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Abstract Dodson-Zeeman fuzzy topology considered as the possible mathematical frame-
work of quantum geometric formalism. In such formalism the states of massive particle m

correspond to elements of fuzzy manifold called fuzzy points. Due to their weak (partial)
ordering, m space coordinate x acquires principal uncertainty σx . It’s shown that m evo-
lution on such manifold corresponds to quantum dynamics. It’s argued also that particle’s
interactions on such fuzzy manifold should be gauge invariant.

Keywords Fuzzy topology · Quantization

1 Introduction

There are several serious reasons to try to formulate quantum mechanics (QM) in geomet-
ric terms. For instance, general relativity is essentially geometric theory, but the attempts
to quantize gravity suffer the serious difficulty already at axiomatics level. Such formalism
can be useful also for development of gauge field theory, which is also mainly geomet-
ric; its implications can be important for the analysis of QM foundations. Currently, the
main impact of QM geometrization studies is done on the exploit of Hilbert manifolds [1],
however, the results obtained up to now have quite abstract form, and their applicability
to particular problems is questionable. Alternatively, in approach considered here the basic
structure is the real manifold equipped with fuzzy topology (FT) [2–4]. In connection with
such mathematical framework it’s worth to mention the noncommutative fuzzy spaces with
finite (sphere, tori) and infinite discrete structure [5]. The general feature of such theo-
ries is that the space coordinates turn out to be principally fuzzy, the reason of that is the
noncommutativity of coordinate observables x1,2,3.

Meanwhile, the similar coordinate fuzziness obtained for the manifolds equipped with
dedicated FT [2, 3]. Earlier, it was argued that in its framework the quantization procedure
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itself can be defined as the transition from the classical phase space to fuzzy one [6, 7].
Therefore, in such approach the quantum properties of particles and fields are deduced
directly from the geometry of phase space induced by underlying FT and don’t need to
be postulated separately of it. In particular, in such formalism the system evolution can
be described as the geometrodynamics which is equivalent to quantum dynamics [6, 7];
as the example, the dynamics of massive particles will be considered. Previously, some
phenomenological assumptions were used by the author for its derivation, here the simple
formalism which permits to avoid them is described, its main features can be found in [8].
It was argued also that the particle interactions on such fuzzy manifold possess the local
gauge invariance [7].

Note that the fuzzy structures were used earlier for the development of QM axiomatic
in operator algebra setting [9], yet in such formalism the quantum dynamics is always pos-
tulated, no attempts to derive it were published. The important example, illustrating the
connection between fuzzy structures and quantum dynamics described in [10].

2 Topological Fuzzy Structures

Here the main FT features important for the construction of dynamics on fuzzy manifold
are reviewed [2, 4]. For the start we consider the geometry for which its fundamental
set is unambiguously defined, later this assumption, in fact, will be dropped. To illus-
trate FT formalism, let’s consider it first for some discrete space. If its fundamental set
S is totally ordered set, then for its elements {ai} the ordering relation between the ele-
ment pairs ak ≤ al (or vice versa) is fulfilled. But if S is the partially ordered set
(Poset), then some its element pairs can enjoy the incomparability relations (IR) between
them: aj ∼ ak . If this is the case, then both aj ≤ ak and ak ≤ aj propositions are
false, and such structure acquires some nontrivial properties [11]. For instance, consider
2-dimensional discrete plane D with elements dij = {xi, yj } where all xi, yi are inte-
ger numbers. Suppose that the ordering relation is defined from the comparison of both
d coordinates, i.e. dij ≤ dkl iff xi ≤ xk. and .yj ≤ yl . Then if such relation isn’t ful-
filled or for x coordinate or for y (but not for both of them simultaneously), it means that
dij ∼ dkl [11].

As further example, important for our formalism, consider poset S = Ap ∪ B, which
includes the subset of ’incomparable’ elements Ap = {aj }, and ordered subset B = {bi}.
For the simplicity suppose that in B the element’s indexes grow correspondingly to their
ordering, so that ∀ i, bi ≤ bi+1. Let’s consider B interval {bl, bn} and suppose that some
Ap element aj is confined in {bl, bn}, i.e. bl ≤ aj ; aj ≤ bn, and simultaneously aj is
incomparable with all internal {bl, bn} elements: bi ∼ aj ; ∀ i ; l + 1 ≤ i ≤ n − 1. In this
case aj can be regarded as ’smeared’ over such interval, which is the rough analogue of aj

coordinate uncertainty relative to B ’coordinate’, if to consider the sequence of B elements
as the analogue of coordinate axe. The generalization of poset structure is the tolerance
space for which the ordering relations can be nontransitive, the similar property possesses
some quantum structures [3, 12].

