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Abstract We construct bound entangled states in bipartite systems and tripartite systems.
A class of bound entangled states in 3k ® 3k quantum systems is constructed. Moreover,
we construct a class of entangled states in 4 ® 4 ® 4 quantum systems and classify those
states with respect to their distillability. The class of states are bound entangled for arbitrary
bipartite split.
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1 Introduction

Serving as an important resource for quantum theory, quantum entanglement has been
widely applied in the rapidly expanding filed of quantum information processing. However,
the fundamental problem to check whether a given state is entangled or not has not been
fully resolved. In recent years, there were considerable efforts to analyze the entanglement
of quantum states, and great progress was achieved. The first significant progress is known
as the PPT criterion [1], the separable states remain positive if subjected to partial transpose.
The reduction criterion [2] is equivalent to the PPT criterion for 2 ® N composite systems,
but it is not sufficient for separability in general. The range criterion [3] which says that the
separable state can span its range is also a necessary condition for separability.

A special kind of states that entangled but not distillable are called bound entangled
states, it plays a very important role in quantum information [4—7]. The first example of
bound entangled states was proposed by Horodecki [3]. Based on the unextendible product
basis, a class of bound entangled states was constructed by Bennett et al. [8]. A class of
bound entangled states in 4 ® 4 quantum systems was constructed by Fei et al. [9]. An
N-qubit bound entangled state which violates the Bell inequality if and only if N > 6
was constructed by Diir [10]. Although more and more efforts have been done to analyze
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entanglement of quantum states [11-14], and more and more bound entangled states were
presented [15-18], a full comprehensive understanding of bound entangled states is still a
challenge.

Following the work of Fei et al., we present the construction of bound entangled states
in 3k ® 3k systems and 4 ® 4 ® 4 systems. The structure of this paper is as follows: In
Section 2, we present the construction of bound entangled states in 3k ® 3k systems, and
examples of the bound entangled states in 3 ® 3 and 6 ® 6 systems are given. In Section 3,
we give a detailed description about the construction of bound entangled states in 4 ® 4 @ 4
systems. Finally, conclusion and discussion are given in Section 4.

2 Construction of Bound Entangled States in 3k ® 3k Systems

Suppose |y) is a bipartite pure state acting on  ® H , where H is a complex Hilbert space
withdimH =3k, ke ZT. {ei}?i | denotes the orthonormal basis of #, and

3k
W)=Y ajei®ej. ajeC, (1)

i,j=1

3k
i g —
with Z ajjal; = 1.
i,j=1
Consider antisymmetric 3k x 3k matrix A having entries given by a;; in (1) such that

A0 .--0

- 0A---0 0 b a

A= . . .|, where A=|-b 0 ¢ |, a,b,ceC.
T —a — 0
00-.-4

Since A is an antisymmetric matrix, then we have the following standard form when
performing the similarity transformations on A:

Al O -+ 0
- 0 A --- 0 020
A= . . .|, where Ai=|-200
S 000
0 0 --- Ay
or
Ay O 0
~ 0 Ay --- 0 0 0
Ar=| . . . , where A, =] 0 00
: 0 —100
0 0 --- A

Let A = bin Ay and in A, with |b|? = zl—k, t denotes the transposition. Then we have pure
states

l¢1) = (0,b,0,0,---,0,-b,0,0,0,---,0,0,5,0,0,---,0,-b,0,0,0,---,0),
l$2) = (0,0,5,0,---,0,0,---,0,-5,0,0,0,---,0,0,0,6,0---,0,0,---,0,
—b,0,0)".
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Construct states

=(1—-¢)L , 0 < .
o= &)L3; + oy <8_7k_2

where we define 69 = 101+ 102, 01 = |¢1 >< ¢1], 02 = | >< ¢ol, L3k is a 92 x 9k>
matrix having the following elements to be its only nonzero entries:

2

1
(L3k)(m—l)x3k+m(m—l)><3k+m = m» m=1,2,---,3k.
1
(L3k) Gm—1)x 3k-+3n—1' Gm—1) x3k+3n—1! = e = 1,2,--- .k, m #n.
0,2 [ =1,
1,1 satisfies’ = { 1,2 [ =2,

0,1,2 [ =3.
Next we will represent the matrix ¢ by partitioned matrix, in the following, P,,, denotes
the elementary matrix obtained by interchanging the m-th row and the n-th row of the
identity matrix I, x4. We set

