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Abstract We consider the operator Ly = −(d/dx)2y + x2y + w(x)y, y inL2(R),

where w(x) = sδ(x − b) + tδ(x + b), b �= 0 real, s, t ∈ C. This opera-
tor has a discrete spectrum: eventually the eigenvalues are simple. Their asymptotic is
given. In particular, if s = −t , λn = (2n + 1) + s2 κ(n)

n
+ ρ(n) where κ(n) =

1
2π

[
(−1)n+1 sin

(
2b

√
2n
)

− 1
2 sin

(
4b

√
2n
)]

and |ρ(n)| ≤ C
log n

n3/2 . If s = −t , the number

T (s) of non-real eigenvalues is finite, and T (s) ≤ (C(1 + |s|) log(e + |s|))2. The analogue
of the above asymptotic is given in the case of any two-point interaction perturbation.

Keywords Spectral Theory · Harmonic Oscillators · Asymptotics

1 Introduction

The operator

L0 = − d2

dx2
+ x2, x ∈ R

1,

is the one-dimensional harmonic oscillator; this is an unbounded self-adjoint operator acting
in L2(R). As one can see in any introductory book on quantum mechanics, L0 has a discrete
spectrum �0 = {zn}∞n=0,

zn = 2n + 1, n = 0, 1, . . .

and a compact resolvent
R0(z) = (z − L0)−1, z �∈ �0. (1.1)

A normalized orthogonal system of eigenfunctions can be chosen as the Hermite functions

hn(x) =
(
π1/22nn!

)−1/2
e−x2/2Hn(x), n = 0, 1, . . . (1.2)
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where

Hn(x) = ex2/2
(
e−x2/2

)(n)

(1.3)

are the Hermite polynomials.
Spectral analysis of perturbed operators

L = L0 + W (1.4)

with special W, in particular, the point interaction perturbations

Wf = wf, w(x) =
∑J

j=1
cj δ

(
x − bj

)
, J finite (1.5)

was studied in many mathematical and physical papers, for example [3, 4, 6–8, 20, 21, 24,
25].

In the series of papers [12–14] S. Fassari, F. Rinaldi and G. Inglese investigate the
spectrum of L ∈(1.4) when the perturbation

W = −τ (δ (x − b) + δ (x + b)) , τ, b > 0, (1.6)

i.e., L0 is perturbed by a pair of attractive point interactions of equal strength whose centers
are situated at the same distance from the origin. In this case the operator L = L0 + W is
self-adjoint; the techniques used are based on Green’s function analysis.

E. Demiralp ([6–8]) found numerically the non-real eigenvalues of (1.6) when

−τ = iγ, γ real

for γ large enough.
H. Cartarius, D. Dast, D. Haag, G. Wunner, R. Eichler, and J. Main [5] and [16], moti-

vated by analysis of Bose-Einstein condensates with PT -symmetric loss and gain, focused
on the case of non-Hermitian perturbations

W = iγ [δ (x − b) − δ (x + b)] .

Their numerical estimates showed that for small γ the spectrum of L = L0 + W is on the
real line R, and they gave some predictions on the state of decay of the disk radii where the
eigenvalues of the operator L are located. Now we provide a rigorous mathematical analysis
of the asymptotics of eigenvalues λn = λn(L

0 + W).
We follow the techniques used in [2, 9–11, 19] and based on careful estimates related to

the resolvent representation

R = R0 +
∑∞

j=1
Uj , (1.7)

U0 = R0, Uk = R0WUk−1 = Uk−1WR0, k ≥ 0. (1.8)

Moreover, we essentially use the property of perturbations W ∈ (1.5) to have such a matrix

wjk = 〈
Whj , hk

〉
, j, k = 0, 1, . . . (1.9)

that for some α > 0 there exists M > 0 such that

|wjk| ≤ M

(1 + j)α(1 + k)α
, j, k = 0, 1, . . . , (1.10)

Detailed results on the spectrum and convergence of spectral decompositions of L = L0+W

for a general W under the condition (1.10) were given by B. Mityagin and P. Siegl in [19].

In the case (1.5) of the finite point interaction perturbations, α = 1

4
.
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2 Preliminaries, Technical Introduction, Review the Results

1 Our main concern is the harmonic oscillator operator (1.4) and its special perturbation
W. We will focus on this case, although many constructions are very general and could
be performed in analysis of other differential operators — see [1, 9, 19].

