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Abstract We construct a density matrix whose elements are written in terms of expecta-
tion values of non-Hermitian operators and their products for arbitrary dimensional bipartite
states. We then show that any expression which involves matrix elements can be refor-
mulated by the expectation values of these non-Hermitian operators and vice versa. We
consider the condition of pure states and pure product states and rewrite them in terms of
expectation values and density matrix elements respectively. We utilize expectation values
of these operators to present the condition for separability of Cd ⊗ Cd bipartite states. With
the help of our separability criterion we detect entanglement in certain classes of higher
dimensional bipartite states.

Keywords Separability condition · Bipartite state · Non-Hermitian operators ·
Density matrix

1 Introduction

During the past two decades considerable progress has been made to characterize the pure
and mixed states and their entanglement with multifaceted applications in the field of
quantum computation and information [1, 2]. One of the fundamental tasks in quantum
information theory is to detect entanglement in quantum states. In general, an entanglement
can be identified from the separability criterion. Several necessary and/or sufficient sepa-
rability criteria have been proposed in the literature in order to capture the entanglement
of bipartite states [3–6]. Among these criteria, the positive partial transpose (PPT) plays
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a vital role in detecting entanglement in 2 ⊗ 2 and 2 ⊗ 3 bipartite states [7, 8]. The sep-
arability criterion in terms of the range of density matrix and the computable cross-norm
criterion (CCNR) work efficiently for the 3 ⊗ 3 and 2 ⊗ 4 mixed states whereas PPT fails
to detect entanglement in these states [9, 10]. Various approaches to construct Bell inequal-
ities were also proposed for pure two qudit systems [11] and higher dimensional bipartite
systems [12, 13]. The diagonalization criterion and Bell-type inequalities are put forward
for the separability of M ⊗ N and 2 ⊗ d bipartite states in [14, 15]. A class of d ⊗ d bipar-
tite PPT states were proposed in [16] in connection with the indecomposability of positive
maps. However, a strong separability criteria is yet to be proposed for arbitrary dimensional
bipartite states.

In the study of entanglement of bipartite states, a few works have been devoted to ana-
lyze the entanglement with the help of non-Hermitian operators. For example, Tóth et al.
have derived an inequality to detect entanglement in two-mode continuous systems using
number operator and mode annihilation operator [17]. Shchukin and Vogel have derived
general entanglement conditions for continuous bipartite states [18]. Subsequently, Hillery
and Zubairy have developed certain entanglement conditions for two-mode systems by
considering mode creation and annihilation operators [19]. In a later work [20] the same
authors were given a wide range of applications of the entanglement conditions [19]. Inter-
estingly, these conditions were further strengthened to detect entanglement not just between
field modes but also between atom and field modes or between groups of atoms, see
for example [21]. In addition to the above, non-Hermitian operators were also employed
to demonstrate the entanglement in multipartite states [22]. The above studies reveal
that non-Hermitian operators can also be utilized to characterize the quantum states in a
new way.

In this paper, we detect entanglement with the help of non-Hermitian operators. The
aim of this work is to derive a separability criterion in terms of expectation values of
non-Hermitian operators and their products for the higher dimensional bipartite states. To
achieve this goal, we construct a qudit density matrix, whose elements are replaced by the
expectation values of non-Hermitian operators and their products. We then derive the same
form of matrix for bipartite states by implementing a tensor product between expectation
value matrices of two qudit states. Our analysis shows that higher dimensional states can
easily be represented in terms of non-Hermitian operators. We then show that any expres-
sion which involves matrix elements can be reformulated by the expectation values of these
non-Hermitian operators and vice versa. To demonstrate this, we rewrite the condition of
pure states, Tr(ρ2)= 1, in terms of expectation values of non-Hermitian operators and their
products. We then consider the condition of pure product state and reformulate it in terms
of density matrix elements from the expectation value of non-Hermitian operators. We also
present an operational form of partial transposition operation. Proceeding further, we formu-
late a separability condition to the mixed bipartite states in terms of density matrix elements
using the fact that they can be rewritten in terms of expectation values. To derive separabil-
ity criterion for higher dimensional bipartite states, we consider 〈A†B†〉 and 〈A†B〉, where
the non-Hermitian operators A and B act on first and second subsystem respectively, from
which we find the necessary elements which are suitable for the Werner-like states and
Isotropic like states [16]. We then use the relation of these elements with diagonal elements
in the density matrix [23, 24] and obtain a condition for entanglement of Cd ⊗ Cd bipartite
states in the form of an inequality. We also demonstrate the validity of our formulation by
considering four different states.