0 00
1
Ci1 = —I3x3 + P1aCa, C3 = Pi3Cy, C4=—P1aCy, where Cy=| = 00
4k
0 00
Let
Ci0---0C20 0C30---0
00---000 000 0
00---000---000---0
C]0---0Cs0---000---0
Co=p ... ]
00---000---000---0
Cl0---000---0Cs0---0
00---000---000---0
00--000--000---0

Cij=Uzx3Q Q1))C11Izx3® Q1j), i, j=1,---,k, i <]

where Q1 = P33 P2@i—1)Pigi—2), | = 1,---, k. Thus we can obtain the partitioned
matrix o as follows,

Cip Cr2 -+ Cix
CITZ Co -+ Cy
oo=1| . . )
Cli Clo -+ Cua
Then we set
1
z—ax 00 1
Dy = 0 00|, Dx=-5——013x3, D3 = PaDi1Pia, D4y = Pi3D;P3,
0 00 Tk — 4k

Ds = Dy + Pi2D P13, Dg = Dy + Pi3D Pi3.
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Let

o
o
o
S}
O e
o
o
o
o

0
0 O 0 D3 O 0 0 O 0
0 0 0 0 Ds 0O 0 O 0
Dy = : ,
0 0 0O 0 0 ---Ds 0 O 0
0 0 0O 0 O -0 D4 O 0
0 0 0O 0 O -0 0 Dg 0
00 --000---00 0 - Dg

Dii = (I3x3® Q1;))D11(I3x3 ® 01;), i =1,--- k.

Thus the partitioned matrix L3, can be of the following form,

Dy -+ 0
L3 = : Lo
0 --- D
Obviously, the matrix ¢ can be written as
Cit Ci2 --- Cyx
¥ Dy -+ 0
Ci, Coo -+ Oy | o
= — oo, . < .
At S e o) T
i T s Dkk
Cet Cra -+ Cuk

The matrix o 12 is just the partial transposition acting on the second system of ¢. It is easy
to see o2 is a nonzero Hermitian row diagonally dominant matrix when 0 < & < T{Z,
thus o 72 is positive semidefinite [19]. Hence o is PPT when 0 < ¢ < 71%2 Next we will
show that o is entangled by using the range criterion.

Assume that the basis is ordered as e¢; ® e1, --- ,e1 Qe3r, - -+ ,e3xx Req, -, e3r  e3k,
then any vector belonging to the range of ¢ (Ran o )can be represented as

o= (s s i) (€))
where

u1 = (A1, B,C, Dy, Ay, A3, Dy, A4, As, -+, Dg—1, Agk—2, Aog—1,—B, Az, 0, Aggt1, D,
0, A2k+2, Di+1,0, - -+, Azk—1, Dog—2,0, —=C, 0, Azk, Azp+1, 0, Dog—1, A3p+2, 0,
Dy, -+, Aar—1,0, D3_3)",

wj = (Dp—3k+4, Aq—j+2: Aa—j+3> Dp—3k+5, Aa—jt+4s Aa—j+5, "+ » Dp—3k+j+2, Ag+j—2,
Agtj—1.Aayj, B,C,Dg_3k1j43, Aayjitl, Aatji2. D—3ksjt4, Aot ji3. Aatjra, -,
Dg_ok+2, Aa—j+2k—1> Aa—jt2ks Aa—j+2k+15 Dp—2k+3, 0, Aa—jr2k+2, Dp—2k+4,0, -+,
Agt2k—15 Dp—2ktj+1, 0, =B, Ag12k, 0, Agt2k+1, Dp—2k+j+2. 0, Aat2k+2, Dp—2k+j+3,0, -,
Aa—j+3ks Dp—k+1, 0, Aa— j+3k+1, 0, Dp—i12, Aa—j+3k+2, 0, Dp—k43, -+, Aa+3k—1, 0,
Dg_j1j, —C,0, Agi3k, Aqi3ks1, 0, Dp_piji1, Agyant2, 0, Dg_kyjya, -+ o Aa—jrak, 0, Dg),
a=4(j — Dk, p=3k—-1)j, Ay, ---, A4k2—kv Dy, -, D3(k—l)kv B,CeC.
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On the other hand, if ¢ is separable, then any vector belonging to Ran ¢ also can be of the
following form,