Let L0 be an operator in �2(Z+),

L0ek = zkek, zk = (2k + 1), k = 0, 1, . . . , (2.1)

and W = (wjk)
∞
0 a matrix such that for some α > 0 and C0 > 0,

|wjk| ≤ C0

(1 + j)α(1 + k)α
(2.2)

Then the KLMN Theorem [17, Chapter 6, §§1 – 4] leads to the definition of the closed
operator

L = L0 + W (2.3)

with a dense domain — see details in [19]. Let us recall some facts, introduce notations
and explain a few elementary but important inequalities.

2 To adjust our constructions to the set of eigenvalues of the unperturbed operator (2.1),
let us define strips

Hn = {z ∈ C : |�z − zn| ≤ 1} , n ≥ 1

H0 = {z ∈ C : �z − z0 ≤ 1} (2.4)

and the squares

Dn =
{
z ∈ Hn : |�z − zn| ≤ 1

2
, |	z| ≤ 1

2

}
, n ≥ 0 (2.5)

around eigenvalues {zn}∞n=0 = {2n + 1}∞n=0 in Hn.
The resolvent

R(z) = (z − L0 − W)−1 (2.6)

of the operator (2.3) is well-defined in the right half-plane

{z : �z ≥ 2N∗} \
∞⋃

k=N∗
Dk (2.7)

outside of the disks Dk , k ≥ N∗, if N∗ is large enough.
It follows from the Neumann-Riesz decomposition

R = R0 + R0WR0 + R0WR0WR0 + · · · = R0 +
∑∞

j=1
Uj , (2.8)

where

U0 = R0 = (z − L0)−1, Uj = R0WUj−1 = Uj−1WR0, j ≥ 1. (2.9)

Of course, the convergence of the series should be explained at least in (2.7). This is
done in [1, 19]; now I will remind only the estimates of N∗ because it will be important
later (see Theorem 4.4, (4.38) and Theorem 4.1, (4.11)) in accounting for points of the
spectrum σ(L) outside of the real line.

3 Define a diagonal operator K,

Kej = 1√
z − zj

ej , j = 0, 1, . . . , 	z �= 0 (2.10)
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with understanding that√
ξ = r1/2eiϕ/2 if ξ = reiϕ, −π < ϕ ≤ π. (2.11)

Then K2 = R0, z ∈ C \R; maybe, we lose analyticity but rough estimates – when just
the absolute values of matrix elements work well – are good enough.

Indeed, (2.8), (2.9) could be rewritten as

R0 = K2, Uj = K(KWK)jK, R = R0 +
∑∞

j=1
K(KWK)jK, (2.12)

where

(KWK)km = 1√
z − zk

Wkm

1√
z − zm

, k, m = 0, 1, 2, . . . , z ∈ C \ R. (2.13)

Lemma 2.1 Under the assumptions (2.1), and (2.2), with 0 < α <
1

2
, if z ∈ Hn \Dn, then

KWK is a Hilbert-Schmidt operator, and

� ≡ ‖KWK‖HS ≤ C0M(α) log(en)

n2α
, M(α) ≡ 6 + 4/3

1 − 2α
+ 1

3α
(2.14)

Proof If z ∈ ∂Dn, i.e,

z = (2n + 1) + ξ + iη, |ξ | = 1

2
, |η| ≤ 1

2
,

or |ξ | ≤ 1

2
, |η| = 1

2
; ξ, η ∈ R, (2.15)

then
1

2
≤ |z − zj | ≤ 3, j = n, n ± 1, (2.16)

and if |n − j | ≥ 2,

3

2
|n − j | ≤ 2|n − j | − 1 ≤ |z − zj | ≤ 2|n − j | + 1 ≤ 5

2
|n − j |. (2.17)

Therefore, by (2.2), (2.13),

�2 =
∑∞

j,k=1

|wjk|2
|z − zj ||z − zk| ≤ C2

0μ2 (2.18)

with

μ =
∑∞

j=0

1

(1 + j)2α|z − zj | . (2.19)

The sum of three terms for j = n, n ± 1 in (2.19) by (2.16) does not exceed

3 · 1

n2α
· 2 = 6

n2α
, (2.20)

and by (2.17), the remaining part of μ, namely,
∑n−2

j=0
+
∑∞

j=n+2
, by the integral test

does not exceed

2

3

[
1

n
+ 1

n2α
+
∫ n−1

0

dx

(1 + x)2α(n − x)