It’s possible to detalize the described smearing introducing the fuzzy relations, for that
purpose one can put in correspondence to each aj , bi pair of S set the weight w

j
i ≥ 0

with the norm
∑

i w
j
i = 1. In this case S is fuzzy set, Ap elements {aj } called the fuzzy

points (FP) [3, 13]. For the example considered above, one can ascribe w
j
i = 1

n−l+1 to

all bi inside {bl, bn} interval, w
j
i = 0 for other bi . In the simplest case the continuous
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fuzzy set CF is defined analogously to discrete one: CF = AP ∪ X where AP is the same
discrete subset, X is the continuous ordered subset, which is equivalent to R1 axe of real
numbers. Correspondingly, fuzzy relations between elements aj , x are described by real
function wj(x) ≥ 0 with the norm

∫
wjdx = 1. The ordered point xa is characterized in

this framework by wa(x) = δ(x − xa). Remind that in 1-dimensional Euclidean geometry,
the elements of its manifold X are the points xa which constitute the ordered continuum set.
Yet in 1-dimensional geometry equipped with FT the position of fuzzy point aj becomes
the positive normalized function wj(x) on X; wj dispersion σx characterizes aj coordinate
uncertainty on X. If metric is defined on X then Cf is called fuzzy manifold. Note that
FT realm incorporates several alternative formalisms in which different FP definitions are
exploited, we use here the one given in [13], in fact, it’s the geometric analogue of real fuzzy
number [12].

We shall suppose that the geometry of physical world corresponds to geometry equipped
with FT described here. Note that in such formalism wj(x) doesn’t have any probabilistic
meaning but only the algebraic one, characterizing the properties of fuzzy value x̃j . To
describe the distinction between the fuzzy structure and probabilistic one, the correlation
K0(x, x′) defined over wj support can be introduced; thus if wj(x1,2) �= 0, then ∀x1, x2;
K0(x1, x2) = 1 for FP aj and K0(x1, x2) = 0 for probabilistic aj distribution. Thus aj state
G on X is described by two functions G = {wj(x),K0(x, x′)}. As will be shown below, the
similar bilocal correlations define, in fact, the dynamical properties of massive particles.

3 Linear Model of Fuzzy Dynamics

In the described framework the massive particle of 1-dimensional classical mechanics cor-
responds to the ordered point xa(t) ∈ X. By the analogy, we suppose that in 1-dimensional
fuzzy mechanics (FM) the particle m corresponds to fuzzy point a(t) in CF characterized
by normalized positive density w(x, t). Beside w(x), m fuzzy state |g} can also depend on
other m degrees of freedom (DFs) characterizing its evolution. To illustrate it, consider m

average velocity:

v̄ = ∂

∂t

∞∫

−∞
xw(x)dx =

∞∫

−∞
x

∂w

∂t
(x, t)dx (1)

It’s reasonable to assume that v̄(t) is independent of w(x, t), below we shall look for such
additional DFs in form of real functions q1,...,n(x, t). Let’s suppose that in FM m evolution
is local, i.e.:

∂w

∂t
(x, t) = −�(w, q1, ..., qn) (2)

where � is an arbitrary function which depends on w(x, t), q1,...,n(x, t) only. From w norm
conservation:

∞∫

−∞
�(x, t)dx = −

∞∫

−∞

∂w

∂t
(x, t)dx = − ∂

∂t

∞∫

−∞
w(x, t)dx = 0 (3)

If to substitute: � = ∂J
∂x

where J (x) is some differentiable function, then (3) demands:

J (∞, t) − J (−∞, t) = 0 (4)
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If to suppose that such equality is fulfilled, then J (x) can be regarded as w flow, and (2) is
equivalent to 1-dimensional flow continuity equation [16]:

∂w

∂t
= −∂J

∂x
(5)

Meanwhile, J (x) can be decomposed formally as: J = w(x)v(x) where v(x) corresponds
to 1-dimensional w flow velocity [16]. In these terms (5) can be written as:

∂w

∂t
= −v

∂w

∂x
− ∂v

∂x
w (6)

We shall assume that v(x) can be considered as novel m DF. Note that for normalized
density w(x, t) the condition expressed by (4) is trivial, in particular, it’s fulfilled if w flow
J (x, t) from/to x = ±∞ is negligible.