Wsep = (ar, -+ ,az)’ @ (b1, -+, b))’ 4)
Comparing (3) with (4), we have the following equalities:
azm—1b3, =0, (5)
azmbzp—1 =0, (6)
azm—2bam—1 = —azm-1b3m—2 = B, @)
azm—2byn = —azmbyn—2 = C, ()

wherem,n=1,--- k.
We consider the following cases.

i) Thecaseofazy—2 #0, a1 = -=asp—3=azp—1 =...a3, =0, m=1,2,--- k.
From (7),(8), we have

Vim—23m—2 =0, -+, 0,53,-2,0, -+, 0).v3_23,-2=(0, -+, 0,b3,-2,0,---,0),
Vam—23n—-1 = (0,+++,0,b3,-1,0,---,0),

Vim—23n = (0, ,0,b3,,0,---,0,),

n=12--,(m—-1,(m+1),- k.

ii) Thecaseofaz,—1 #0, a1 =---=a3p2=a3py =...a3xk =0, m=1,2,--- k.
From (5),(7), we have

Vim—1,m = ©,---,0,b3,-1,0, - 70)[-
Vim—1,n = (07 -, 0, b3n727 0,---, 0)t7 V3m—1,n+k = (07 -, 0, b3n717 0,---, O)t

n=12-,(m—-1,(m+1),- -k

iii) Thecaseofas, #0, aj = - =a3p—1 = @pt1 = ...a3x =0, m=1,2,--- k.
From (6), (8), we have

Vim,m = (Oa e 307 b3m, 0’ ;O)t~

Vim,n = (0, ,0,b3,2,0,--- ’0)1’ Vim,n+k = (07 ,0,b3,,0,--- ’O)I
n=12-,(m-1),m+1), -,k

iv) Thecaseofay; =as =--- =as_1 =0,a1a3a4 - - - a3 —3a3r—2a3; % 0. From (6),(8),
we have ¢y ® Y = (a1,0,a3, -+ ,a3-2,0,a3)" ® (b1,0,b3, -, b3y, 0, b3i)’,
v) Thecaseofas =ag =--- = a3 =0, ajapaqas - - - asp—raszx—1 7% 0. From (5),(7), we
have ¢; ® ¥, = (a1, a2,0, - -+, azk—2, azk—1,0) ® (b1, b2,0, - -+, b3g_2, byg—_1, 0)".
Letu; = (0,---,0,a;,0,---,0)". Thus we have linearly independent vectors 13,2 ®
Vim—2,j,j = 1,2,---,3m —=2,3m 4+ 1,---,3k. 3m—1 ® Vim—1,j, M3m ® V3pm,j,Jj =
Lo k+m—1,k+m+1,--- 2k ¢ ® Y, ¢, @ Y, spanning Ran o.
Since all of the vectors /,L3m72®v§m72_j, j=1,--,3m=2,3m+1,--- ,3k. u3,—1®

Vit Mm@V, o J = Lo kbm— Lk tm 41, . 2k e @Y7, ¢ ® (§))* are
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linearly independent with the vector g = (1,0, --- , 0 ®(0, 1,0, - - - , 0)!, which belongs
just to Ran o2, Then we can get that o is entangled by the range criterion.
Therefore, for any 0 < ¢ < ﬁ o is a bound entangled state.

Example 1 For the case of k = 1, we consider the matrix pg as follows,

T

™

=)
Alm

| oo

INE)

PO =

S O Okl O O

INE)

oooooooo'»‘
|
cocooco,l oo
cCoocoormo
ooocw‘zoooo
cococoococoococoo
corro oo
cocoocococoococoo
w‘n\joooooooo

S o

Since ,OOT2 is positive semidefinite when 0 < & < %[19], and it is easy to show pp is
entangled by the range criterion, then pg is bound entangled.