We organize our work as follows. In the following section, we construct a density
matrix for M ⊗ N bipartite states whose elements are in the form of expectation values of
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certain non-Hermitian operators and their products. In Section 3 we show the utilization
of expectation value matrix for few simple cases. We then derive the separability condition
for Cd ⊗ Cd bipartite states in Section 4 and demonstrate the applicability of our method
by considering four different states in Section 5. Finally, we summarize the conclusion
in Section 6.

2 Density Matrix in terms of Non-Hermitian Operators

Let ρ1 and ρ2 denote the states of two subsystems on the Hilbert spaceH1 andH2 respec-
tively. The state of the composite system is then ρ ∈ H1⊗H2. It is known that any separable
state can be expressed in the form [25].

ρ = ρ1 ⊗ ρ2, (1a)

ρ =
∑

i

piρ
1
i ⊗ ρ2

i , (1b)

where pi > 0 and
∑

i pi = 1, for pure and mixed state respectively. The density matrix
representation of a qudit state is given by

ρk =

⎛

⎜⎜⎜⎜⎜⎝

〈
0|ρk|0〉 〈

0|ρk|1〉 〈
0|ρk|2〉 . . .

〈
0|ρk|m〉〈

1|ρk|0〉 〈
1|ρk|1〉 〈

1|ρk|2〉 . . .
〈
1|ρk|m〉〈

2|ρk|0〉 〈
2|ρk|1〉 〈

2|ρk|2〉 . . .
〈
2|ρk|m〉

...
...

...
. . .

...〈
m|ρk|0〉 〈m|ρk|1〉 〈m|ρk|2〉 . . .

〈
m|ρk|m〉

⎞

⎟⎟⎟⎟⎟⎠
, (2)

where m = d − 1 in which d represents the dimension of the state and k denotes the
subsystem.

Let us consider certain non-Hermitian operators, Ai
k , k = 1, 2, i = 1, 2, . . ., m, which

act on ρk , are of the form [22]

Ai
k = |0〉k〈i|, Ai

k

† = |i〉k〈0|, Ai
kA

i
k

† = |0〉k〈0|, Ai
k

†
Ai

k = |i〉k〈i|, k = 1, 2. (3)

We observe that every element in the density matrix (2) can be expressed by the expectation
value of the above non-Hermitian operators and their products. For example,

〈
Ai

kA
i
k

†
〉

=
〈
0|ρk|0

〉
,
〈
Ai

k

†
〉
=
〈
0|ρk|i

〉
,
〈
Ai

k

〉
=
〈
i|ρk|0

〉
,

〈
Ai

k

†
Ai

k

〉
=
〈
i|ρk|i

〉
,
〈
Ai

k

†
A1

k

〉
=
〈
1|ρk|i

〉
,
〈
Ai

k

†
A2

k

〉
=
〈
2|ρk|i

〉
(4)

and so on. In terms of these non-Hermitian operators (Ai
k’s) the matrix (2) reads

ρk
E =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
A1

kA
1
k

†
〉 〈

A1
k

†
〉 〈

A2
k

†
〉

. . .
〈
Am

k
†
〉

〈
A1

k

〉 〈
A1

k

†
A1

k

〉 〈
A2

k

†
A1

k

〉
. . .

〈
Am

k
†A1

k

〉

〈
A2

k

〉 〈
A1

k

†
A2

k

〉 〈
A2

k

†
A2

k

〉
. . .

〈
Am

k
†A2

k

〉

...
...

...
. . .

...
〈
Am

k

〉 〈
A1

k

†
Am

k

〉 〈
A2

k

†
Am

k

〉
. . .

〈
Am

k
†Am

k

〉

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)
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The matrix representation of a bipartite state in terms of the expectation value of the
operators (3) can be constructed by making the tensor product between expectation value
matrices of first and second subsystems, that is

ρE =

⎛

⎜⎜⎜⎜⎜⎜⎝

〈
A1
1A

1
1
†
〉

. . .
〈
A

m1
1

†
〉

〈
A1
1

〉
. . .

〈
A

m1
1

†
A1
1

〉

...
. . .

...
〈
A

m1
1

〉
. . .

〈
A

m1
1

†
A

m1
1

〉

⎞

⎟⎟⎟⎟⎟⎟⎠
⊗

⎛

⎜⎜⎜⎜⎜⎜⎝

〈
A1
2A

1
2
†
〉

. . .
〈
A

m2
2

†
〉

〈
A1
2

〉
. . .

〈
A

m2
2

†
A1
2

〉

...
. . .

...
〈
A

m2
2

〉
. . .

