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Abstract We study the Schrödinger operator with a potential given by the sum of the
potentials for harmonic oscillator and imaginary cubic oscillator and we focus on its pseu-
dospectral properties. A summary of known results about the operator and its spectrum is
provided and the importance of examining its pseudospectrum as well is emphasized. This
is achieved by employing scaling techniques and treating the operator using semiclassical
methods. The existence of pseudoeigenvalues very far from the spectrum is proven, and as
a consequence, the spectrum of the operator is unstable with respect to small perturbations
and the operator cannot be similar to a self-adjoint operator via a bounded and boundedly
invertible transformation. It is shown that its eigenfunctions form a complete set in the
Hilbert space of square-integrable functions; however, they do not form a Schauder basis.

Keywords Pseudospectrum · Harmonic oscillator · Imaginary qubic potential ·
PT -symmetry · Semiclassical method

1 Introduction

One of the first observations of purely real spectrum in a non-self-adjoint Schrödinger
operator occured in [6] by Caliceti et al. The authors studied the class of
operators −d2/dx2 + x2 + βx2n+1 on L2(R) for a general complex β and noticed that the
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spectrum is real provided arg(β) = π/2 and β is sufficiently small. This property was later
attributed to the PT-symmetry of the considered operator. The so-called PT -symmetric
quantum mechanics originated with the numerical observation of a purely real spectrum of
an imaginary cubic oscillator Hamiltonian [5] and rapidly developed thenceforth. See e.g.
[4, 21] and references therein for a survey of papers in this area. The PT -symmetry prop-
erty of an operator H should be understood in this paper as the invariance of H with respect
to the space inversion and the time reversal on the Hilbert space L2(R), i.e.

[H,PT ] = 0 (1.1)

in the operator sense, where (Pψ)(x) := ψ(−x) stands for spatial reflection and
(T ψ)(x) := ψ(x) stands for time reversal in quantum mechanics. Such operator possesses
a relevant physical interpretation as an observable in quantum mechanics provided it is
similar to a self-adjoint operator

h = �H�−1, (1.2)

where � is a bounded and boundedly invertible operator. Then it is ensured that the spectra
of h and H are identical and that the corresponding families of eigenfunctions share essen-
tial basis properties [19]. The similarity to a self-adjoint operator is in fact equivalent to the
quasi-self-adjointness of H ,

H ∗� = �H, (1.3)

where the operator � is positive, bounded and boundedly invertible [17, 23]. It is often
called a metric, since the operator H can be seen as self-adjoint in the space with the modi-
fied scalar product (·,�·). The equivalence can be easily seen from the decomposition of a
positive operator � = �∗� [18, Prop. 1.8].

In recent years it has been shown that the spectrum is not necessarily the best notion to
describe properties of a non-self-adjoint operator and the use of ε-pseudospectrum, denoted
here σε(H) and defined as

σε(H) :=
{
λ ∈ C

∣∣∣
∥∥∥(H − λ)−1

∥∥∥ > ε−1
}

, (1.4)

was suggested instead [7, 11, 16, 18, 19, 25, 27]. In [25] authors studied the operator
−d2/dx2 + ix3 and derived completeness of its eigenfunctions, found the bounded metric
operator � and proved that it can not have a bounded inverse. These results were further
supplemented in [19] where the existence of points in the pseudospectrum far from the
spectrum was established. This paper aims to apply the methods used in these papers to the
operator −d2/dx2 + x2 + ix3, whose several properties were investigated e.g. in [6, 10, 14,
20]. Our aim is to establish results which can be directly extended to the more general case
−d2/dx2 + x2 + ix2n+1, n ≥ 1. We choose to study the case n = 1 to show its relation to
the famous imaginary cubic oscillator.