Example 2 For the case of k = 2, we consider the matrix p as follows,

Ci0C,0C300C; 0Cr 0 C3
00000000000O00O
CJ0Cs0000C0C0 0
00000000000O00QO
Ci000c,00Ci0000C
00000000000O00O Dy 0

P=*1 000000000000 +(1_8)(01)22>’
C10C0C300C; 0C0C
0000000000O0O
C30C40000C;0Cs0 0
0000000000O0O
C1000C,00C]000C

where

DL0 0 0 0 0 D0 0 0 0 0
0D,0 0 0 0 0Dl 0 0 00

b 00D 000 0 0Ds 0 0 0

"o oobso o] 700 0Ds0 0
0 0 0 0Ds0 00 00 DsgO0
00 0 0 0 De 00 0 0 0 Dy
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According to [19], we can get that p”2 is positive semidefinite when 0 < & < 1/6. Next we
will show p is entangled by the range criterion. It is easy to obtain the linearly independent
vectors 1 @ vij,j = 1,4,5,6. up ® vaj, u3 @ v35,j = 1,2,4 g @ vgj,j =
L4 us ®vsj, e ® vej, j = 1,2,3. ¢2 ® Y2, ¢) ® ¥} spanning Ran p, where
wi=@,--,0,a,0,-,0).

vi1 = (61,0,0,0,0,0), via=(0,0,0,bs,0,07, vi5=(0,0,0,0,bs,0),
vis = (0,0,0,0,0, bs)", o1 =(0,bs,0,0,0,0),

vy =vig, V4 =vis, 31 =(0,0,53,0,0,0)", 3 =iy,

V34 = V16, V41 = Vi, V4 = V21, V43 = V3|, V44 =Vy4, V5] = Vi,

V52 = V15, V53 = V21, V61 = Vi1, V62 = Vi6, V63 = V31.

Since all of the vectors | ® vfj, j=1,4,56 ume® vgj, n3 ® u§j, J=1,2,4 ns®
”Zj’ j=1,--,4 usQ® vgj, e ® vgj, J=12,3.0:®Y3, ¢,® (¥)* are linearly
independent with the vector g = (1, 0,0, 0,0, 0) ® (0, 1,0, 0, 0, 0)", which belongs just
to Ranp’2. Then we can get that p is entangled.

Therefore, for any 0 < ¢ < 1/6, p is bound entangled.

3 Construction of Bound Entangled States in 4 ® 4 ® 4 Systems

Suppose |1/) is a tripartite pure state acting on H4 ® Hp ® Hc, where H is a complex
Hilbert space with dim H = 4. {e,'};‘:1 denotes the orthonormal basis of H, and

4
) = Z apijen ® e; @ej, apij €C, )
hij=1

4
with )~ ahija;:i/. =1.
h.i,j=1 '
Consider antisymmetric matrix B having entries given by ay;; in (9) such that

0 ba—-c 0 000
b 0cd 0 00O
—a—-c0—-e 0 00O
c —de 0 0 000

B=10 000 0 b a-cl| (10)
0 000 —b 0 cd
0 000 —a—c0 —e
0 000 ¢ —de O

where a, b, c,d,e € C.
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In a similar way, we have the following equivalent standard form:

0 x4 0 0 0 0 0 O

-0 0 0 0 0 0 O

0 0 0 » 0 0 0 O

B = 0 0220 0 O 0 O
0 0 0 0 0 A 0 O

0 0 0 0-20 0 O

0 0 0 0 0 0 0 A

0 0 0 0 0 0 —-x0

or

0 0 x»0 0 0 00O

0 0 0OAxn O O OO

- 0 00 O O 0O

B, = 0O 2200 0 0 OO
0 0 00 0 0 2 O

0O 0 00 0 0 0

0 0 00 -2 0 00O

0 0 00 0 —x 00

Let A = b, Ap = —c in By, with |b|2 + |c|2 = %, we have the pure state

|(p+b> = (0,b,0,~--,0,—b,0,---,0,—6,0,---,0,C,0,-~-,0,b,0,--~,0,
—b,0,---,0,—¢,0,---,0,¢,0).

Let A1 = —b, Ao = —c in By, we have the pure state

lo—p) = (0,—b,0,---,0,0,0,---,0,—¢,0,---,0,¢,0,---,0,
—b,0,---,0,b,0,---,0,—¢,0,---,0,¢,0).
Let A| = a, A = —d in By, with |a|? + |d|? = }T,we have the pure state

|$+4) = (0,0,a,0,---,0,-4,0,0,0,0, —a,0,---,0,d4,0,---,0,a,0,---,0,
-d,0,0,0,0,—a,0,---,0,d,0,0)".

Let .1 = —a, A, = —d in By, we have the pure state

lp—a) = (0,0,—a,0,---,0,-4,0,0,0,0,a,0,---,0,d,0,---,0,
-a,0,---,0,-d,0,0,0,0, —a,0,---,0,d,0,0)".