〈
A

m2
2

†
A

m2
2

〉

⎞

⎟⎟⎟⎟⎟⎟⎠
. (6)

Expanding (6) we get

ρE =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
A1
1A

1
1
†
A1
2A

1
2
†
〉

. . .
〈
A1
1A

1
1
†
A

m2
2

†
〉

. . .
〈
A

m1
1

†
A

m2
2

†
〉

...
. . .

...
. . .

...〈
A1
1A

1
1
†
A

m2
2

〉
. . .

〈
A1
1A

1
1
†
A

m2
2

†
A

m2
2

〉
. . .

〈
A

m1
1

†
A

m2
2

†
A

m2
2

〉

〈
A1
1A

1
2A

1
2
†
〉

. . .
〈
A1
1A

m2
2

†
〉

. . .
〈
A

m1
1

†
A1
1A

m2
2

†
〉

...
. . .

...
. . .

...
〈
A1
1A

m2
2

〉
. . .

〈
A1
1A

m2
2

†
A

m2
2

〉
. . .

〈
A

m1
1

†
A1
1A

m2
2

†
A

m2
2

〉

...
...

...
...

...〈
A

m1
1 A1

2A
1
2
†
〉

. . .
〈
A

m1
1 A

m2
2

†
〉

. . .
〈
A

m1
1

†
A

m1
1 A

m2
2

†
〉

...
. . .

...
. . .

...
〈
A

m1
1 A

m2
2

〉
. . .

〈
A

m1
1 A

m2
2

†
A

m2
2

〉
. . .

〈
A

m1
1

†
A

m1
1 A

m2
2

†
A

m2
2

〉

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

Equation (7) is an equivalent representation of the density matrix of an M ⊗ N bipartite
state, that is

ρ =

⎛

⎜⎜⎜⎜⎜⎝

ρ1,1 ρ1,2 ρ1,3 . . . ρ1,n
ρ2,1 ρ2,2 ρ2,3 . . . ρ2,n
ρ3,1 ρ3,2 ρ3,3 . . . ρ3,n

...
...

...
. . .

...

ρm,1 ρm,2 ρm,3 . . . ρm,n

⎞

⎟⎟⎟⎟⎟⎠
. (8)

Comparing the matrix elements in (7) with (8) we observe that 〈A1
1A

1
1
†
A1
2 A1

2
†〉 yields

ρ1,1, 〈Am1
1

†
A

m2
2

†〉 yields ρ1,n and so on. In other words, all the elements in the density
matrix of bipartite states can now be represented by the expectation values of non-Hermitian

operators Ai
k and Ai

k

†
and their products. To illustrate this, let us consider a Bell state,

|ψ〉 = a|00〉+b|11〉 and its density operator ρ = |a|2|00〉〈00|+ab∗|00〉〈11|+a∗b|11〉〈00|+
|b|2|11〉〈11|. By using the ideas given above one can get |a|2 by computing 〈A1

1A
1
1
†
A1
2A

1
2
†〉,

ab∗ and a∗b from the expectation values 〈A1
1
†
A1
2
†〉 and 〈A1

1A
1
2〉 respectively and |b|2 by

evaluating 〈A1
1
†
A1
1A

1
2
†
A1
2〉. Thus one can unambiguously represent every element in the

density matrix by the expectation value of non-Hermitian operators and their products. In
fact, with the aid of matrix (7) one can extract the value of any element of an arbitrary
bipartite state. One can also construct this type of matrix for multipartite states. However,
in this paper we confine our attention only on bipartite states.
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We mention here that one can easily obtain the reduced density matrix from equation (6)
instead of taking partial trace. It can be simply obtained by calculating all the expectation
values present in any one of the susbsytems in (6), which is required.

3 Utilization of Expectation Value Matrix ρE

To demonstrate that any expression which involves matrix elements can be reformulated
by expectation values of operators, we write Tr

(
ρ2
)
in terms of matrix elements for an

arbitrary dimensional bipartite states. We then rewrite this expression in terms of expectation
values of operators. We reformulate the condition for pure product state from the expectation
value of non-Hermitian operators into density matrix elements. In addition to the above,
we present an operational form of partial transposition by employing the operators present
in (6).

