice of the players, 1102, to the new choice, 0102. Similarly, since
b

†
1ϕ0,0 = ϕ1,0, the action of b

†
1 brings 0102 to 1102. The operators Bj (k) and B

†
j (k) behave

similarly for the reservoir.
Then, it is clear that HI describes the interaction between the two components of R, R1

and R2, with the players: bjB
†
j (k) describes the fact that, when the amount of information

reaching Gj increases (because of B
†
j (k)), Gj tends to chose 0 (because of bj ). On the other

hand, Bj (k)b
†
j describes the fact that Gj tends to chose 1, when the amount of information

reaching him decreases. Now, recalling that, in our model, what the players really want to
avoid is getting the smallest payoff b, and recalling that this is achieved by choosing 1, it is
natural to interpret the information produced by the reservoir as information of bad quality:
the more it reaches Gj , the more he moves away from his rational choice.

4Please consider that h is not really the full hamiltonian, see (2.5). In fact, n̂j (t) stays really constant in time
if [H, n̂j ] = 0, which is surely true if λ1 = λ2 = 0 and if μex = μcoop = 0, see (2.5).
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2.2 Enriching the Model

To make the situation richer and more interesting for us we admit here the possibility that the
two players also interact among them and we consider two different possible interactions,
by adding a cooperative and an exchange effects. The full hamiltonian H is therefore

{
H = h + hint ,

hint = μex

(
b

†
1b2 + b

†
2b1

)
+ μcoop

(
b

†
1b

†
2 + b2b1

)
,

(2.5)

where μex and μcoop are non negative. In particular, they could be both equal to zero, and
in this case H = h. In this particular case, G1 and G2 do not interact with each other. On
the other hand, if μex �= 0 and μcoop = 0 then G1 and G2 are pushed to make different
choices because of the terms b

†
1b2 and b

†
2b1, while they act cooperatively if μex = 0 and

μcoop �= 0 (because of b
†
1b

†
2 and b2b1). Finally, we also allow the possibility of having both

these contributions, when μex and μcoop are simultaneously non zero.
Before deducing the time evolution of the relevant observables of the system, it is inter-

esting to discuss the presence, or the absence, of some integrals of motion for the model.
In our context, these are (self-adjoint) operators which commute with the hamiltonian. In
many concrete situations the existence of these kind of operators gives an hint on how the
hamiltonian should look like, [4], and can be used sometimes to check how realistic our
model is. In fcat, this strategy was previously used to fix the form of H0. Let us introduce

N =
2∑

j=1

Nj =
2∑

j=1

(
b

†
j bj +

∫

R

B
†
j (k)Bj (k) dk

)
, (2.6)

with obvious notation. First of all, it is easy to check that [Nj , h] = 0, j = 1, 2, so that

[N, h] = 0. Moreover, even if
[
Nj ,μex

(
b

†
1b2 + b

†
2b1

)]
�= 0, we find that

[
N,μex

(
b

†
1b2 + b

†
2b1

)]
= 0,

so that N commutes also with h+μex

(
b

†
1b2 + b

†
2b1

)
. On the other hand, neither Nj nor N

commute with μcoop

(
b

†
1b

†
2 + b2b1

)
so that, when μcoop �= 0, N ceases to be an integral of

motion. This suggests that the cooperation destroys the integral of motion in (2.6). This is
because the cooperative term in H forces G1 and G2 to behave in a similar way forcing, as
a consequence, the mean value of N to change with time. On the other hand, if μcoop = 0,
the creation and the annihilation operators in H always compensate their actions and for
this reason N stays constant in time, even if its different contributions in (2.6) have a non
trivial time evolution.

We can now go back to the analysis of the dynamics of the system. The Heisenberg
equations of motion Ẋ(t) = i[H, X(t)], see Appendix, can be deduced by using the CAR
(2.2) and (2.4) above:

⎧
⎨

⎩

ḃ1(t) = −iω1b1(t) + iλ1
∫
R

B1(k, t) dk − iμexb2(t) − iμcoopb
†
2(t),

ḃ2(t) = −iω2b2(t) + iλ2
∫
R

B2(k, t) dk − iμexb1(t) + iμcoopb
†
1(t),

Ḃj (k, t) = −i�j (k)Bj (k, t) + iλj bj (t),

(2.7)

j = 1, 2. The third equation can be rewritten as

Bj (k, t) = Bj (k)e−i�j (k)t + iλj

∫ t

0
bj (t1)e

−i�j (k)(t−t1) dt1
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and, taking �j(k) = �jk, �j > 0, standard computations produce
∫