Construct states

o=(0—-¢eLg+eoy, 0<e= (11

ﬁ.
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where 0o is defined as 00 = 304 + 30b, 0 = 210+a)(@4al + SlP—a)P—al, Ob

%|(p+b) (b + %|<p,b) (¢—_pl|. Lg is a 64 x 64 matrix having the following elements to be its

only nonzero entries:

1
(Lg)1,1 = (Lg)s5 = (Lg)es = (Lg)7,7 = vk

1
(Lg)10,10 = (L8)13,13 = (Lg)14,14 = (Lg)16,16 = 53

32

1
(Lg)19,19 = (Lg)21,21 = (Lg)23,23 = (Lg)2424 = ==

32

1
(Lg)2s,28 = (Lg)30,30 = (Lg)31,31 = (Lg)32,32 = 553

32

1
(Lg)33,33 = (L8)34,3¢ = (Lg)35,35 = (L§)37,37 = 53

32

1
(Lg)a1,41 = (L8)az,42 = (Lg)as,44 = (Lg)a6,46 = 5=

32

1
(Lg)49,49 = (Lg)s1,51 = (Lg)s2,52 = (Lg)s5555 = ==

32

1
(Lg)s8,58 = (Lg)s59,59 = (L8)60,60 = (L§)6s,64 =

5.

Since there are three different bipartite splits of the systems: A-(BC), B-(AC), (AB)-C,
then below we will discuss the separability of o in the three cases respectively.

I) The case of A-(BC). To consider the matrix o by partitioned matrix, we set

0 000
E E Py + E3Pi3), E ~ o000 ]| L
1 = —(E2Ppp+ E3P3), Er= < oool E2<
0 000
0 0 00
0 0 00
Ex=1¢o o o0 | Es=—-(P3E3+EcPu), E¢=
000
Let
Eij = (Isxa ® Q1)EN(Iaxa ® Q)), i,j=1,2.i
where
Et0E,0E;0 0O
00000000
ES0E 00 0Es0
00000000
Ev=1g1000E0Eo0]|
3 5 6
00000000
0 0E,0E 0E 0
00000000

0, = Pacary P3ai—1) Prai—2) Piai—3), 1 =1,2.
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thus the partitioned matrix gg can be of the following form
00 = (E nE 12)
El, En)’

1 1
= §I4><4 — PuuF1 Py, F3=PpF P, Fy= §I4><4 — Pi3F Pr3,

Then we set

1 1
Fs = Pi3F1 P13, Fo= ——luxa — P2oF1 P12, F7 = Pi4F1 Py, F3 = —lsxqa — F,

32 32
1
33000
where F| = 8888 . Let
0000

Fii = (I1xa ® Q1) Fi1(laxa ® Q7). i =1,2.

where

FF 0 0 0 0 00O
0O F 0 0 0 0 0 O
0 0 F 0 0 O0O0O0

Fiy = 00 0 F 0 0 0O
00 0 0 F 0 0 0|
00 0 0 0 F OO
00 0 0 0 O0FO
00 0 0 0 0 0 Fg

thus the partitioned matrix Lg is as follows,

It is easy to see the matrix ¢ can be written as

En Enn Fip 0 1
=¢ + 1—¢ , O0<e< —.
¢ <E]2 E22)+( )< 0 Fxn - 17
Consider the matrix ¢’ which denotes the partial transposition acting on A system of o,

we have 74 is positive semidefinite when 0 < ¢ < é, then it is also positive semidefinite

when 0 < ¢ < %.ThusgisPPTwhenO<8§ %

Next we will show that o is entangled.