3.1 Trace

Let us recall the condition Tr
(
ρ2
) = 1 for pure states,

Tr(ρ2) =
d1×d2∑

i=1

ρ2
i,i + 2

(d1×d2)−1∑

i=1

d1×d2∑

j=i+1

ρi,j ρj,i = 1, (9)

where d1 and d2 represent the dimensions of the first and second subsystem respectively.
Equation (9) can now be expressed solely in terms of the expectation values of non-
Hermitian operators by comparing (7) with (8). Replacing the elements by their expectation

values of non-Hermitian operators Ai
k and Ai

k

†
and their products suitably we find

Tr
(
ρ2
)

=
〈
A1
1A

1
1
†
A1
2A

1
2
†
〉2 +

d2−1∑

m2=1

〈
A1
1A

1
1
†
A

m2
2

†
A

m2
2

〉2 +
d1−1∑

m1=1

〈
A

m1
1

†
A

m1
1 A1

2A
1
2
†
〉2

+
d1−1∑

m1=1

d2−1∑

m2=1

〈
A

m1
1

†
A

m1
1 A

m2
2

†
A

m2
2

〉2 + 2

⎧
⎨

⎩

d2−1∑

m2=1

〈
A1
1A

1
1
†
A

m2
2

†
〉 〈

A1
1A

1
1
†
A

m2
2

〉

+
d2−2∑

m2j =1

d2−1∑

m2i=m2j +1

〈
A1
1A

1
1
†
A

m2i
2

†
A

m2j
2

〉 〈
A1
1A

1
1
†
A

m2j
2

†
A

m2i
2

〉

+
d1−1∑

m1=1

〈
A

m1
1

†
A1
2A

1
2
†
〉 〈

A
m1
1 A1

2A
1
2
†
〉
+

d1−1∑

m1=1

d2−1∑

m2=1

〈
A

m1
1

†
A

m1
1 A

m2
2

†
〉 〈

A
m1
1

†
A

m1
1 A

m2
2

〉

+
d1−2∑

m1j =1

d1−1∑

m1i=m1j +1

〈
A

m1i
1

†
A

m1j
1 A1

2A
1
2
†
〉 〈

A
m1j
1

†
A

m1i
1 A1

2A
1
2
†
〉

+
d1−1∑

m1=1

d2−2∑

m2j =1

d2−1∑

m2i=m2j +1

〈
A

m1
1

†
A

m1
1 A

m2i
2

†
A

m2j
2

〉 〈
A

m1
1

†
A

m1
1 A

m2j
2

†
A

m2i
2

〉

+
d2−1∑

m2=1

d1−1∑

m1=1

〈
A

m1
1

†
A

m2
2

†
A

m2
2

〉 〈
A

m1
1 A

m2
2

†
A

m2
2

〉
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+
d2−1∑

m2=1

d1−2∑

m1j =1

d1−1∑

m1i=m1j +1

〈
A

m1i
1

†
A

m1j
1 A

m2
2

†
A

m2
2

〉 〈
A

m1j
1

†
A

m1i
1 A

m2
2

†
A

m2
2

〉

+
d1−1∑

m1=1

d2−1∑

m2=1

〈
A

m1
1

†
A

m2
2

†
〉 〈

A
m1
1 A

m2
2

〉+
d1−1∑

m1=1

d2−1∑

m2=1

〈
A

m1
1

†
A

m2
2

〉 〈
A

m1
1 A

m2
2

†
〉

+
d1−1∑

m1=1

d2−2∑

m2j =1

d2−1∑

m2i=m2j +1

〈
A

m1
1

†
A

m2i
2

†
A

m2j
2

〉 〈
A

m1
1 A

m2j
2

†
A

m2i
2

〉

+
d1−1∑

m1=1

d2−2∑

m2j =1

d2−1∑

m2i=m2j +1

〈
A

m1
1

†
A

m2j
2

†
A

m2i
2

〉 〈
A

m1
1 A

m2i
2

†
A

m2j
2

〉

+
d2−1∑

m2=1

d1−2∑

m1j =1

d1−1∑

m1i=m1j +1

〈
A

m1i
1

†
A

m1j
1 A

m2
2

†
〉 〈

A
m1j
1

†
A

m1i
1 A

m2
2

〉

+
d2−1∑

m2=1

d1−2∑

m1j =1

d1−1∑

m1i=m1j +1

〈
A

m1i
1

†
A

m1j
1 A

m2
2

〉 〈
A

m1j
1

†
A

m1i
1 A

m2
2

†
〉

+
d1−2∑

m1i=1

d1−1∑

m1j =m1i+1

d2−2∑

m2i=1

d2−1∑

m2j =m2i+1

〈
A

m1j
1

†
A

m1i
1 A

m2j
2

†
A

m2i
2

〉 〈
A

m1i
1

†
A

m1j
1 A

m2i
2

†
A

m2j
2

〉

+
d1−2∑

m1i=1

d1−1∑

m1j =m1i+1

d2−2∑

m2i=1

d2−1∑

m2j =m2i+1

〈
A

m1j
1

†
A

m1i
1 A

m2i
2

†
A

m2j
2

〉 〈
A

m1i
1

†
A

m1j
1 A

m2j
2

†
A

m2i
2

〉
⎫
⎬

⎭ . (10)

The above expression is the general form of Tr(ρ2) for an arbitrary bipartite states.