R

Bj (k, t) dk =
∫

R

Bj (k)e−i�j kt dk + iπ
λj

�j

bj (t). (2.8)

We refer to [4] for details of this computation and for a discussion on the physical genesis
of this approach. If we now replace (2.8) in the (2.7) for ḃj (t), we can write

ḃ(t) = i U b(t) + iβ(t), (2.9)

where we have introduced νj = iωj + π
λ2

j

�j
, βj (t) = ∫

R
Bj (k)e−i�j kt dk, j = 1, 2, and

b(t) =

⎛

⎜⎜⎝

b1(t)

b2(t)

b
†
1(t)

b
†
2(t)

⎞

⎟⎟⎠ , β(t) =

⎛

⎜⎜⎝

λ1β1(t)

λ2β2(t)

−λ1β
†
1 (t)

−λ2β
†
2 (t)

⎞

⎟⎟⎠ U =

⎛

⎜⎜⎝

iν1 −μex 0 −μcoop

−μex iν2 μcoop 0
0 μcoop iν1 μex

−μcoop 0 μex iν2

⎞

⎟⎟⎠ .

The solution of (2.9) is easily found in a matrix form:

b(t) = ei U tb(0) + i

∫ t

0
ei U (t−t1) β(t1) dt1, (2.10)

which is now the starting point for our analysis below.

2.3 G1 and G2 do not Interact

This is almost the classical two players game, since they do not interact each other, but
still both communicate with their environments. As we have discussed before, in this case
μex = μcoop = 0. Then U is a diagonal matrix, and ei U t is diagonal as well. Then, from
(2.10) we easily deduce that

bj (t) = e−νj t bj (0) + i

∫ t

0
e−νj (t−t1)βj (t) dt1,

j = 1, 2. From this equation we can obtain b
†
j (t) and, consequently, the number operator

n̂j (t) = b
†
j (t)bj (t). However, what is relevant for us is not really n̂j (t) itself, but its mean

value on some suitable state on S . These states are assumed to be tensor products of vector
states for SG and states on the reservoir which obey a standard equation, see below. More
in details, for each operator of the form XS ⊗ YR, XS being an operator of SG and YR an
operator of the reservoir, we consider

〈XS ⊗ YR〉 := 〈�,XS�〉 ωR(YR).

Here � is the vector introduced in (2.1), while ωR(.) is a state satisfying the following
standard properties, [4]:

ωR(1R) = 1, ωR(Bj (k)) = ωR(B
†
j (k)) = 0, ωR(B

†
j (k)Bl(q)) = Nj δj,lδ(k − q),

(2.11)
for some constant Nj . Also, ωR(Bj (k)Bl(q)) = 0, for all j and l. These formulas for ωR
reflect for the reservoir expressions similar to those for SG . Then

nj (t) = 〈
n̂j (t)

〉 = e
−2πλ2

j /�j t‖bj�‖2 + Nj

(
1 − e

−2πλ2
j /�j t

)
. (2.12)

What is interesting here is that, if λj �= 0,

nj (∞) := lim
t→∞ nj (t) = Nj (2.13)
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does not depend on the original state of mind of the two players, but only on what the
reservoir suggests. In fact, independently of the vector � describing probabilistically, at
t = 0, the choices of both G1 and G2, if R1 (the part of the reservoir interacting with G1)
has in (2.11) N1 = 0, then after a sufficiently long time, 0 will be exactly G1’s choice. On
the other hand, if N1 = 1, then G1 will eventually choose 1. A similar conclusion can be
deduced for G2. Therefore, when G1 and G2 do not interact, their choices are only dictated
by their environments. This conclusion looks quite reasonable, in the present context.

Remark (1) Notice that, if λj = 0, formula (2.12) reduces to nj (t) = ‖bj�‖2 = nj (0),
∀ t . This is not surprising, since reflects what was already deduced before in absence
of interactions of any kind. In this case, in fact, we have seen that the initial state of
mind is what really matters for the final decision, since there is no time evolution of
the operator n̂j at all.