FM will be constructed here as minimal theory in a sense that at every step we shall
choose the option with minimal number of DFs and theory constants. In such framework
one should choose the consistent |g} ansatz, yet m state representation in form of the
line: |g} = {w, v} is asymmetric relative to its norm w(x). Besides, the evolution of its
component w described by (6) is nonlinear. Hence it’s instructive to look for symmetric
|g} representation η(x) for which its evolution would be linear; such ansatz can be com-
plex, quaternionic or some other symmetric form. In general, η(x) = ϒx(w, v) where ϒx is
some w, v functional and x is its parameter. However, η norm corresponds to w(x), hence if
w(x) → 0 for some x → x0 , then η(x) supposedly also should be negligible in x0 vicinity.
Hence η can be decomposed also as:

η(x) = ϒx(w, v) = fr [w(x)]Fx(w, v) (7)

where fr is some real function, such that fr(ε) → 0 for ε → 0; Fx is an arbitrary functional.
In this vein |g} is characterized by two DFs, so it’s worth to start η ansatz search from
complex Fx .

Plainly, m evolution as the whole can be characterized by m velocity u(t) with expec-
tation value ū(t). Yet in FM, alike m coordinate x, such u also can be also considered as
fuzzy value ũ(t) with corresponding normalized distribution wu(u, t) which can be defined
in u measurements. Obviously, ū(t) coincides with v̄(t) of (1), hence:

ū =
∞∫

−∞
v(x)w(x)dx (8)

i.e. its value is also defined by w, v. In place of u, below it will be convenient to use the
variable p = μu where μ is the theory constant; for the corresponding distribution wp(p),
it gives wu(u) = μwp(μu). If |g} is physical state then analogously to QM, the expectation
value of arbitrary m observable Q in FM is supposedly expressed as some η functional. In
particular,wp(p) = Fp(η)where Fp is parameter dependent functional. The transformation
η → wp should possess the following properties:

i) Norm conservation: if η(x) is normalized, then the same is true for wp.
ii) p expectation value p̄ is expressed via w(x), v(x) according to (8).
iii) For free m evolution wp is independent of η(x) → η(x + x0) space shifts.

For complex η(x) its fourier transform satisfies to these conditions [15]. To demonstrate

it and calculate wp , let’s introduce the auxiliary form: ϕ(p) = w
1
2
p eiβ(p), here β(p) is
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dummy real function on which the final wp ansatz wouldn’t depend. In accordance with
equality (7), η(x) can be written as:

η(x) = fr(w)Gx(w, v)eiλx(w,v) (9)

where Gx(w, v), λx(w, v) are real functionals. Consider then ϕ fourier decomposition on
X:

ϕ(p) =
∞∫

−∞
η(x)e−ipxdx =

∞∫

−∞
frGxe

iλx−ipxdx (10)

wp is normalized distribution, so the application of Plancherele formulae to that norm gives:
∞∫

−∞
wp(p)dp =

∞∫

−∞
ϕ(p)ϕ∗(p)dp =

∞∫

−∞
f 2

r (w)G2
xdx = 1 (11)

The calculation of δw variation for the equality:
∞∫

−∞
[f 2

r (w)G2
x − w]dx = 0 (12)

permits to settle Gx = 1 and fr(w) = ±w
1
2 (x). Then p̄ can be calculated anew from 2-nd

Plancherele formulae :

p̄ =
∞∫

−∞
pϕ(p)ϕ∗(p)dp =

∞∫

−∞

∂λx

∂x
f 2

r (w)dx (13)

From the comparison with (8), since p̄ = μū it follows: λx = γ (x) + χ(w) where γ is the
functional:

γ (x) = μ

x∫

−∞
v(ξ)dξ + cγ (14)

here cγ is an arbitrary real number. χ(w) is an arbitrary real function which obeys to the
condition: ∞∫