Assume that the basis is ordered as e @ ] Q €1, €1 Qe1 R er, 1 Qe1 Ve3, 1 Qe ®
el, e1Rerx®ey, e1Qer ez, -+, e3 @ ez @ e3, then any vector which belongs to Ran
o can be presented as

uw = (A1,B,C,0,A7, A3, A4,0,—B, A5,0, D, Ag, A7,0, Ag, —C, 0, Ay, E,
A10,0,A11,A12,0,—D, —E, A13,0, A4, Ays, Ate, A17, Ats, A9, 0,
A, B, C,0, Az, A2, 0, A3, —B, A4, 0, D, Azs,0, Ags, Az7, —C, 0,
A283E507 A29»A303 A3190a _Ds _E5A32)t9 (12)
where Ay, Ay, -+, A3y, B,C, D, E € C. On the other hand, if u is separable, it also can
be of the following form

MS@P:(r15r27r37r4)t®(s]»"' 7s16)t7 (]3)
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where r1, r2, 3,14, 51, - - , 516 € C.
Comparing (12) with (13), we have the following equalities:

risy = —risg =r3s¢ = —r3s;3 = B, (14)
r183 = —rp81 = 1387 = —r485 = C, (15)
riS12 = —r2s810 = r3s16 = —r4s14 = D, (16)
r2S4 = —I2S1] = r4s§ = —r4815 = E, a7
risq =r18g = rysy; = ris15 =0, (18)
rasy =ras¢ = ras9 = ras13 =0, (19)
r3sq = r3sg = r3sq| = ras1s =0, (20)
74852 = r48¢ = 1459 = rq813 = O. 21

In a similar way, we consider the following cases:

1) r;1 #0,rp =r3 =rq4 =0.From (14-16),(18), we obtain the vector

(r1,0,0,0) ® (51,0,0,0, s5, 56, 57, 0, 0, 510, 0, 0, 513, 514, 0, 516)", (22)
2) ry #0,rp =r3 =rq =0. From (15-17),(19), we obtain the vector

0,72,0,0) ® (0,0, 53,0, 55,0, 57, 58, 0,0, 0, 512, 0, 514, 515, S16)", (23)
3) r3#0,r; =rp =rq4 =0. From (14-16),(20), we obtain the vector

(0,0, r3,0) ® (51, 52,53,0,55,0,0,0, 59, 510, 0, 512, 0, 514, 0, 0)’, (24)
4) r4 #0,r1 =rp =r3 = 0. From (15-17),(21), we have the vector

0,0,0,74)" ® (51,0, 53,54,0,0,57,0,0, 510, 511, 512, 0,0, 0, s16)",  (25)
5) rira #0,r3 =r4 = 0. From (15),(16),(18),(19), we obtain the vector

(r1,72,0,00 ®(0,0,0,0,ss,0,s7,0,0,0,0,0,0, 514, 0, s16)’, (26)

6) rir3 #0,ry =rq4 = 0. From(15),(16),(18),(20), we obtain the vector

(r1,0,73,0) ® (51, 52, 0,0, 55, 56, 0, 0, 59, 510, 0, 0, 513, 514, 0,0)",  (27)
7) rira #0,ry = r3 = 0. From (15),(16),(18),(21), we obtain the vector

(r1,0,0,74)" ® (5s1,0,0,0,0,0,57,0,0, 510, 0, 0,0, 0,0, 516)", (28)
8) rr3 #0,r; =rq = 0. From (15),(16),(19),(20), we obtain the vector
0,72,73,0 ®(0,0,s3,0,55,0,0,0,0,0,0, 512, 0, 514, 0, 0)’, (29)
9) ryrqe #0,r1 =r3 =0. From (15),(16),(19), we obtain the vector
0,72,0,74)" ® (0,0, 53, 54, 0,0, 57, 58, 0,0, 511, 512, 0, 0, 515, 516)", (30)
10) r3rqa #0,r; = rp = 0. From (15),(16),(20),(21), we obtain the vector
0,0,r3,74)" ® (51,0,53,0,0,0,0,0,0, 510, 0, 512, 0, 0, 0, 0)’, (31)
11) ryror3 # 0, r4 = 0. From (15),(16),(18),(19), we obtain the vector
(r1,72,73,0 ®(0,0,0,0,s5,0,0,0,0,0,0,0,0, s14, 0, 0), (32)
12) rirarg # 0, r3 = 0. From (15),(16),(18),(19), we obtain the vector
(r1,72,0,r4)" ®(0,0,0,0,0,0,57,0,0,0,0,0,0,0,0, s16)", (33)
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13) rir3rg #0, rp = 0. From (15),(16),(18),(19), we obtain the vector

(r1,0,r3,74)' ® (51,0,0,0,0,0,0,0,0, 510, 0, 0,0, 0,0, 0), (34)
14) ror3rg # 0, r; = 0. From (15),(16),(19),(20), we obtain the vector