(2) More in general, formula (2.12) suggests the introduction of a sort of characteristic
time for Gj , τj = �j

2πλ2
j

. The more t approaches τj , the bigger the influence of Rj

on Gj is. In particular, if λj → 0, τj diverges. Hence we recover our previous con-
clusions: Gj is not influenced at all by Rj , even after a long time. A similar behavior
is deduced also when �j increases: the larger its value, the larger the value of τj . In
other words, for large �j the influence of the environment is effective only after a suf-
ficiently long interval. This is not very different from what we have deduced in other
systems, [4], where analogous parameters of the hamiltonian measure the inertia of
that particular part of the system. Of course, τj can be considered as a sort of decision
time.

(3) Since the rational choice of both players is 1, (2.13) shows that rationality really
belongs to Rj , rather than to Gj : in our version of the game, Gj does not need to be
rational, at least if their reservoirs behave rationally!

2.4 The Effect of Exchange Interaction

In the following we will fix μcoop = 0, allowing μex to be different from zero. In particular,
from now on, for concreteness’ sake we will work fixing the following values of the other
parameters in the hamiltonian: ω1 = 1, ω2 = 2, λ1 = λ2 = 0.5, �1 = �2 = 0.1.
This choice is meant to have almost identical players and reservoirs. As it is clear, the only
difference between G1 and G2 is played here by the values of ω1 and ω2.

After few computations, calling V (t) = ei U t and Vk,l(t) its (k, l)-matrix element, we
deduce that

n1(t) = |V1,1(t)|2‖b1�‖2 + |V1,2(t)|2‖b2�‖2

+2π

∫ t

0
dt1

[
λ2

1

�1
|V1,1(t − t1)|2N1 + λ2

2

�2
|V1,2(t − t1)|2N2

]
, (2.14)

and

n2(t) = |V2,1(t)|2‖b1�‖2 + |V2,2(t)|2‖b2�‖2

+2π

∫ t

0
dt1

[
λ2

1

�1
|V2,1(t − t1)|2N1 + λ2

2

�2
|V2,2(t − t1)|2N2

]
, (2.15)

To begin with, we consider three different choices for μex : (a). μex = 0.01, (b). μex =
0.05 and (c). μex = 0.1. In all these cases it is possible to check that both V1,1(t) and
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V1,2(t) converge to zero when t diverges. On the other hand, neither
∫ t

0 dt1|V1,1(t − t1)|2 nor∫ t

0 dt1|V1,2(t − t1)|2 converge to zero. All these computations can be performed analytically
and the explicit result, in case (a), is the following:

{
n1(∞) 
 0.99997N1 + 0.00001N2,

n2(∞) 
 0.00001N1 + 0.99997N2.
(2.16)

How we can see, these are symmetrical, and not very different from the result in (2.13): the
two players modify their decision with respect to when μex = 0, but just a little bit ! This
is because μex is too small. In fact, let us consider the case (b) above, μex = 0.05. In this
case, repeating the same computations, we conclude that

{
n1(∞) 
 0.99997N1 + 0.00251N2,

n2(∞) 
 0.00251N1 + 0.99997N2,
(2.17)

which shows that the mixing between N1 and N2 increases a little bit. And, in fact, this
mixing increases even more in case (c), when μex = 0.1: we get

{
n1(∞) 
 0.99039N1 + 0.00958N2,

n2(∞) 
 0.00958N1 + 0.99039N2.
(2.18)

To clarify further the role of the exchange hamiltonian, we now consider much higher values
of μex , keeping again μcoop = 0. Hence we take: (d). μex = 10 and (e). μex = 100. In the
first case, μex = 10, we find

{
n1(∞) 
 0.59627N1 + 0.40370N2,

n2(∞) 
 0.40370N1 + 0.59627N2,
(2.19)

while in case (e), μex = 100, we obtain
{

n1(∞) 
 0.50154N1 + 0.49846N2,

n2(∞) 
 0.49846N1 + 0.50154N2.
(2.20)

We believe that, for μex � μcoop = 0, the two players reach eventually a common choice
which should be n1(∞) = n2(∞) = 1

2 (N1 + N2): perfect mixing! Once again, then,
the decisions of G1 and G2 are driven by the reservoirs but, in this case, the stronger the
interaction between G1 and G2, the more R1 and R2 affect in a symmetric way the two
players.