−∞
w

∂χ

∂x
dx = 0 (15)

so it can be regarded as the analogue of η gauge. As the result, wp and β(p) can be
calculated from (10) as functions of χ . In particular:

wp(p) = |
∞∫

−∞
w

1
2 eiγ+iχ−ipxdx|2 (16)

is independent of β(p), so wp is really w, v functional, on the all appearances for minimal
theory such wp ansatz is unique. β(p) is, in fact, the analogue of γ (x) for p observable.
The resulting m state in x-representation:

η(x) = w
1
2 (x)eiγ+iχ (17)

is the vector (ray) of complex Hilbert space H. In this framework, the observable p corre-
sponds to the operator p̂ = −i ∂

∂x
acting on η, i.e. p̄ = ∫

η∗p̂ηdx. It means that x and p

observables are described by the linear self-adjoint operators, which obey to the commuta-
tion relation [x̂, p̂] = i. By the analogy, we suppose that all m PV observables {Q} are the
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linear, self-adjoint operators onH. If this is the case, η(x) is the plausible candidate for |g}
state ansatz inX-representation, because for such η the expectation values of all observables
Q̄(t) should be expressed as semi-linear η functionals.

Note that η = eiχg, where g(x, t) is standard QM wave function, so that η(x, t) is its
trivial map. Thus we can study first g(x, t) evolution, and then η(x, t) properties will be
derived basing on obtained results. Evolution equation for g is supposed to be of the first
order in time, i.e.:

i
∂g

∂t
= Ĥg. (18)

In general Ĥ is nonlinear operator, for the simplicity we shall consider first the linear case
and turn to nonlinear one in the next section. The free m evolution is invariant relative
to x space shifts to arbitrary x0 performed by the operator Ŵ (x0) = exp(x0 ∂

∂x
). Because

of it, the corresponding operator Ĥ0 should commute with Ŵ (x0) for the arbitrary x0, i.e.
[Ĥ0,

∂
∂x

] = 0. It holds only if Ĥ0 is differential polinom of the form:

Ĥ0 = −
n∑

l=1

bl

∂l

∂xl
(19)

where bl are arbitrary real constants, n ≥ 2. From X−reflection invariance bl = 0 for
noneven l. Suppose that the action of external field on m can be accounted in Ĥ additively:
Ĥ = Ĥ0 + V (x, t) where V is real nonsingular function. Let’s rewrite (18) separating w, γ

derivatives:

i
∂g

∂t
=

(

i
∂w

1
2

∂t
− w

1
2
∂γ

∂t

)

eiγ = eiγ Ẑg (20)

where Ẑ = e−iγ Ĥ . Hence:

∂w
1
2

∂t
= im(Ẑg) (21)

Yet if to substitute v(x) by γ (x) in (6) and transform it to w
1
2 time derivative, then:

∂w
1
2

∂t
= − 1

μ

∂w
1
2

∂x

∂γ

∂x
− 1

2μ
w

1
2
∂2γ

∂x2
(22)

Plainly, this expression and im(Ẑg) should coincide, then Ĥ can be obtained from their
comparison term by term. In particular, the imaginary part of Ẑg includes the highest γ

derivative as the term bnw
1
2

∂nγ
∂xn , yet for (22) the highest γ derivative is proportional to

w
1
2

∂2γ

∂x2
. Hence it gives: b2 = 1

2μ and for all l > 2 it follows that bl = 0, only in this

case both expressions for ∂w
1
2

∂t
would coincide. Thus g free evolution is described by the

only Ĥ0 term b2 = 1
2μ , so Ĥ is Schroedinger Hamiltonian for particle with mass μ. The

obtained ansatz gives also J (±∞, t) = 0 for w flow of (3), in accordance with our assump-
tions. Note that in standard QM m evolution equation is, in fact, postulated ad hoc; here it’s
derived from FT premises for particle evolution on fuzzy manifold. The same is true for the
commutation relation [x̂, p̂] = i.

In this framework the flow velocity v(x, t) isn’t observable, but can be formally defined
as the ratio of J (x),w(x) observable expectation values, here w observable is described by
the projection operator �̂(x); the operator Ĵ (x) considered in [14]. As was noticed earlier,
the particle evolution in QM in some aspects is similar to the motion of continuous media
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[16]. This analogy is explored thoroughly in hydrodynamical QM model (QFD) [17, 18],
its connection with FM will be discussed in Section 5.