Let us consider the Hilbert space L2(R) and define the operator H acting on its maximal
domain:

H := − d2

dx2
+ x2 + ix3,

Dom(H) :=
{

ψ ∈ W 2,2(R)

∣∣∣∣∣ −
d2ψ

dx2
+ x2ψ + ix3ψ ∈ L2(R)

}
. (1.5)

It was shown in [6] that Dom(H) coincides with
{
ψ ∈ W 2,2(R)

∣∣ x3ψ ∈ L2(R)
}

and that
H is closed. Furthermore, it is an operator with compact resolvent and therefore its spec-
trum is discrete (i.e. consists of isolated eigenvalues of finite algebraic multiplicity). The
reality and the simplicity of the eigenvalues was established in [24]. Using the approach of
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[13, Sec. VII.2] shows that H coincides with the closure of (1.5) defined on smooth func-
tions with compact support and that it is an m-accretive operator. Recall that this means that
H is closed and that {λ ∈ C | �λ < 0} ⊂ ρ(H) and ‖(H −λ)−1‖ ≤ 1/|�λ| for �λ < 0. In
this paper we contribute to these results with showing the non-triviality of the pseudospec-
trum of H and demonstrating its several consequences. The main results are summarised in
the following theorem.

Theorem 1 Let H be the operator defined in (1.5). Then:

1. The eigenfunctions of H form a complete set in L2(R).
2. The eigenfunctions of H do not form a (Schauder) basis in L2(R).
3. For any δ > 0 there exist constants A,B > 0 such that for all ε > 0 small,

{
λ ∈ C

∣∣∣∣∣ |λ| > A, | arg λ| < arctan �λ − δ, |λ| ≥ B

(
log

1

ε

)6/5
}

⊂ σε(H). (1.6)

4. H is not similar to a self-adjoint operator via bounded and boundedly invertible
transformation

5. H is not quasi-self-adjoint with a bounded and boundedly invertible metric.
6. −iH is not a generator of a bounded semigroup.

We can see that for any ε the pseudospectrum contains complex points with positive real
part, non-negative imaginary part and large magnitude. This result is in particular important
in view of the characterisation of pseudospectrum (2.3)—it implies the existence of pseu-
domodes very far from the spectrum. This non-trivial behaviour of the pseudospectrum was
without details announced in [25]. A numerical computation of several of the pseudospec-
tral lines of H can be seen in Fig. 1. As a consequence of the last point in Theorem 1, the
time-dependent Schrödinger equation with H does not admit a bounded time-evolution. For
more details about establishing a time-evolution of an unbounded non-self-adjoint operator
we refer to recent papers [1, 2] and to references therein.

This paper is organised as follows. In Section 2 we formulate some properties of pseu-
dospectrum to emphasize its importance in the study of non-self-adjoint operators. In
Section 3 we develop a semiclassical technique applicable in the study of pseudospectrum
of the present model. The proof of the main theorem of the paper about pseudospectrum
and eigenfunctions of H can be found in Section 4. The Section 5 is devoted to a discussion
of the results and of their consequences.

2 General Aspects of the Pseudospectrum

The definition of the pseudospectrum and some of its most prominent properties are pre-
sented in this section. The focus is on properties related to this paper, which were already
highlighted in [19], where the authors dealt with similar problems. The presented list is far
from complete and we refer to the monographs [9, 27] for more details on this subject.

Let H be a closed densely defined operator on a complex Hilbert space H . Its spectrum
σ(H) is defined as the set of complex points λ for which the operator (H − λ)−1 does not
exist or is not bounded on H . The complement of this set in C is called the resolvent set
of H . It is a well known fact that the spectrum of a bounded linear operator is contained in
the closure of its numerical range �(H) = {

(ψ,Hψ) | ψ ∈ H , ‖ψ‖ = 1
}
. Moreover, this

holds for closed unbounded operators as well, provided the exterior of the numerical range



Int J Theor Phys (2015) 54:4142–4153 4145

Fig. 1 Spectrum (red dots) and ε-pseudospectra (enclosed by blue-green contour lines) of harmonic
oscillator with imaginary cubic potential. The border of the ε-pseudospectrum is plotted for the values
ε = 10−7, 10−6.75, 10−6.5, . . . , 101, the green contour lines correspond to large values of ε, the blue ones
correspond to smaller values of ε. We notice that for each ε from the selected range the contour lines quickly
diverge and therefore the corresponding ε-pseudospectrum contains points very far from the real axes. More
details about the used computational method can be found in [26]

in C is a connected set and has a non-empty intersection with the resolvent set of H . The
ε-pseudospectrum (or simply pseudospectrum) of H is defined as