]

+2

3

[
1

2
·
(

1

n + 3

)2α

+
∫ ∞

n+2

dy

(1 + y)2α(y − n)

]
. (2.21)
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The first integral (after the change of variables x = nξ ) is

1

n2α

∫ 1−(1/n)

0

n dξ

n(1 − ξ)

(
1

n
+ ξ

)2α
≤ 1

n2α

[
2
∫ 1/2

0

dξ

ξ2α
+ 22α

∫ 1−(1/n)

1/2

dξ

1 − ξ

]
=

=
(

2

n

)2α [ 1

1 − 2α
+ log

n

2

]
. (2.22)

The second integral in (2.21) is equal to

1

n2α

∫ ∞

1+(2/n)

dη

(η − 1)

(
1

n
+ η

)2α
≤ 1

n2α

[∫ 2

1+(2/n)

dη

η − 1
+
∫ ∞

2

dη

(η − 1)2α+1

]
=

= 1

n2α

[
log

n

2
+ 1

2α

]
. (2.23)

If we collect the inequalities (2.20) to (2.23), we get (with 22α ≤ 2)

μ ≤ 2

3

1

n2α

[
9 + 3

2
+ 2

1 − 2α
+ 3 log

en

2
+ 1

2α

]
≤

≤ 1

n2α
[M(α) + 2 log n] (2.24)

where M(α) = 6 + 4/3

1 − 2α
+ 1

3α
. (2.25)

With (2.18) and (2.2) we come to (2.14).

Of course, the constant factors in the inequalities (2.18) – (2.24) are not sharp but we get

some idea on their magnitude. If α = 1

4
we have

M

(
1

4

)
= 6 + 4

3
· 2 + 2

3
< 10, and (2.26)

μ ≤ 2√
n

(5 + log n) (2.27)

This case is important in analysis of the harmonic oscillator and its perturbations (1.5). The
estimates (2.26) and (2.27) will be used later as well.

Remark 2.2 Let s ≡
∞∑

j = 0
j �= n

1
(1+j)β

· 1
|n−j | . Then

s ≤ M(β)

nβ
log en, if 0 < β ≤ 1, (2.28.i)

s ≤ M

n
, if β > 1. (2.28.ii)

Proof The case β = 2α < 1 is done in the proof of Lemma 2.1. Other cases could be
explained in the same way; we omit details.



Int J Theor Phys (2015) 54:4068–4085 4073

4 In this section we use properties of Shatten class operators and related equalities for the
norms ‖T ‖p, T ∈ Sp, of compact operators — see details in [15, 22]. By (2.10) the
operator K is bounded if z ∈ Hn \ Dn and by (2.16), (2.17) its norm

‖K‖ ≤ √
2. (2.29)

Therefore, for Uj ∈ (2.12) if j ≥ 2

‖Uj‖1 ≤ 2‖KWK‖j

2 ≤ 2�j ≤ 2

[
M(α)

log en

n2α

]j

. (2.30)

But we can claim that U1 is a trace-class operator as well, and

‖U1‖1 = ‖K(KWK)K‖1 ≤ ‖K‖4‖KWK‖2‖K‖4 (2.31)

because K ∈ S4 [or any Sp, p > 2, as a matter of fact]: just notice that by (2.16),
(2.17)

‖K‖4
4 =

∑∞
j=0

1

|z − zj |2 ≤

≤ 3/4 + 2
∑∞

k=2

(
2

3

)2

· 1

k2
< 20 <

(
11

5

)4

, (2.32)

so

‖K‖4 ≤ 11

5
; ‖K‖2

4 ≤ 5. (2.33)

Therefore we can claim the following.