3.2 Pure Separable State

In the case of pure separable states the expectation value of a joint measurement of two
operators should be equal to the product of expectation value of individual measurement of
the same operators acting on the bipartite state, that is 〈AB〉 = 〈A〉〈B〉. Considering the
operators that appear in the diagonal in (7) and imposing the pure separability condition
given above and comparing it with (8), we can express the criterion of pure separable states
in terms of density matrix elements. In the case of M ⊗ N pure product state the condition
reads

ρk,k =
⎛

⎝
(a+1)×d2∑

i=(a×d2)+1

ρi,i

⎞

⎠×
(
∑

i∈B

ρi,i

)
, (11)

where (a × d2)+ 1 ≤ k ≤ (a + 1)× d2, a = 0, 1, 2, ..., d1 − 1, B = {i = (j × d2)+ k|j =
0, 1, 2, ..., d1 −1} and i = i − (d1 ×d2) iff i > (d1 ×d2). The value of a can be determined
by simply fixing the a value for k in the interval (a × d2) + 1 ≤ k ≤ (a + 1) × d2. With the
known value of a one can proceed to check the separability in pure arbitrary bipartite states.

If the given state does not satisfy the condition (11) then it should be a pure entangled
one.
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3.3 Partial Transposition Operation

In the following, we point out how we can reformulate the partial transposition in terms of
non-Hermitian operators and their products. To begin with, we consider a two qubit case
and express the partial transposition operation. In this case, we find

ρ
T1
2⊗2 = A1

1A
1
1
†
ρA1

1A
1
1
† + A1

1ρA1
1 + A1

1
†
ρA1

1
† + A1

1
†
A1
1ρA1

1
†
A1
1, (12)

ρ
T2
2⊗2 = A1

2A
1
2
†
ρA1

2A
1
2
† + A1

2ρA1
2 + A1

2
†
ρA1

2
† + A1

2
†
A1
2ρA1

2
†
A1
2. (13)

We can rewrite the above two expressions as

ρ
Tk

2⊗2 = A1
kA

1
k

†
ρA1

kA
1
k

† + A1
kρA1

k + A1
k

†
ρA1

k

† + A1
k

†
A1

kρA1
k

†
A1

k, (14)

where k = 1 and 2 represent the partial transposition with respect to first and second sub-
system respectively. We note here that the operators appearing in the expressions (12) and
(13) are taken from the expectation value matrix ρE (6) (restricted to 2⊗2). In other words,
we have considered all the operators in the first and second subsystems.

Equation (14) can be generalized to an arbitrary bipartite state by considering all the
operators present in the corresponding expectation value matrix (6), that is (k = 1 and 2
correspond to the transposition)

ρ
Tk

M⊗N = A1
kA

1
k

†
ρA1

kA
1
k

† + A1
k

†
ρA1

k

† + A2
k

†
ρA2

k

†

+ · · · + A
mk−1
k

†
A

mk

k ρA
mk−1
k

†
A

mk

k + A
mk

k

†
A

mk

k ρA
mk

k

†
A

mk

k , (15)

where mk = dk − 1 corresponds to the subsystem k. Equation (15) is an operational form
of partial transposition. If the eigenvalues of the density matrix ρ

Tk

M⊗N are positive then the
underlying state is separable in view of PPT criterion [7].

4 Separability Condition

In [23, 24] the biseparability and full separability criteria for n-partite quantum states using
elements of density matrices were derived. In this work, we derive a separability criterion
applicable to Cd ⊗ Cd bipartite states using the ideas given in the references [23, 24]. To
begin with, we consider a pure two qubit separable state |ψ〉 = (a|0〉+b|1〉)⊗(c|0〉+d|1〉).
For this state, we have |ρ1,4| = √

ρ1,1ρ4,4 or |ρ1,4| = √
ρ2,2ρ3,3 and |ρ2,3| = √

ρ1,1ρ4,4 or
|ρ2,3| = √

ρ2,2ρ3,3. The first two expressions yield

2|ρ1,4| = √
ρ1,1ρ4,4 + √

ρ2,2ρ3,3. (16)

Using the inequality of arithmetic and geometric mean, the above expression can be
rewritten as