Plainly, γ (x) corresponds to |g} quantum phase, so that:

K1(x, x′) = γ (x) − γ (x′)

describes the phase correlation between the state components in x, x′. Such correlations
induce, in fact, the interference effects between |g} components in x, x′. As was noticed
above, FM state can be characterized by the density w(x) and and the array of bilocal
geometric correlations {Ki(x, x′)}, the first of them: K0(x, x′) was introduced in Section 2,
so that K1(x, x′) can be also regarded as Ki component. Until now we’ve considered only
the pure fuzzy states which aren’t the probabilistic mixture of several pure states. The mixed
states in FM are defined exactly like in QM formalism, i.e. are positive, trace one operators
ρ onH. For pure m states:

ρ(x, x′) = g(x)g∗(x′) = [w(x)w(x′)] 1
2 eiK1(x,x′)

is equivalent to g(x), yet such |g} representation demonstrates in the open the correlation
structure of m pure states.

4 General Fuzzy Dynamics

In the previous Section 1-dimensional FM formalism was derived from FT premises assum-
ing that |g} evolution is linear and |g} gauge function χ(x) can be neglected. Now these
assumptions will be dropped one by one and general formalism derived. Concerning with
nonlinear evolution, the conditions of QM linearity were reconsidered by Jordan, and turn
out to be essentially weaker than Wigner theorem asserts [19]. In particular, it was proved
that if the evolution maps the set of all pure states one to one onto itself, and for arbitrary
mixture of orthogonal states ρ(t) = ∑

Pi(t)ρi(t) all Pi are independent of time, then such
evolution is linear. Here ρi(x, x′, t) = gi(x, t)g∗

i (x′, t) are the density matrixes of orthog-
onal pure states gi . Yet for the considered FM formalism first condition is, in fact, generic:
no mixed (i.e. probabilistic) state can appear in the evolution of pure fuzzy state. The sec-
ond condition involves the probabilistic mixture of such orthogonal states and also seems to
be rather weak assumption.

Now let’s return to η(x) ansatz of (17), it can be shown that Jordan theorem demands
also that χ(w) = 0. For m states of (17) and corresponding g ansatz, if 〈gi |gj 〉 = δij ,
then 〈ηi |ηj 〉 = δij and vice versa. As was argued above, in FM any pure state g(t0) should
evolve to pure state g(t) for arbitrary t , so the same should be true for any η(t0). Now Jordan
theorem can be applied to η evolution, to demonstrate it consider g evolution equation:

i
∂g

∂t
= i

∂

∂t
(ηe−iχ ) = i

∂η

∂t
e−iχ + η

∂χ

∂w

∂w

∂t
e−iχ = Ĥ (ηe−iχ ) (23)

From it one can come to the equation for η, the term containing ∂w
∂t

can be rewritten
according to (22). As the result, it gives:

i
∂η

∂t
= eiχ Ĥ (ηe−iχ ) + η

μ
eiχ ∂χ

∂w

∂

∂x

(

w
∂γ

∂x

)

(24)
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Resulting equation for η is also of first time order, but is openly nonlinear. Therefore, for
arbitrary χ(w), given the initial η(x, t0), the resulting η(x, t) can be only the equivalence
class of g(x, t) which evolves linearly from:

g(x, t0) = η(x, t0)e
−iχ (25)

3-dimensional FM, in fact, doesn’t demand any principal modification of described for-
malism. In this case the fundamental set is CF = AP ∪ R3 where AP defined in Section 2,
hence for any fuzzy point aj ∈ AP its properties should be defined relative to X, Y,Z coor-
dinate axes separately. Rotational symmetry implies that FP aj is described by the positive
function wj(�r) with norm

∫
wjd3r = 1. If the particle m corresponds to the fuzzy point

a(t) characterized by w(�r, t), then analogously to Section 2, given w evolution depends on
local parameters only, it can be expressed as:

∂w

∂t
(�r, t) = −�(�r, t) (26)

where � is an arbitrary local function. Then from w norm conservation 3-dimensional flow
continuity equation follows:

∂w

∂t
= −div �J (27)

One can decompose �J = w�v and consider w flow velocity �v(�r) as independent |g} param-
eter. m state |g} is supposed to be the complex w, �v functional g(�r) = ϒ�r (w, �v). For m as
the whole, its velocity is supposedly characterized by fuzzy vector �̃u which corresponds to
distribution wu(�u), so that:

〈�u〉 =
∫

�uwu(�u)d3u =
∫

�v(�r)w(�r)d3r (28)

m kinematical fuzzy momentum defined as: �p = μ�u. From that, analogously to (8 - 17),

standard QM ansatz for m state obtained: g(�r) = w
1
2 eiγ . g phase γ (�r) obeys to the equality

μ�v = grad(γ ). To guarantee the formalism consistency, we assume that the phase correla-
tion valueK1(�r, �r ′) is independent of the path l between �r , �r ′ over which it can be calculated
additively :

K1(�r, �r ′) = γ (�r) − γ (�r ′) =
�r∫

�r ′

grad(γ )d�l (29)

Considering g linear evolution, for free m evolution its operator Ĥ0 should be the even
polinom of the form:

Ĥ0 = −
n∑

l=1

b2l
∂2l

∂�r2l (30)

If the external field action can be described by the addition of real function V to it:

Ĥ = Ĥ0 + V (�r, t) (31)

then from ∂g
∂t

the term ∂w
1
2

∂t
can be extracted and expressed via w, γ �r-derivatives.

From their comparison with corresponding Ĥg derivatives the Schroedinger equation is
obtained for m evolution. The applicability of Jordan theorem to 3-dimensional Ĥ is
obvious, because the derivation of Ĥ linearity doesn’t depend on the dimensiality of coor-
dinate space. The same is true for the proof of uniqueness of g(�r, t) ansatz, i.e. that
χ(w) = 0.
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In our derivation of evolution equation we didn’t assume Galilean invariance of FM,
rather in our approach it follows from the obtained evolution equation if the reference frame
(RF) is regarded as the physical object with mass μ → ∞ [6]. For the transition to rela-
tivistic FM from our ansatz its natural extension for complex scalar state g is Klein-Gordon
equation. Yet for such equation it’s impossible to define m probability density ρ(�r) which
would be nonnegative for all free states [14]. As was noticed in Section 3, in principle,
m scalar state can be complex, quaternionic, octonionic, etc.. We find that the minimal
consistent |g} ansatz gives quaternion scalar ξ(�r), so that:

(
∂2

∂t2
− � + μ2

)

ξ = 0 (32)

For such state the single quantum g phase γ is extended to three independent phases:
iγ + jβ + kα which correspond to additional geometric DFs. Such DFs can be considered
as m phase correlations K1,2,3 analogous to (29). To get nonnegative ρ one should broke
first i, j, k space symmetry and to choose an arbitrary preferred basis i′, j ′, k′. Plainly, in
this basis ξ = ψ1 +ψ2j

′, here ψ1,2 = a1,2 +b1,2i
′ where a1,2, b1,2 are real functions. Let’s

rewrite ψ1,2 in form of spinor ψu and define the auxiliary spinor:

ψd = −i′
(

I
∂

∂t
+ ∂

∂�r �σ
)

ψu (33)

in obvious notations. If to denote ψd components as ψ3,4, then ρ(�r) = ∑4
1|ψl |2 is nonneg-

ative and normalizable for arbitrary ξ . If to regard ψ1,...,4 as 4-spinor components, it’s easy
to check that such 4-spinor would obey to Dirac equation in chiral representation [20]. It
seems that in FM some geometric DFs can be ’compactified’, resulting in the appearance
of internal spinor space, so that the particle m acquires spin 1

2 .
Now we shall consider the interaction between fuzzy states in FM framework. Note first

that by derivation in FM the free Hamiltonian Ĥ0 induces, in fact,H dynamical asymmetry
between |�r〉 and | �p〉 ’axes’. As follows from (19-22) m free dynamics can be described by

the system of two equations which define ∂w
1
2

∂t
and ∂γ

∂t
which for 3-dimensions are equal to:

∂w
1
2

∂t
= − 1

μ

∂w
1
2

∂�r
∂γ

∂�r − 1

2μ
w

1
2
∂2γ

∂�r2
∂γ

∂t
= − 1

2μ

[(
∂γ

∂�r
)2

− 1

w
1
2

∂2w
1
2

∂�r2
]

(34)