Proposition 2.3 Under the assumptions (2.1), (2.2), 0 < α < 1
2 , suppose that N∗ = N∗(α)

is chosen in such a way that

M(α)
log en

n2α
≤ 1

2
for all n ≥ N∗. (2.34)

Then for n > N∗(α) if z ∈ ∂Dn all the operators Uj ∈ (2.8) are of the trace class, their
norms satisfy inequalities

‖Uj‖1 ≤ 2

[
M(α)

log en

n2α

]j

, j ≥ 2, (2.35)

‖U1‖1 = ‖R0WR0‖1 ≤ 5M(α) log en

n2α
(2.36)

and the Neumann - Riesz series for the difference of two resolvents

R − R0 =
∑∞

j=1
Uj (2.37)

converges by the S1-norm and

‖R − R0‖1 ≤ 7M(α)
log en

n2α
(2.38)

and
∥∥∥
∑∞

j=m
Uj

∥∥∥
1

≤ 4

(
M(α)

log en

n2α

)m

, m ≥ 2. (2.39)
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Proof Inequality (2.35) is identical with (proven) line (2.30). (2.36) come if we combine
(2.32), (2.31), and (2.14). Therefore, for m ≥ 2, by (2.35) and (2.34),

∥∥∥
∑∞

j=m
Uj

∥∥∥
1

≤ 2
∑∞

j=m

(
M(α)

log en

n2α

)j

≤ 4

(
M(α)

log en

n2α

)m

. (2.40)

Then by (2.36)

‖R − R0‖1 ≤ ‖U1‖1 +
∥∥∥
∑∞

j=2
Uj

∥∥∥
1

≤

≤ M(α)
log en

n2α
·
(

5 + 4M(α)
log en

n2α

)
≤ 7M(α)

log en

n2α
. (2.41)

3 Deviations of Eigenvalues of The Harmonic Oscillator Operator and its
Perturbations

1 Although the constructions and methods of this section are general and applicable
to many operators with discrete spectrum and their perturbations, we will focus later
in this section on the case of Harmonic Oscillator operator (2.1) and its functional
representation

L0y = −y′′ + x2y (3.1)

in L2(R).
The Riesz-Neumann Series (2.37), (2.8) and (2.9) — as soon as its convergence in

S1 is properly justified — can be used to evaluate eigenvalues of the operator L =
L0 + W .

Under proper conditions, if n ≥ N∗, the operator L has the only eigenvalue λn in
Hn; moreover, λn is simple and λn ∈ Dn. Therefore, both of the projections

P 0
n = 1

2πi

∫

∂Dn

R0(z) dz = 〈·, hn〉hn (3.2)

and

Pn = 1

2πi

∫

∂Dn

R(z) dz = 〈·, ψn〉φn (3.3)

are of rank 1. [In (3.3), φn is an eigenfunction of L and ψn is an eigenfunction of
L∗ = L0 + W ∗, with an eigenvalue μn = λn in Dn. We will not use this specific
information so nothing more is explained now.]

Therefore,

TraceP 0
n = Trace Pn = 1, (3.4)

Trace
1

2πi

∫

∂Dn

(R(z) − R0(z)) dz = 0. (3.5)
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and

zn = Trace
1

2πi

∫

∂Dn

zR0(z) dz = 2n + 1, (3.6)

λn = Trace
1

2πi

∫

∂Dn

zR(z) dz, (3.7)

So (3.4) to (3.7) imply

λn − zn = Trace
1

2πi

∫

∂Dn

(z − zn)[R(z) − R0(z)] dz =
∑∞

j=1
Tj (n) (3.8)

where we put [with zn = λ0
n = 2n + 1]

Tj (n) = Tj (n; W) = 1

2πi
Trace

∫

∂Dn

(z − zn)Uj (z) dz (3.9)

Proposition 2.3 is used in (3.8), (3.9). Trace is a linear bounded functional of norm 1,
on the space S1 of trace-class operators ([15, 22]) . It implies the following.

Corollary 3.1 Under the assumptions of Proposition 2.3, with n ≥ N∗, we have

|Tj (n)| ≤
[
M(α)

log en

n2α

]j

, j ≥ 2 (3.10)

and

|T1(n)| ≤ 9

4
M(α)

log en

n2α
(3.11)

Proof With |Trace A| ≤ ‖A‖1 and

|z − zn| ≤ 1√
2
, z ∈ ∂Dn,

length(Dn) = 4 (3.12)

rough estimates of integrals (3.9) with j ≥ 2 and j = 1 based on (2.35) and (2.36) lead to
(3.10) and (3.11).