4|ρ1,4| ≤ (ρ1,1 + ρ4,4) + 2
√

ρ2,2ρ3,3. (17)

Similarly, for the element |ρ2,3|, we find
4|ρ2,3| ≤ (ρ1,1 + ρ4,4) + 2

√
ρ2,2ρ3,3. (18)

From these two expressions, (17) and (18), we can extract the following condition

4max
{|ρ1,4|, |ρ2,3|

} ≤ (ρ1,1 + ρ4,4) + 2
√

ρ2,2ρ3,3. (19)

One may also come across this type of inequalities in the partially separable multiqubit
states [26].
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Now we generalize the above condition to Cd ⊗ Cd bipartite states. In the two qubit
case, we have derived the separability condition using the elements |ρ1,4| and |ρ2,3|. In the
higher dimensional case, we have a difficulty with which elements are to be measured. To
choose the relevant elements, we consider expectation value of joint measurement opertors
A†B†/AB and its partially transposed and conjugated operator A†B/AB†. We note here
that to extract the required elements, we consider only 〈A†B†〉 and 〈A†B〉 which in turn
provide non-zero off diagonal elements in Werner and isotropic classes of states [16].

Before demonstrating how to extract the required elements by substituting the non-
Hermitian operatorsA andB, we justify the proposed expectation values, that is 〈A†B†〉 and
〈A†B〉, by considering two qubit states. Substituting the non-Hermitian operatorA = |0〉〈1|,
with A = B and comparing the matrix (7) with (8), we can prove that the operators 〈A†B†〉
and 〈A†B〉 give the matrix elements |ρ1,4| and |ρ2,3| respectively. One may note that only
these two elements appear in the entanglement condition (19). With this verification now
we proceed to construct separability condition for the higher dimensional states.

To begin with, we constitute the separability condition for the two qutrit state. We then
generalize it to the two qudit states. In the two qutrit (|ψ〉 = (a|0〉 + b|1〉 + c|2〉) ⊗ (d|0〉 +
e|1〉+f |2〉)) separable case, we consider non-Hermitian operators A and B are of the form
|0〉〈1|, |0〉〈2|,and |1〉〈2| which are the possible operators in |0〉, |1〉, |2〉 bases. Considering
A = B and substituting |0〉〈1|, |0〉〈2| and |1〉〈2| in 〈A†B†〉 and comparing the matrix (7)
with (8), we find that 〈A†B†〉 produces the matrix elements |ρ1,5|, |ρ1,9| and |ρ5,9|. In the
present case, the underlying inequalities read

2|ρ1,5| ≤ ρ1,1 + ρ5,5

2
+ √

ρ2,2ρ4,4,

2|ρ1,9| ≤ ρ1,1 + ρ9,9

2
+ √

ρ3,3ρ7,7,

2|ρ5,9| ≤ ρ5,5 + ρ9,9

2
+ √

ρ6,6ρ8,8. (20)

Adding and simplifying the above expressions, we get

2
(|ρ1,5| + |ρ1,9| + |ρ5,9|

) ≤ ρ1,1 + ρ5,5 + ρ9,9

+ (√
ρ2,2ρ4,4 + √

ρ3,3ρ7,7 + √
ρ6,6ρ8,8

)
. (21)

Repeating the above analysis for the case 〈A†B〉 we end up with the following inequality,
namely

2
(|ρ2,4| + |ρ3,7| + |ρ6,8|

) ≤ ρ1,1 + ρ5,5 + ρ9,9

+ (√
ρ2,2ρ4,4 + √

ρ3,3ρ7,7 + √
ρ6,6ρ8,8

)
. (22)

Combining the equations (21) and (22) suitably we obtain the separability condition for the
two qutrit states in the form

2max
{(|ρ1,5| + |ρ1,9| + |ρ5,9|

)
,
(|ρ2,4| + |ρ3,7| + |ρ6,8|

)}

≤ (ρ1,1 + ρ5,5 + ρ9,9) + (√
ρ2,2ρ4,4

+ √
ρ3,3ρ7,7 + √

ρ6,6ρ8,8
)
. (23)

Now we generalize the above conditions to the two qudit states. Substituting the
non-Hermitian operators |a1〉〈a2|, |a1〉〈a3|, . . . , |a1〉〈an|, |a2〉〈a3|, . . . , |a2〉〈an|, . . . , and
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|an−1〉〈an|, which are in the |a1〉, |a2〉, |a3〉, . . . , |an〉 bases, in the above expectation values
of operators and following the procedure given above, we arrive at

2 × max

⎧
⎨

⎩
∑

0≤i<j≤(d−1)