σε(H) :=
{
λ ∈ C

∣∣∣
∥∥∥(H − λ)−1

∥∥∥ > ε−1
}

, (2.1)

with the convention that
∥∥(H − λ)−1

∥∥ = +∞ for λ ∈ σ(H). In other words,
σ(H) ⊂ σε(H) for every ε from the definition and from the inequality

∥∥(H − λ)−1
∥∥ ≥

dist (λ, σ (H))−1 we can easily see that also an ε-neighbourhood of the spectrum is con-
tained in the pseudospectrum. Similarly as in the previous case, if the exterior of the
numerical range in C is a connected set and has a non-empty intersection with the resolvent
set of H , the pseudospectrum is in turn contained in the ε-neighbourhood of the numerical
range, i.e. altogether we have

{λ ∈ C | dist(λ, σ (H)) < ε } ⊂ σε(H) ⊂
{
λ ∈ C

∣∣∣ dist(λ,�(H)) < ε
}

. (2.2)

Perhaps the most striking property of pseudospectrum is provided by the result some-
times known as Roch-Silberman theorem [22]. The ε-pseudospectrum of H may be
expressed via the spectra of all perturbations of H of size less than ε:

σε(H) =
⋃

‖V ‖<ε

σ(H + V ). (2.3)

This result is especially important in the study of non-self-adjoint operators. For operators
with highly non-trivial pseudospectrum (i.e. not contained in some bounded neighbourhood
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of the spectrum) it reveals their spectral instability with respect to small perturbations. It
also shows a difficulty in the numerical study of operators with wild pseudospectra—small
rounding errors can lead to computing (false) eigenvalues, which are in fact very far from
the true spectrum.

The pseudospectrum can also by characterised as the set of all points of the spectrum and
of all pseudoeigenvalues (or approximate eigenvalues), i.e.

σε(H) = {λ ∈ C | λ ∈ σ(H) ∨ (∃ψ ∈ Dom(H)) (‖(H − λ)ψ‖ < ε‖ψ‖)} . (2.4)

Any ψ satisfying the inequality in (2.4) is called a pseudoeigenvector (or pseudomode). It
can be easily seen that pseudoeigenvalues can be turned into eigenvalues by a small pertur-
bation. If H were to represent a physical observable and V its perturbation, this fact would
cause some highly unintuitive behaviour of its energies.

3 Semiclassical Techniques

The use of semiclassical techniques in the study of non-self-adjoint operators was first sug-
gested in [7], and the idea was further developed e.g. in [11, 28]. Let Hh be an operator
acting in L2(R) of the form

Hh := −h2 d2

dx2
+ Vh(x). (3.1)

Here Vh are analytic potentials in x for all h > 0 small enough which take the form Vh(x) =
V0(x) + Ṽ (x, h), where Ṽ (x, h) → 0 locally uniformly as h → 0. This operator should
be understood as some closed extension of an operator originally defined on C∞

c (R). The
following theorem is an analogue of [7, Thm. 1] for a potential depending on h.

Theorem 2 Let Hh be defined as above and let λ be from the set

� :=
{
ξ2 + Vh(x)

∣∣∣ (x, ξ) ∈ R
2, ξ 
V ′

h(x) < 0
}

, (3.2)

where the dash denotes standard differentiation with respect to x in R. Then there exists
some C = C(λ) > 1, some h0 = h0(λ) > 0, and an h-dependent family of C∞

c (R)

functions {ψh}0<h≤h0 with the property that, for all 0 < h ≤ h0,

‖(Hh − λ)ψh‖ < C−1/h‖ψh‖. (3.3)

The function f (x, ξ) := ξ2 + Vh(x) is called the symbol associated with Hh. Note that
relation (2.4) gives us that λ ∈ σε(Hh) for all ε ≥ C(λ)−1/h. Here ε can get arbitrarily
close to 0, provided h is sufficiently small. The closure of � is usually called the semi-
classical pseudospectrum [11]. Application of Theorem 2 to non-semiclassical operators is
sometimes possible by using scaling techniques and sending the spectral parameter to infin-
ity. This is based on a more general principle that the semiclassical limit is equivalent to the
high-energy limit after a change of variables.