Corollary 3.2 Under the assumptions of Proposition 2.3, with n ≥ N∗,

λn = (2n + 1) +
∑q

j=1
Tj (n) + rq(n), q ≥ 1, (3.13)

where

|rq(n)| ≤ 2

(
M(α)

log en

n2α

)q+1

(3.14)

Proof The presentation of λn and the inequality follow from (3.8) and (2.39) if we put
m = q + 1 in (2.39) and notice that 2

√
2 < π when we multiply the constant factors in

inequalities.

2 Analysis of the function N∗(α). This function is determined by the inequality (2.34).
Later we consider potentials with the coupling coefficient s [see (4.2), (4.3)] so it is
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useful to know the behavior of X = Xβ(t), the solution of the equation

t
log eX

Xβ
= 1

2
, β = 2α, for larget. (3.15)

Let us rewrite it as

τ log Y = Y, where Y = (eX)β (3.16)

and τ = 2

β
eβt (3.17)

The (3.16) has two solutions

y(τ) = 1 + 1

τ
+ O

(
1

τ 2

)
, τ → ∞ (3.18)

and
Y (τ) → ∞, τ → ∞. (3.19)

Lemma 3.3 The solution Y ∈ (3.19) has an asymptotic

Y (τ) = τ log τ · (1 + r(τ )) (3.20)

where

r(τ ) = log log τ

log τ
(1 + o(1)) (3.21)

so for any δ we can find τ ∗ such that

Y (τ) ≤ τ log τ + τ(1 + δ) log log τ, τ ≥ τ ∗. (3.22)

or τ∗ < τ ∗ such that
Y (τ) ≤ (1 + δ)τ log τ, τ ≥ τ∗. (3.23)

Proof If we look for r ≥ 0, in (3.20), which solves (3.16) we have:

τ log τ [1 + r] = τ [log τ + log log τ + log(1 + r)] (3.24)

or
r = ϕ(r), ϕ(X) = ξ + η log(1 + X), r > 0 (3.25)

where

ξ = log log τ

log τ
, η = 1

log τ
(3.26)

For any 0 < δ ≤ 1

2
we can choose τ ∗ such that

0 < ξ ≤ δ

2
, 0 < η <

δ

2
ifτ ≥ τ ∗. (3.27)

Then the function ϕ, ϕ : [0, δ] → [0, δ] is a contraction mapping, and (3.25) has the unique
solution

r = r(τ ), 0 < r(τ) ≤ δ. (3.28)

Therefore,

r = log log τ

log τ
+ ρ

log τ
, 0 < ρ ≤ δ. (3.29)

This implies (3.21) with
ρ

log log τ
= o(1). (3.30)
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Corollary 3.4 The solution X(t) of (3.15), 0 < β ≤ 1, goes to ∞ when t → ∞ and

X(t) ≤
(

2t log
At

β

)1/β

, A an absolute constant, (3.31)

if t is large enough.

Proof If we put (3.17) into (3.22) or (3.23) elementary simplifications give the inequality
(3.31).

3 Inequalities (2.18) and (2.30) guarantee that we can use the representation (2.8) and
eventually “asymptotics” (3.13) if

C0M(α)
log en

n2α
≤ 1

2
, C0 ∈ 2.2 (3.32)

and M(α) by (2.25) is chosen as

M(α) =
[

6 + 4/3

1 − 2α
+ 1

3α

]
. (3.33)

Then (3.31), with β = 2α < 1, t = 2C0M(α), implies that N∗ can be chosen as

N∗ = N∗(C0; α) =
[

2C0M(α) log

(
A

2α
2C0M(α)

)]1/(2α)

(3.34)

Now if α is fixed we are interested in the dependence of N∗ on C0 ∈ (2.2).

4 Recall that if W is a multiplier-operator

Wf = w(x)f (x), withw ∈ Lp(R1), 1 ≤ p < ∞, (3.35)

then as we observed and used in [19]

wjk = 〈
Whj , hk

〉 =
∫ ∞

−∞
w(x)hj (x)hk(x) dx (3.36)

so by Hölder inequality

|wjk| ≤ ‖w‖p · ∥∥hj

∥∥
2q

‖hk‖2q ,
1

p
+ 1

q
= 1. (3.37)

with
q > 1, 2q > 2. (3.38)

But
|hk(x)| ≤ Ck−1/12 (3.39)

so ∫
|hk(x)|2q dx =

∫
|hk(x)|2|hk(x)|2(q−1) dx2

≤ C2(q−1)k−(q−1)/6
∫

|hk(x)|2 dx (3.40)

and
‖hk‖2q ≤ C1/pk−1/(12p), p ≥ 1. (3.41)

This means that the matrix W satisfies the condition (2.2) with α = 1
12p

This obser-
vation was crucial in [19]; it gives a broad class of operators covered by (2.2) so our
claims of this sections are applicable to the operators (3.35).
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But there are much better estimates of Lp norms of the Hermite functions than
(3.41).