Yet the first of them is equivalent to (27) which describes just w(�r) balance and so is, in
fact, kinematical one and can’t depend on any interactions directly. Namely, under some
external influence the values of w, γ variables can change, but no new terms can appear in
that equation. Note that in QM e �A term formally appears in it, but it’s just the part of the
expression for kinematic momentum [14]. Hence m interactions can be accounted only via
the modification of second equation of system (34). Assuming that analogously to (31) the
evolution terms are real and additive, it gives: Ĥ = Ĥ0 + Ĥint where Ĥint is the interaction
term. Let’s consider how the interaction of two particles m, M can be described in such
approach. Suppose also that m, M interaction is universal in a sense that 〈Ĥint 〉 �= 0 for
arbitrary relative m, M momentum 〈 �p12〉, and is induced by the conserved charges q1, q2.
Then the main Ĥint term which survives at 〈 �p12〉 → 0 is equal to q1q2U(r12). as the result,
U(r12) corresponds to the classical potential. In standard QM such interaction is, in fact,
postulated from classical-to-quantum correspondence, whereas here it follows from FM
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geometric premises. Since γ corresponds to the quantum phase, it supposes that in FM m

interactions can possess some form of local gauge invariance [21].

5 Conclusion

It’s well known that QM can be described by several alternative formalisms, of them the
most notorious are algebraic QM and Schroedinger or standard formalism. To discuss the
possible advantages of FM formalism it’s instructive to compare it with the latter one. From
the formal side, standard QM exploits two fundamental structures of different nature: space-
time manifold R3 ∗ T and functional spaceH defined on R3. In distinction, FM formalism
involves only one basic structure, it’s fuzzy manifold R̃3 ∗ T . FM physical states are R̃3

points, their equivalence toH Dirac vectors was proved here. In standard QM the evolution
equation or postulated ad hoc or derived assuming Galilean invariance of object states [14].
In FM the Schroedinger equation is derived assuming only space-time shift invariance which
is essentially weaker assumption. Besides, the quantum-classical transition in such theory
is essentially more simple, it’s just the transition of R̃3 manifold by R3 one, for which
the classical particles correspond to ordered points. As the result, FM formalism possesses
simple and logical axiomatics which origin is basically geometrical. It permits, in principle,
to explore under the new angles those quantum theories for which geometry is the formalism
cornerstone, first of all these are quantum gravity and gauge fields.

Concerning with the connection between FM and QFD noticed in Section 2, in the latter
theory all QM axioms are accepted at the initial stage. Then, the postulated Schroedinger
equation is rewritten as the system of equations for the motion of classical liquid, similar
to (34) [18]. Yet at the next stage, to reach the complete classicality of the theory some
ad hoc assumptions are added, however the resulting theories contradict to experimental
results. In comparison, FM is principally nonclassical theory, this nonclassicality originates
from the novel topological structure of space-time, whereas in standard QM formalism the
space-time geometry is the same, as in classical mechanics.

In our approach the state space is defined by geometry and corresponding dynamics
i.e. is derivable concept. For pure states of free nonrelativistic particle m it obtained to be
equivalent toH, but, in principle, it can be different for other systems. The similar features
possess the formalism of algebraic QM where the state space is defined by the observable
algebra and system dynamics [14]. As was noticed in Section 3, in FM the most consistent
state ansatz is given by the density matrix ρ. However, the direct derivation of ρ evolution
equation is more complicated then for Dirac vector |g}, and because of it, we used |g}
throughout our paper. Planck constant � = 1 in our FM ansatz, but the same value ascribed
to it in relativistic unit system in which the velocity of light c = 1; in FM framework � only
connects x, p geometric scales and doesn’t have any other meaning.

In conclusion, we have shown that the quantization of elementary systems can be derived
directly from axiomatic of set theory and topology together with the natural assumptions
about system evolution. It allows to suppose that the quantization phenomenon has its
roots in foundations of mathematics [14]. Our approach permits to construct QM formalism
starting from geometric concepts and structures only, so in these aspects it’s analogous to
general relativity construction. In the same time the considered fuzzy manifold describes the
possible variant of fundamental pregeometry which is basic component of some quantum
gravity theories [5]. In this vein, FM provides the interesting opportunities, being generi-
cally nonlocal theory which, in the same time, can possess Lorentz covariance and local
gauge invariance.
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