Proof The proof is inspired by the proof of [19, 1]. We are interested in the case when h

is very close to 0, during the course of the proof we are not going to stress every occasion
when this plays a role. We can assume h to be “sufficiently small” when necessary. Let
λ = ξ2

0 + Vh(x0) and assume ξ0 �= 0, 
V ′
h(x0) �= 0. Let us notice that λ is dependent on h

from definition so changing h in the course of our proof would mean changing λ as well.
This problem can be overcome by fixing λ ∈ � and introduce a dependence of x and ξ on h
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in such a way that λ = ξ̃ (h)2 + Vh(x̃(h)), where ξ̃ (h) → ξ0 and x̃(h) → x0 as h → 0. The
existence of these functions is ensured by the implicit function theorem. Since we only need
to find one function for which (3.3) holds, the main idea is that the sought pseudomode will
arise from JWKB approximation of the solution to (Hh − λ)u = 0 which takes the form

u(x, h) := eiφ(x,h)/h

N(h)∑
j=0

hjaj (x, h), (3.4)

where aj (x, h) are functions analytic near x0. We follow here the procedure of constructing
appropriate functions φ and aj as shown e.g. in [12, Chap. 2]. The function φ should satisfy
the eikonal equation

f (x, φ′(x, h)) − λ = 0, (3.5)

where f is the symbol associated with Hh. (The dash denotes differentiation with respect
to x.) From this equation immediately follows that φ′(x, h) = ±√

λ − Vh(x). The sign is
determined by the condition ξ 
V ′

h(x) < 0 applied in the point (x0, φ
′(x0, h)) and remains

the same for all h. Therefore the sign of φ′(x0, h) should be opposite of the sign of 
V ′
h(x0).

Therefore we get

φ(x, h) = −sgn
(
V ′

h(x0)
) ∫ x

0

√
λ − Vh(y) dy. (3.6)

We need to check whether φ′ is analytic near x0 for h small. From the assumption we know
that 
V ′

h(x0) �= 0, so there exists δ > 0 such that 
V ′
h(x̃) �= 0 for x̃ ∈ [x0 − δ, x0 + δ].

Then for every x̃ = x0 + ε(h), where 0 < |ε| < δ and ε(h) → 0 as h → 0, we get


Vh(x̃) − 
λ = 
Vh(x̃) − 
V0(x0) = ε(h)
(
V ′

0(x0) + O(ε(h))
) + Ṽ (x̃, h) (3.7)

for ε going to 0. Without loss of generality it is possible to assume 
V ′
h(x0) > 0, therefore

δ can be fixed so that 
V ′
0(x0) +O(ε) > C′ for some C′ > 0. Taking h small, Ṽ (x̃, h) gets

close to 0 uniformly and |x̃ − x0| < δ, thus 
Vh(x̃) − 
λ > 0 and consequently the square
root in the definition of φ′ is well-defined. The case 
V ′

h(x0) < 0 is proven in the same
manner. After a translation we can assume further on x0 = 0.

The equality

e−iφ/h (Hh − λ) eiφ/h = 2h

i

(
φ′ d

dx
+ 1

2
φ′′

)
− h2 d2

dx2
(3.8)

can be verified with a direct computation. If we set aj so that they satisfy the transport
equations

φ′(x, h)a′
0(x, h) + 1

2
φ′′(x, h)a0(x, h) = 0,

φ′(x, h)a′
j (x, h) + 1

2
φ′′(x, h)aj (x, h) = i

2
a′′
j−1(x, h) (3.9)

for j > 0, we get that

e−iφ(x,h)/h (Hh − λ) eiφ(x,h)/h

⎛
⎝

N∑
j=0

hjaj (x, h)

⎞
⎠ = −hN+2a′′

N(x, h). (3.10)
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We can also set a0(x0, h) = 1 and aj (x0, h) = 0 for j > 0 and all h. The (3.9) can be then
solved using the method of integrating factor as

a0(x, h) =
√

φ′(x0, h)√
φ′(x, h)