Lemma 3.5 As n → ∞,

‖hn‖r ∼ n
− 1

2

(
1
2 − 1

r

)
, 1 ≤ r < 4 (3.42a)

‖hn‖r ∼ n− 1
8 log n, r = 4 (3.42b)

‖hn‖r ∼ n
− 1

6

(
1
r
+ 1

2

)
, r > 4 (3.42c)

See [23, Lemma 1.5.2] for the sketch of the proof and further explanations of these
claims.

Therefore, (3.41) could be improved. If p > 2 then by (3.37) q < 2, 2q < 4 so

‖hk‖2q ∼ k
− 1

2

(
1
2 − 1

2q

)
= k

− 1
4p , p > 2. (3.43)

For p = 2 we have 2q = 4 and

‖hk‖4 ∼ k− 1
8 log k, p = 2. (3.44)

Finally, if 1 ≤ p < 2 then 2q > 4 so

‖hk‖2q ∼ k
− 1

6

(
1

2q
+ 1

2

)
= k

− 1
12

(
2− 1

p

)
, 1 ≤ p < 2 (3.45)

All these estimates are used in Theorem 4.1, — see Section 4 below.
Of course, (3.39) shows that δ-potentials

w(x) =
∑m

k=1
ckδ(x − bk), m ≤ ∞, M ≡

∑m

k=1
|ck| < ∞, (3.46)

are good for us as well; in this case,
〈
Whj , hi

〉 =
∑m

k=1
ckhj (bk)hi(bk),

∣∣Wji

∣∣ ≤ CMj−1/12i−1/12, i, j ≥ 1, (3.47)

and we can give a trace-class version of Lemma 2.1.

Remark 3.6 Under the conditions (3.46), (2.10), if z ∈ Hn \ Dn then KWK is a trace class
operator, and

‖KWK‖1 ≤ C12
M

n1/6
(3.48)

where C12 is an absolute constant.

Proof The proof follows if we observe that KWK is a sum of rank-one operators 〈·, gk〉gk

where

gk =
(

hj (bk)
1√

z − zj

)∞

j=0
, 1 ≤ k ≤ m (3.49)

With more information on asymptotics of Hermite polynomials and Hermite functions
we can be accurate in analysis of point-interaction potentials (3.46) and spectra of operators
L0 + W , L0 ∈ (3.1), or — equivalently — (2.1). This is the main goal of this paper and its
forthcoming extension. Now we go to detailed analysis of these operators.
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4 Two-point Interaction Potentials

1 Now we apply general constructions of Sections 2, 3 to the case of the two-point
interaction potentials

w(x) = c+δ (x − b) + c−δ (x + b) , b > 0 (4.1)

and particular cases of an odd potential

svo(x), s ∈ C where vo(x) = δ (x − b) − δ (x + b) (4.2)

and an even potential

tve(x), t ∈ C ve(x) = δ (x − b) + δ (x + b) (4.3)

— see [5, 14].
Of course, for any odd potential (3.35) or (3.46), not just for v0 ∈ (4.2), the matrix

elements wjk have the property (4.6). Indeed, with parity

wjk = 〈
w(x)hj (x), hk(x)

〉 = (4.4)

= 〈
w(−x)hj (−x), hk(−x)

〉 = −(−1)j+kwjk (4.5)

so
wjk = 0 ifj + k even. (4.6)

If, however, w in (3.35) or (3.46) is even then we conclude

wjk = 0 ifj + k odd. (4.7)

These observations lead to information on complex eigenvalues of L = L0 + W .