0,72,73,74)' ®(0,0,53,0,0,0,0,0,0,0,0, 512, 0,0,0,0), (35)
15) riror3rg # 0. From (15),(16),(18),(19), we obtain the vector

(r1,r2,13,14)" ® (51,0, 53,0,0, 56, 0, 58, 59, 0, 511, 0, 513, 0, 515, 0)". (36)

Obviously, the vectors (22-36) are linearly independent and span Ran . Perform-
ing the partial complex conjugations with respect to A system of the above vec-
tors, we can get that the resulting vectors can’t span the range of o4, since the
vector (1,0,0,0) ® (0,0,1,0,---,0) belonging to the range of o4 is also lin-
early independent with the resulting vectors. Hence, o is entangled by the range
criterion.

Therefore, for any 0 < ¢ < L

17» © is bound entangled.

II) The case of B-(AC). Similar to I), we can obtain that ¢ is PPT when 0 <

e
and show that g is entangled by the range criterion. Therefore, for any 0 < ¢ <
is bound entangled.

IIl) The case of (AB)-C. Consider the matrix o’ that achieved by performing the partial

transposition on C system of ¢ , it’s easy to obtain that o7¢ is positive semidefinite
when 0 < ¢ < % Thus g is PPT when 0 < ¢ < % In a similar way, we can also

obtain the following linearly independent vectors that span Ran p:

S 17°

1
7’

(c1,¢2,0,¢4,0,¢6,0,0, co, c0, 11, 0, c13, 0,0, 0)' ® (dy, 0, 0, 0)’,
(0, 2, ¢3,¢4,0,0,0, cg, co, 0, c11, €12, 0, 0, 515, 0)' @ (0, da, 0, 0)",
(0, ¢2,0,0,cs, cq, 0, cg, c9, 0,0, 0, c13, c14, c15, 0)' ® (0, 0, d3, 0)’,
0,0,0,c4,0,c6,c7,c8,0,0,c11, 0, c13,0, c15, c16)’ ® (0,0, 0, dy)’,
(c1,¢2,¢3,¢4,0,0,0,0, co, c10, €11, €12, 0,0, 0, 0)' ® (dy, da, 0, 0)",
(c1,¢2,0,0,cs5,c¢6,0,0, co, c10, 0,0, 13, c14, 0, 0)' ® (d1, 0, d3, 0)',
0,0,0,c4,0,c6,0,0,0,0, 11,0, c13,0,0,0) ® (dy, 0,0, ds)’,
(0,¢2,0,0,0,0,0, cg, c9,0,0,0,0,0, c15,0)' ® (0, da, d3, 0)",
0,0,¢3,¢4,0,0,¢7,c8,0,0,c11, ¢12, 0,0, 15, c16)’ ® (0,d2, 0, ds)’,
0,0,0,0, cs, cg, ¢7, c8, 0, 0,0, 0, c13, c14, 15, c16)’ ® (0,0, d3, ds)’,
(c1,¢2,0,0,0,0,0,0, cg, c19,0,0,0,0,0,0) ® (dy, da, d3, 0)",
0,0,¢3,¢4,0,0,0,0,0,0, cy1, c12,0,0,0,0) ® (d1, da, 0, ds)",
0,0,0,0,cs,c6,0,0,0,0,0,0, c13, c14, 0, 0)' ® (d1, 0, d3, dy)",
0,0,0,0,0,0,¢7,c3,0,0,0,0,0,0, c15, c16) ® (0, da, d3, dy)". 37
where ¢1,---,ci6,d1,--+,ds € C. Since the vector (1,0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,) ® (0,0, 1, 0)" belonging to Ran o€ is linearly independent with
the partial complex conjugations of these vectors, then g is entangled.

1

Therefore, forany 0 < & < 15,

o is bound entangled.
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4 Conclusion and Discussion

We have constructed a class of bound entangled states in 3k ® 3k quantum systems and
given two examples of the bound entangled states in 3 ® 3 and 6 ® 6 quantum systems. We
have also constructed a class of bound entangled states in 4 ® 4 ® 4 quantum systems, and
such tripartite bound entangled states may be constructed in kK ® k ® k quantum systems if
k3 canbe a square number, since in this case we can define a Vi3 x /i3 matrix B similar to
the matrix B at the beginning of Section 3. We hope our results will be helpful for the future
research on the construction of bound entangled states in multipartite quantum systems.
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