2.5 The Effect of Cooperative Interaction

We now consider the case in which only the cooperative part in the hamiltonian is switched
on, μcoop �= 0, while the exchange contribution is turned off, μex = 0. As before, we
will consider, for the same reasons, the following values of the other parameters in the
hamiltonian: ω1 = 1, ω2 = 2, λ1 = λ2 = 0.5, �1 = �2 = 0.1, and then we will put (a).
μcoop = 0.01, (b). μcoop = 0.05 and (c). μcoop = 0.1.

In this case we deduce that

n1(t) = |V1,1(t)|2‖b1�‖2 + |V1,4(t)|2(1 − ‖b2�‖2)

+2π

∫ t

0
dt1

[
λ2

1

�1
|V1,1(t − t1)|2N1 + λ2

2

�2
|V1,2(t − t1)|2(1 − N2)

]
, (2.21)
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and

n2(t) = |V2,2(t)|2‖b2�‖2 + |V2,3(t)|2(1 − ‖b1�‖2)

+2π

∫ t

0
dt1

[
λ2

1

�1
|V2,3(t − t1)|2(1 − N1) + λ2

2

�2
|V2,2(t − t1)|2N2

]
, (2.22)

Again it is possible to check that all the functions Vk,l(t) above converge to zero when t

diverges. On the other hand,
∫ t

0 dt1|Vk,l(t−t1)|2 admits a non zero limiting value for t → ∞.
The results are the following: in case (a), μcoop = 0.01 and μex = 0, we have

{
n1(∞) 
 0.99997N1 + 0.00001(1 − N2),

n2(∞) 
 0.00001(1 − N1) + 0.99997N2.
(2.23)

In case (b), μcoop = 0.05 and μex = 0, we have

{
n1(∞) 
 0.99966N1 + 0.00028(1 − N2),

n2(∞) 
 0.00028(1 − N1) + 0.99966N2,
(2.24)

while in case (c), μcoop = 0.1 and μex = 0, we get

{
n1(∞) 
 0.99887N1 + 0.00115(1 − N2),

n2(∞) 
 0.00115(1 − N1) + 0.99887N2.
(2.25)

Again we observe that the higher the value of μcoop , the higher the mixing between the
effects of the two sub-reservoirs. Hence we are led to formulate a similar conclusion as we
did in the previous situation, and we expect that, for μcoop � μex = 0, the two players
arrive to an asymptotic (in time) choice which is the following: n1(∞) = 1

2 (N1 +(1−N2)),
n2(∞) = 1

2 ((1 − N1) + N2).

2.6 Full Hamiltonian

In this last part, we consider together the effects of the exchange and of the cooperative
hamiltonians, still keeping unchanged the values ω1 = 1, ω2 = 2, λ1 = λ2 = 0.5, �1 =
�2 = 0.1. Now both μex and μcoop will be taken different from zero. In particular, we will
consider the situation in which μex and μcoop are significantly different from each other
(which we don’t expect is particularly different from what we did before), and the case in
which they are similar. More in details, these will be our choices of parameters: Case (a).
μex = 0.01 and μcoop = 100; (b). μex = 0.01 and μcoop = 1; (c). μex = μcoop = 0.5; (d).
μex = 1 and μcoop = 0.01 and (e). μex = 100 and μcoop = 0.01.

In this case we deduce that

n1(t) = |V1,1(t)|2‖b1�‖2 + |V1,2(t)|2‖b2�‖2 + |V1,3(t)|2(1 − ‖b1�‖2) + |V1,4(t)|2(1 − ‖b2�‖2)

+2π

∫ t

0
dt1

λ2
1

�1

[
|V1,1(t − t1)|2N1 + |V1,3(t − t1)|2(1 − N1)

]

+2π

∫ t

0
dt1

λ2
2

�2

[
|V1,2(t − t1)|2N2 + |V1,4(t − t1)|2(1 − N2)

]
(2.26)

and
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n2(t) = |V2,1(t)|2‖b1�‖2 + |V2,2(t)|2‖b2�‖2 + |V2,3(t)|2(1 − ‖b1�‖2) + |V2,4(t)|2(1 − ‖b2�‖2)

+2π

∫ t

0
dt1

λ2
1

�1

[
|V2,1(t − t1)|2N1 + |V2,3(t − t1)|2(1 − N1)

]

+2π

∫ t

0
dt1

λ2
2

�2

[
|V2,2(t − t1)|2N2 + |V2,4(t − t1)|2(1 − N2)