,

aj (x, h) = 1√
φ′(x0, h)

∫ x

0

i a′′
j (y, h)

2
√

φ′(y, h)
dy. (3.11)

These functions are well defined and analytic near x0 thanks to analyticity of φ′. We now
proceed with estimates of the functions aj . Note that since the potentials Vh(x) are analytic,
we can naturally extend them into the complex plane in the neighbourhood of x0 = 0 and
thus the same can be applied on φ and all aj . Our goal is to arrive to the estimate

|aj (x, h)| ≤ C
j+1
1 jj (3.12)

for C1 > 0 and x in some neighbourhood of the origin. Then we will be able to define the
h-dependent function

a(x, h) :=
∑

0≤j≤(eC1h)−1

hjaj (x, h), (3.13)

which is uniformly bounded analytic function on the set where (3.12) holds due to the
absolute summability of the sum

|a(x, h)| ≤ C1

∑

0≤j≤(eC1h)−1

C
j

1 hj jj ≤ C1

∑

0≤j≤(eC1h)−1

e−j < +∞. (3.14)

In the following we will derive the estimate (3.12) for aj extended to the complex plane
(further denoted as aj (z, h)). With the natural choice of the norm

‖f ‖B(R) := sup {z ∈ B(R) | |z| < R} , (3.15)

where B(R) is an open ball in the complex plane with center at 0 and diameter R, we
easily see that the estimate obtained for ‖a‖B(R) will remained valid for |a(x, h)| in some
neighbourhood of the origin. We fix R0 such that, on B(R0), φ is analytic, |φ′| is bounded
from below and above and 
φ′′(x, h) > 1/C2 for some C2 > 0. We also employ Cauchy’s
estimate for the second derivative of an analytic bounded function f defined on B(R):

|f ′′(z)| ≤ 2‖f ‖B(R)

(R − |z|)2
. (3.16)

With the use of the formula (3.11) we obtain

|aj (z, h)| =
∣∣∣∣∣

1√
φ′(z, h)

∫ z

0

ia′′
j−1(ζ, h)

2
√

φ′(ζ, h)
dζ

∣∣∣∣∣

≤ ‖(φ′(·, h))−1‖B(R)

∫ |z|

0

‖aj−1(·, h)‖B(R)

(R − t)2
dt

= ‖(φ′(·, h))−1‖B(R)‖aj−1(·, h)‖B(R)

(
1

R − |z| − 1

R

)

= |z|
R(R − |z|)‖(φ

′(·, h))−1‖B(R)‖aj−1(·, h)‖B(R) (3.17)
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for j = 0, 1, . . . . We iterate these estimates on balls of radius Rk := (1 − k/2j) R0, k =
0, . . . , j − 1. Then we have for |z| < Rj

|z|
Rk(Rk − |z|) ≤ |z|

Rk(Rk − Rk+1)
≤ 4j |z|

R2
0

. (3.18)

Then it follows for ak+1 that

|ak+1(z, h)| ≤ 4j |z|
R2

0

‖(φ′(·, h))−1‖B(R0)‖aj (·, h)‖B(R). (3.19)

Subsequently using these estimates for k = 0, . . . , j − 1 and taking a supremum we obtain

‖aj (·, h)‖B(R0/2) ≤ ‖aj (·, h)‖B(Rj ) ≤ ‖a0(·, h)‖B(R0)

(
2j

R0
‖(φ′(·, h))−1‖B(R0)

)j

.