∣∣ρi(d+1)+1, j (d+1)+1
∣∣ ,

∑

0≤i<j≤(d−1)

∣∣ρid+j+1, jd+i+1
∣∣

⎫
⎬

⎭

≤ (d − 1)

2

d−1∑

i=0

ρi(d+1)+1, i(d+1)+1

+
⎛

⎝
∑

0≤i<j≤(d−1)

√
ρid+j+1, id+j+1 × ρjd+i+1, jd+i+1

⎞

⎠ , (24)

where ρp,q represents the density matrix element in pth row and q th column and d rep-
resents the dimension of a qudit state in Cd ⊗ Cd bipartite states. Using some simple
algebras and Cauchy inequality we can extend the condition (24) to mixed bipartite states
as given in [24]. The inequality (24) holds for mixed separable states and violation of this
inequality implies that the state is entangled. As we have seen in Section 3, any expres-
sion involves density matrix elements can be reformulated by the expectation values given
in (7). Therefore, the experimental accessibility of the criterion (24) also becomes possible
[17, 23, 27, 28].

5 Examples

In this section, we illustrate the above ideas by considering various mixed states.

1. We consider a d ⊗ d Werner state parametrized by η ∈ R [29, 30].

W
η
d =

(
d − 1 + η

d − 1

)
I

d2
−
(

η

d − 1

)
V

d
, (25)

where I is the identity operator, V = ∑d
i,j |ij〉〈ji| is the flip operator, d is the dimen-

sion and 0 ≤ η ≤ 1. For η = 0, it becomes a separable state. Werner states are
entangled for η > 1/(d + 1) [29, 30]. To identify the entangled regions of the above
d ⊗ d Werner states for various d values, we derive the following general function,

p =
[

d − 1 + η − ηd

2d
+
(

d∑

i=1

(d − i)

)
×
(

d − 1 + η

(d − 1)d2

)]

×
⎛

⎝ 1

2
(∑d

i=1(d − i)
)

× η
(d−1)d

⎞

⎠ , (26)

by applying the inequality (24) on (25). We plot the outcome in Fig. 1a. For a given
dimension, the value of this function is less than one, that is p < 1, then the state is
entangled. We also employ this function to study the higher dimensional Werner states
(not included in figure). Our result shows that the entangled region keep on decreasing
upto dimension d = 134 and above this dimension, the entangled region becomes
constant which in turn lies between η = 0.665 and η = 1.
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Fig. 1 Entanglement region of d ⊗ d (a) Werner states and (b) Isotropic states

2. The isotropic states, which were introduced in [31], can be written as the mixture of the
maximally mixed state and maximally entangled state |ψ+〉 = 1√

d

∑d−1
i=0 |ii〉, that is

ρα = (1 − α)

d2
I + α|ψ+〉〈ψ+|, (27)

where 0 ≤ α ≤ 1 and d is the dimension of states. Here also we aim to identify the
entangled region of isotropic states. As we did in the previous case, we construct a
function

q =
[

(d − 1)d

2
×
(
1 − α

d2
+ α

d

)
+
(

d∑

i=1

(d − i)

)
× 1 − α

d2

]
× 1

2 ×
(

d∑

i=1

(d − i)

)
α
d

(28)
from the inequality (24) for the d ⊗ d isotropic states (27) and depict the result in Fig.
1b. If q < 1, then the state is entangled. We have also evaluated the function q for
higher dimensions (d > 1000) and observed that the entangled region of (27) keep on
increasing but the states are not entangled at α = 0.

3. We consider another state [32], which is a mixture of PPT entangled state and maximal
entangled state, namely

ρp = (1 − p)ρa + pP+, (29)

where

ρa = 8a

8a + 1
ρinsep + 1

8a + 1
P�a , (30)

ρinsep = 3
8P� + 1

8Q, �a = e3 ⊗
(√

1+a
2 e1 +

√
1−a
2 e3

)
,Q = I ⊗ I

−
(∑3

i=1 Pei
⊗ Pei

+ Pe3 ⊗ Pe1

)
, � = 1√

3
(e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3), 0 ≤ a ≤ 1

and P+ = |ψ+〉〈ψ+|, |ψ+〉 = 1√
3

∑2
i=0 |ii〉. The separability criterion in terms of the

range of the density matrix detects the entanglement in (30) for a 	= 0, 1 [9], in which
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ρinsep violates the condition (24), indicating that the state is inseparable. The inequal-
ities proposed in [32] detects the entanglement for the whole region of 0 < p ≤ 1 at
a = 0.236 for (29). Our inequality (24) detects the entanglement for 0 < a < 1 and
0 < p ≤ 1. It also shows that while the parameter value a increases, minimum value
of p, to be entangled, is decreasing.