]
. (2.27)

The following are the results we have deduced in the five cases listed above. We have:

Case (a), μex = 0.01 and μcoop = 100:
{

n1(∞) 
 0.50317N1 + 0.49682(1 − N2),

n2(∞) 
 0.49682(1 − N1) + 0.50317N2.
(2.28)

Case (b), μex = 0.01 and μcoop = 1:
{

n1(∞) 
 0.91914N1 + 0.08075(1 − N2),

n2(∞) 
 0.08075(1 − N1) + 0.91914N2.
(2.29)

Case (c), μex = 0.5 and μcoop = 0.5:
⎧
⎪⎪⎨

⎪⎪⎩

n1(∞) 
 0.85428N1 + 0.00626(1 − N1) + 0.11974N2 + 0.01917(1 − N2)

= 0.84802N1 + 0.10057N2 + 0.02543,

n2(∞) 
 0.11974N1 + 0.01917(1 − N1) + 0.85428N2 + 0.00626(1 − N2)

= 0.10057N1 + 0.84802N2 + 0.02543.

(2.30)

Notice that, in these equations, the first form has been explicitly written simply because, in
this way, the different contributions arising from (2.26) and (2.27) can be easily identified.

Case (d), μex = 1 and μcoop = 0.01:
{

n1(∞) 
 0.99210N1 + 0.00795N2,

n2(∞) 
 0.00795N1 + 0.99210N2,
(2.31)

and, finally, Case (e), μex = 100 and μcoop = 0.01:
{

n1(∞) 
 0.50308N1 + 0.49692N2,

n2(∞) 
 0.49692N1 + 0.50308N2.
(2.32)

We postpone our detailed analysis of these and of the previous results to the next section.
Here we just want to add that, contrarily to what we have seen in Section 2.1, in this more
general case we expect that the characteristic time depends also on μex and μcoop , so that
these parameters are expected to contribute to the decision time.

3 Analysis of the Results and Conclusions

The first clear output of our analysis suggests that, when G1 and G2 do not directly interact, it
is really the environment which produces their decisions. Hence the rationality of the players
is strongly linked to the nature of the reservoirs: if both reservoirs have Nj = 1, j = 1, 2,
then nj (∞) = 1, and the two players make the most rational choice according to the loss
aversion rule. More interesting is the situation when we allow some interaction between
G1 and G2. In particular our results show that, when at least one between μex or μcoop is
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different from zero, and small, the value of nj (∞) is essentially decided again by the j -
th part of the reservoir. However, when the numerical values of one of the two parameters
increase, then some mixing is possible. For instance, we see that when μex = 100 and
μcoop = 0, n1(∞) 
 0.50154N1 + 0.49846N2 and n2(∞) 
 0.49846N1 + 0.50154N2.
This means that, even if the two components of the reservoir do not mutually interact, the
existence of a direct interaction between G1 and G2 mixes the cards: the final decision of
each player is not only related to the value of his own part of reservoir (i.e. to N1 or to
N2), but it is a mixture of the two, and, at least for this high value of μex , in this mixture
N1 and N2 have almost the same weights for G1 and G2. A similar behavior is observed
also when μex = 0 while μcoop increases: again we have a stronger and stronger mixing
of the effects of R1 and R2 for μcoop increasing. However as we see from (2.23–2.25),
N1 mixes with 1 − N2 (rather than with N2) and N2 with 1 − N1 (rather than with N1).
Hence, this contribution in the hamiltonian, behaves differently from the other one, and this
is natural, due to the different kind of the interactions. When we consider both contributions
in hint , the two effects come together and we see this in formulas (2.28–2.32). From these
formulas we also see that in the extreme situations (when μex is much smaller or much
larger than μcoop), not unexpectedly the two final decisions of G1 and G2 are similar to the
previous cases (i.e. to the cases in which one of the μ’s was zero). On the other hand, when
μex = μcoop , the two effects are both clearly visible, see formula (2.30).

In order to compare these results with those in the Introduction, we begin with a very
evident fact: the initial state of mind of the players plays absolutely no role in the final
decision, except when there is no interaction at all. No matter which was their status at
t = 0, its effect simply disappears when t increases. This is clearly a measure of the fact that
our model is not really the two-player game proposed in [7, 8], as we have already stressed
before, but a slightly different version of that.