(3.20)
We see from (3.11) and our choice of R0 that ‖a0(·, h)‖B(R0) < C3 and from the uniform
estimate of |φ(x, h)| from below that ‖(φ′(·, h))−1‖B(R0) < C4, where the positive con-
stants C3 and C4 does not depend on h. The desired estimate (3.12) then follows with the
constant

C1 := max

{
C3,

2

R0
C4

}
. (3.21)

We are now able to define the desired pseudomode as

ψh(x) := eiφ(x,h)/hχ(x)a(x, h), (3.22)

where a(x, h) is the function defined in (3.13) and χ ∈ C∞
c (R) such that it is iden-

tically equal to 1 in some neighbourhood of 0 and its support lies inside the interval
(−R0/2, R0/2). We divide the calculation of the norm in (3.3) as follows:

‖(Hh − λ)ψh‖ =
∥∥∥χ(Hh − λ)eiφ/ha

∥∥∥ +
∥∥∥[Hh − λ, χ ] eiφ/ha

∥∥∥ . (3.23)

First we focus on the first summand. Since φ(0, h) = 0, φ′(0, h) is real and 
φ′′(x, h) >

1/C2 holds, we have
∣∣∣eiφ(x,h)/h

∣∣∣ ≤ exp

(
− x2

2C2h

)
(3.24)

for all x ∈ suppχ . Since
∣∣eiφ/h

∣∣ > 1 on suppχ , we can use (3.10) to estimate
∥∥∥χ(Hh − λ)eiφ/ha

∥∥∥ ≤
∥∥∥χeiφ/h(Hh − λ)eiφ/ha

∥∥∥ = ‖hN+2a′′
Nχ‖, (3.25)

where N = N(h) = �(eC1h)−1�. (Here �x� denotes the floor function.) Using the esti-
mate from (3.12) and the Cauchy’s estimate (3.16) we obtain for all x ∈ suppχ that
|hN+2a′′

N(x, h)| ≤ Ce−1/(Ch) for C > 0 independent of h. From this the estimate
∥∥∥χ(Hh − λ)eiφ/ha

∥∥∥ ≤ Ce−1/(Ch) (3.26)

follows. To estimate the second summand in (3.23) we directly calculate

[Hh − λ, χ ] eiφ/ha = −h2eiφ/h

(
χ ′′a + 2χ ′

(
a′ + i

h
φ′a

))
. (3.27)

Using (3.14) we have uniform bounds on a and thus on a′ after the use of the Cauchy’s
estimate (3.16), φ′ is bounded by the choice of R0, χ ′ and χ ′′ are identically equal to 0 on
suppχ and eiφ/h is again bounded by (3.24) we see that (3.27) is in fact equal to 0 on the
neighborhood of 0, where χ is constant.
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To complete the proof, it remains to show that ψh defined in (3.22) is not exponentially
small. Since we have established the estimate (3.12) for |x| < R0/2 and 0 ≤ j ≤ N =
(eC1h)−1, we have the estimate∥∥∥∥∥∥

N∑
j=0

hjaj (x, h)

∥∥∥∥∥∥
B(r)

≤ Cr (3.28)

for 0 < r ≤ r0, where r0 is sufficiently small. We can take r very small and fixed, so
because a0(x, h) is close to 1 and 
φ(x, h) is close to 
φ′′(0, h)x2/2 for x small, we obtain

‖u(·, h)‖ ≥ ‖u(·, h)‖L2((−r,r)) ≥ 1

C

(∫ r

−r

exp

(
x2

Ch

)
dx

)1/2

≥ 1

C
h1/4. (3.29)

4 The Proof of Theorem 1

For the sake of clarity we choose to divide the proof into several lemmas.

Lemma 1 The eigenfunctions of H form a complete set in L2(R).

Proof Let us first briefly recall that completeness of {ψk}+∞
k=1 means that the span of ψk

is dense in L2(R). Since H is m-accretive, its resolvent is m-accretive as well. It is also a
Hilbert-Schmidt operator [6] and the application of [3, Thm. 1.3] yields that it is trace class
as well. The completeness of its eigenfunctions follows from [15, Thm. X.3.1]. The com-
pleteness of eigenfunctions of H then follows from the application of the spectral mapping
theorem [13, Thm.IX.2.3].