4. Finally, we consider a state which is a mixture of 3 × 3 state (form a Unextendible
Product Bases) and the maximal entangled singlet [32], that is

ρp = (1 − p)ρ + pP+, (31)

where ρ = 1

4

(
I −

4∑

i=0

|ξi〉〈ξi |
)
, |ξ0〉 = 1√

2
|0〉(|0〉 − |1〉), |ξ1〉 = 1√

2
(|0〉 − |1〉)|2〉,

|ξ2〉 = 1√
2
|2〉(|1〉 − |2〉), |ξ3〉 = 1√

2
(|1〉 − |2〉)|0〉 and |ξ4〉 = 1

3 (|0〉 + |1〉 + |2〉)(|0〉
+|1〉+|2〉) [33], which is entangled according to the realignment criterion [34]. For the
state (31), the Bell inequality [13] detects the entanglement for 0.57602 ≤ p ≤ 1 and
inequality given in [32] detects the entanglement for 0.18221 ≤ p ≤ 1. Our condition
(24) detects the entanglement for 0.44 ≤ p ≤ 1.

6 Conclusion

In this paper, we have exploited the utility of non-Hermitian operators to characterize the
bipartite states. We have constructed a new form of density matrix whose elements are
expressed in terms of expectation values of non-Hermitian operators and their products
from which we have shown that the condition which involves matrix elements can be refor-
mulated in terms of expectation values of operators and vice versa. We then derived the
separability condition for Cd ⊗Cd bipartite states in terms of density matrix elements using
non-Hermitian operators and it can be reformulated in the form of expectation values of
non-Hermitian operators and their products. We have utilized our condition to detect entan-
glement in d ⊗ d Werner states, d ⊗ d Isotropic states, 3 ⊗ 3 PPT entangled state and
Unextendible product bases mixed with maximally entangled state. Through this work we
have brought out the utility of non-Hermitian operators in identifying each and every ele-
ment of the given state and demonstrated how they are useful in detecting entanglement.
The application of this procedure to multipartite states is under progress.
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17. Tóth, G., Simon, C., Cirac, J.I.: Phys. Rev. A 68, 062310 (2003)
18. Shchukin, E., Vogel, W.: Phys. Rev. Lett. 95, 230502 (2005)
19. Hillery, M., Zubairy, M.S.: Phys. Rev. Lett. 96, 050503 (2006)
20. Hillery, M., Zubairy, M.S.: Phys. Rev. A 74, 032333 (2006)
21. Hillery, M., Dung, H.T., Niset, J.: Phys. Rev. A 80, 052335 (2009)
22. Hillery, M., Dung, H.T., Zheng, H.: Phys. Rev. A 81, 062322 (2010)
23. Gühne, O., Seevinck, M.: New J. Phys. 12, 053002 (2010)
24. Gao, T., Hong, Y.: Eur. Phys. J. D 61, 765 (2011)
25. Lewenstein, M., Bruß, D., Cirac, J.I., Kraus, B., Kus, M., Samsonowicz, J., Sanpera, A., Tarrach, R.: J.

Mod. Opt. 47, 2481 (2000)
26. Seevinck, M., Uffink, J.: Phys. Rev. A 78, 032101 (2008)
27. Thew, R.T., Nemoto, K., White, A.G., Munro, W.J.: Phys. Rev. A 66, 012303 (2002)
28. Pati, A.K., Singh, U., Sinha, U.: arXiv:1406.3007
29. Werner, R.F.: Phys. Rev. A 40, 4277 (1989)
30. Jones, S.J., Wiseman, H.M., Doherty, A.C.: Phys. Rev. A 76, 052116 (2007)
31. Horodecki, M., Horodecki, P.: Phys. Rev. A 59, 4206 (1999)
32. Li, M., Yan, T.J., Fei, S.M.: J. Phys. A : Math. Theor. 45, 035301 (2012)
33. Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Phys. Rev. Lett. 82,

5385 (1999)
34. Chen, K., Wu, L.A.: Quantum Inform. Comput. 3, 193 (2003)

http://arxiv.org/abs/1406.3007

	Separability Condition With Non-Hermitian Operators
	Abstract
	Introduction
	Density Matrix in terms of Non-Hermitian Operators
	Utilization of Expectation Value Matrix E
	Trace
	Pure Separable State
	Partial Transposition Operation

	Separability Condition
	Examples
	Conclusion
	References