Let us now consider four different cases, depending on the values of Nj of Rj . Case (I):
N1 = N2 = 0; Case (II): N1 = 0 and N2 = 1; Case (III): N1 = 1 and N2 = 0; Case (IV):
N1 = N2 = 1. From the formulas of Section 2 we deduce the following:

1. The only way in which both G1 and G2 choose 1 if when N1 = N2 = 1, but not for
all values of μex and μcoop . For instance, apparently this is not so when μcoop � μex .
However, when this happens, n1(∞) and n2(∞) still coincide.

2. On exactly the opposite side, when N1 = N2 = 0 the values of n1(∞) and n2(∞)

stay always very low, except again when μcoop � μex . Even now, when this happens,
n1(∞) and n2(∞) still coincide. The larger μcoop with respect to μex , the bigger the
value n1(∞) = n2(∞) which approaches asymptotically, as our computation suggests,
the value 1

2 .
3. When N1 = 0 and N2 = 1 in most of the cases considered here n1(∞) stays close to

0 while n2(∞) is close to 1. However, when μex � μcoop , again our numerical results
suggest that n1(∞) = n2(∞) 
 1

2 . Specular (and similar) conclusions can be deduced
when N1 = 1 and N2 = 0.

4. While there is apparently no other way to get n1(∞) = n2(∞) = 1 than having
N1 = N2 = 1, there exist several possibilities to have n1(∞) = n2(∞). Therefore,
in a slightly modified version of the game in which we look for equal decisions (not
necessarily equal to 1), we have plenty of possibilities in which this happens.

Remark (1) A different possibility, which may be closer to the usual interpretation of
what is quantum in decision making, is to look at the nj (∞) we have deduced before
in a probabilistic way. For instance, rather than looking at nj (∞) as the real decision
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taken by Gj , we could consider it as a sort of probability that Gj chooses 0 or 1. Then,
instead of looking to square modula of the coefficients of the vectors in �, we directly
look at nj (∞). But this does not fit well with our general interpretation, see [4], and
we will not insist on it here.

(2) It should probably be stressed that the payoffs a, b, c and d do not enter explicitly in
the definition of the hamiltonian, at least in the model considered here. In fact, we are
interested here in the possibility that Gj make the rational choice for a fixed choice
of parameters satisfying c > a > d > b, whatever this choice is. Changing their
values, but maintaining these inequalities, we don’t affect the players’ behavior, of
course. Nevertheless, it could be interesting to look for some different model in which
the role of the payoffs is evident in the hamiltonian of the system itself or directly
in the state describing the system at t = 0. The (probably) easiest way to include
the payoffs directly in the hamiltonian is to assume, for instance, that μex and μcoop

depend explicitly on a, b, c and d. For instance, if this dependence is such that μex >

μcoop , then the effect of the exchange interaction would be stronger than that of the
cooperative term in hint . More sophisticated dependencies could be considered, like
for instance some nonlinear extra term in H , depending on the payoffs. But this would
make very hard, if not impossible, to get an exact analytical solution, and perturbative
expansions should be possibly used.

This is probably just the beginning of the story: there are still several possible aspects
to be considered. First of all, we have considered here just a particular choice of the many
parameters of H . A natural question is what changes when these parameters, and in particu-
lar those which reflect the nature of the players, are fixed in a different way. For instance, in
view of the meaning of the ωj ’s we have deduced for other systems, [4], we could expect a
larger inertia of, say, G1 with respect to G2 if ω1 � ω2: G1 changes his original idea slowly,
when compared to G2. However, from the point of view of n1(∞) and n2(∞), we don’t
expect this will change much our conclusions, but at most some (minor) details, like the
decision time. Moreover, the hamiltonian we have considered here is just one among all the
possible choices. Indeed, in our opinion, it is a rather natural choice and, when compared
with other possibilities, allows a more natural interpretation. Still, one could look for other
possibilities, and for instance one could try to add non linearities in the model. However,
in this case, numerical techniques should most probably be adopted. Another interesting
aspect is the following: is there any other problem in decision making theory in which the
method proposed here could be applied? We believe this is very plausible. These are some
of the aspects we plan to consider in a close future.
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Appendix: Few Results on the Number Representation