Lemma 2 For any δ > 0 there exist constants C1, C2 > 0 such that for all ε > 0 small,

{
λ ∈ C

∣∣∣∣∣ |λ| > A, | arg λ| < arctan �λ − δ, |λ| ≥ B

(
log

1

ε

)6/5
}

⊂ σε(H). (4.1)

Proof Using the unitary transformation

(Uψ) (x) := τ 1/2 ψ(τx) (4.2)

the semiclassical analogue of H is introduced:

UHU−1 = τ 3Hh, (4.3)

where

Hh := −h2 d2

dx2
+ h2/5x2 + ix3 (4.4)

and h := τ−5/2. For the set � from Theorem 2 holds � =
{λ ∈ C | �λ > 0, | arg λ| < arctan �λ}. This theorem gives us that for any λ ∈ � and h

sufficiently small
∥∥∥∥
(
H − τ 3λ

)−1
∥∥∥∥ = τ−3

∥∥∥(Hh − λ)−1
∥∥∥ > h6/5C(λ)1/h (4.5)
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holds. Let us define the set

Aδ = {λ ∈ C | |λ| = 1, | arg λ| < arctan �λ − δ } (4.6)

for any δ > 0. Then we see from the inequality (4.5) that τ 3Aδ ⊂ σε(H) for every δ and
every τ sufficiently large, in particular such that the inequality τ−3Cτ 5/2

> ε−1 holds. We
may then identify the points of � in absolute value with τ 3, i.e. |λ| = τ 3 = h−6/5. After
we take logarithm of the lastly mentioned inequality and neglect the term log τ−3 which is
small compared to τ 5/2 for τ large, the statement of the theorem follows after expressing
the inequality in terms of |λ|.

Lemma 3 The eigenfunctions of H do not form a (Schauder) basis in L2(R).

Proof Let us first recall that a Schauder basis is a set {ψk}+∞
k=1 ⊂ H such that for every

element ψ ∈ H can be uniquely expressed as ψ = ∑+∞
k=1 αkψk , where αk ∈ C for

k = 1, 2, . . . . From the inequality (4.5) we can clearly see that the norm of the resolvent
(H −λ)−1 shoots up exponentially fast for |z| large. Therefore the eigenfunctions of H can-
not be tame by [8, Thm. 3]. Specifically, if we arrange the eigenvalues λk of H in increasing
order, the norm of spectral projection Pk corresponding to λk cannot satisfy

‖Pk‖ ≤ akα (4.7)

for some a, α and all k. Therefore {ψk}+∞
k=1 cannot form a basis.

Lemma 4 −iH is not a generator of a bounded semigroup.

Proof As in the previous proof, since the norm of resolvents grows exponentially for |z|
large, the claim follows from [9, Thm. 8.2.1].

The following result is a direct consequence of several propositions about operators with
non-trivial pseudospectra from [19] which apply to H as well. We summarise them and
provide a compact proof.

Lemma 5 H is not similar to a self-adjoint operator via bounded and boundedly invertible
transformation and H is not quasi-self-adjoint with a bounded and boundedly invertible
metric.

Proof If H were similar to a self-adjoint operator h as in (1.2), its pseudospectrum would
have to satisfy

σε/κ(H) ⊂ σε(h) ⊂ σεκ(H), (4.8)

where κ = ‖�‖‖�−1‖. However, since the pseudospectrum of h is just the ε-
neighbourhood of its spectrum, it cannot contain arbitrarily large points as ε/κ-
pseudospectrum of H does. The claim about the quasi-self-adjointness (1.3) follows from
the already established equivalence from the decomposition � = �∗�.

5 Summary

The harmonic oscillator coupled with an imaginary cubic oscillator potential was the main
subject of interest of the present paper and we aimed to provide a detailed study of its basis
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and pseudospectral properties. The pseudospectrum of H exhibits wild properties and con-
tains points very far from the spectrum, which can be turned into true eigenvalues by a
small perturbation of the operator. As a consequence, the eigenfunctions of H do not form
a Schauder basis, although they form a dense set in L2(R). The semigroup associated with
the time-dependent Schödinger equation then does not have an expansion in the basis of
eigenfunctions and does not admit a bounded time-evolution. The non-trivial pseudospec-
trum also implies that the considered operator does not have any bounded and boundedly
invertible metric and thus it cannot be faithfully represented by any self-adjoint operator in
the framework of standard quantum mechanics. In conclusion let us note that all results of
this paper can be directly generalised to potentials of the type x2 + ix2n+1, since all previous
cited results apply to this more general case as well.
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