To keep the paper self-contained, we discuss here few important facts in quantum mechanics
and in the so–called number representation. More details can be found, for instance, in [19,
20], as well as in[4].
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Let H be an Hilbert space, and B(H) the set of all the (bounded) operators on H. Let S
be our physical system, and A the set of all the operators useful for a complete description
of S , which includes the observables of S . For simplicity, it is convenient (but not really
necessary) to assume that A coincides with B(H) itself. The description of the time evo-
lution of S is related to a self–adjoint operator H = H † which is called the Hamiltonian
of S , and which in standard quantum mechanics represents the energy of S . In this paper
we have adopted the so–called Heisenberg representation, in which the time evolution of an
observable X ∈ A is given by

X(t) = exp(iH t)X exp(−iH t), (A.1)

or, equivalently, by the solution of the differential equation

dX(t)

dt
= i exp(iH t)[H, X] exp(−iH t) = i[H, X(t)], (A.2)

where [A, B] := AB−BA is the commutator between A and B. The time evolution defined
in this way is a one–parameter group of automorphisms of A.

An operator Z ∈ A is a constant of motion if it commutes with H . Indeed, in this case,
equation (A.2) implies that Ż(t) = 0, so that Z(t) = Z for all t .

In some previous applications, [4], a special role was played by the so–called canon-
ical commutation relations. Here, these are replaced by the so–called canonical anti–
commutation relations (CAR): we say that a set of operators {a�, a

†
� , � = 1, 2, . . . , L}

satisfy the CAR if the conditions

{a�, a
†
n} = δ�n1, {a�, an} = {a†

� , a
†
n} = 0 (A.3)

hold true for all �, n = 1, 2, . . . , L. Here, 1 is the identity operator and {x, y} := xy +yx is
the anticommutator of x and y. These operators, which are widely analyzed in any textbook
about quantum mechanics (see, for instance, [19, 20]) are those which are used to describe
L different modes of fermions. From these operators we can construct n̂� = a

†
�a� and

N̂ = ∑L
�=1 n̂�, which are both self–adjoint. In particular, n̂� is the number operator for the

�–th mode, while N̂ is the number operator of S . Compared with bosonic operators, the
operators introduced here satisfy a very important feature: if we try to square them (or to
rise to higher powers), we simply get zero: for instance, from (A.3), we have a2

� = 0. This
is related to the fact that fermions satisfy the Fermi exclusion principle [19].

The Hilbert space of our system is constructed as follows: we introduce the vacuum of
the theory, that is a vector ϕ0 which is annihilated by all the operators a�: a�ϕ0 = 0 for all
� = 1, 2, . . . , L. Such a non zero vector surely exists. Then we act on ϕ0 with the operators
a

†
� (but not with higher powers, since these powers are simply zero!):

ϕn1,n2,...,nL
:= (a

†
1)

n1
(a

†
2)

n2 · · · (a†
L)

nL
ϕ0, (A.4)

n� = 0, 1 for all �. These vectors form an orthonormal set and are eigenstates of both n̂� and
N̂ : n̂�ϕn1,n2,...,nL

= n�ϕn1,n2,...,nL
and N̂ϕn1,n2,...,nL

= Nϕn1,n2,...,nL
, where N = ∑L

�=1 n�.
Moreover, using the CAR, we deduce that

n̂�

(
a�ϕn1,n2,...,nL

) = (n� − 1)(a�ϕn1,n2,...,nL
)

and
n̂�

(
a

†
�ϕn1,n2,...,nL

)
= (n� + 1)(a

†
l ϕn1,n2,...,nL

),

for all �. Then a� and a
†
� are called the annihilation and the creation operators. Notice that,

in some sense, a
†
� is also an annihilation operator since, acting on a state with n� = 1, we

destroy that state.
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The Hilbert space H is obtained by taking the linear span of all these vectors. Of course,
H has a finite dimension. In particular, for just one mode of fermions, dim(H) = 2. This
also implies that, contrarily to what happens for bosons, all the fermionic operators are
bounded.

The vector ϕn1,n2,...,nL
in (A.4) defines a vector (or number) state over the algebra A as

ωn1,n2,...,nL
(X) = 〈ϕn1,n2,...,nL

,Xϕn1,n2,...,nL
〉, (A.5)

where 〈 , 〉 is the scalar product in H. As we have discussed in [4], these states are useful to
project from quantum to classical dynamics and to fix the initial conditions of the considered
system.
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