Theorem 4.1 Let the potential

w(x) ∈ Lp, 1 ≤ p < ∞, ν = ‖w‖p , or (4.8)

w(x) =
∑∞

k=1
ckδ (x − bk) , ν =

∑
|ck| < ∞, (4.9)

be PT , i.e., w(−x) = w(x). Then the operator

L = L0 + W = − d2

dx2
+ x2 + w (4.10)

has at most finitely many non-real eigenvalues, if any, and their number does not exceed
N∗, where

N∗ = D (ν log(1 + ν))2p , p > 2 (4.11a)

N∗ = D∗ (ν log2(1 + ν)
)4

, p = 2 (4.11b)

N∗ = D (ν log(1 + ν))

3(
1− 1

2p

)
, 1 ≤ p < 2 (4.11c)

N∗ = D∗ (ν log(1 + ν))6 , in the case (4.9) (4.11d)

D∗, D∗ are absolute constants, and D = D(p) does not depend on the norm ν.

Proof By the estimates in Corollary 3.1 and in (3.34) we can use the series (3.8) to evaluate
λn if n ≥ N∗, i. e., all eigenvalues in a half-plane z : Rez ≥ 2N∗ – see (2.4), (2.5). The
lemmas which follows explain that under the assumptions of the theorem every term Tj

(3.8), (3.9) is real. But total number of all other eigenvalues in (z : Rez < 2N∗} is N∗
as Proposition 2 in [19] explains. So the number of non-real eigenvalues if any does not
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exceed N∗. Corollary 3.1 and Lemma 3.3 guarantee that N∗ could be chosen as (4.11. a –
d) indicate because Lemma 3.5 leads good estimates of matrix elements (3.36).

Lemma 4.2 Let w ∈ (4.10) be a PT -potential, i.e.,

w(−x) = w(x), x ∈ R
1. (4.12)

Then for n ≥ N∗ ∈(4.11) all

Tj (n;W), 1 ≤ j, are real (4.13)

Proof If w = p + iq ∈ (4.12), p, q real, then p is even and q is odd so by (4.4) – (4.7),

w(k, �) =
{

p(k, �), ifk + � even
iq(k, �), ifk + � odd.

By (3.9)

Tj (n) = Tj (n; W) = 1

2πi
Trace

∫

∂Dn

(z − zn)Uj (z) dz (4.14)

where
Uj = R0WR0W · · · WR0 (4.15)

with j “letters” W and j + 1 “letters” R0 in this “word” U. All these operators are of trace
class [see Corollary 3.1] so Trace Uj is a sum of integrals of the diagonal elements (Uj )mm

which in turn are sums of matrix elements
∑

g
u(g, z), where g = {

g1, g2, . . . , gj−1
} ∈

Z
j−1
+ and

u(g, z) ≡ 1

z − zm

·W(m, g1)· 1

z − zg1

·W(g1, g2)· 1

z − zg2

· · ·W(gj−1,m)· 1

z − zm

(4.16)

If we put g0 = gj = m we have
∑j−1

t=0
(gt+1 − gt ) = gj − g0 = 0 (4.17)

The sum of all these differences in (4.17) is even (zero): so

γ − ≡ #�−, �− ≡ {t : gt+1 − gt odd} (4.18)

should be even. Put

γ + ≡ #�+, �+ ≡ {t : gt+1 − gt even} , (4.19)

and

p(g) ≡
∏j−1

t=0
iW(gt , gt+1). = (−1)q · (real number) (4.20)

Then

p(g) =
(∏

t∈�−W(gt , gt+1)
) (∏

t∈�+W(gt , gt+1)
)

= iγ
− · (real number) (4.21)

and by (4.18) p(g) is real.
By (4.16)

u(g, z) = p(g) · Fg(z), where (4.22)

Fg(z) = 1

(z − zm)2

∏j−1

t=1

1

z − zgt

(4.23)
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and this term brings into (4.14) the number-product p(g)J (g) where

J (g) = 1

2πi

∫

∂Dn

(z − zn)Fg(z) dz. (4.24)

For any g ∈ Z
(j−1)
+ this integral J (g) is a real number [see the next lemma]. Therefore,

Tj (n) — as a sum of (absolutely) convergent series with real terms — is a real number.

This completes the proof of Proposition 4.1. We will need more specific information
about integrals J (g) ∈ (4.24). The following is true.

Lemma 4.3 If m = n, and n ≥ N∗ (N∗ as defined in (4.11)),

J (g) = 0 if at least one g(t̃) = n, (4.25)

and

J (g) =
⎛
⎝

j−1∏
t=1

2(n − gt )

⎞
⎠

−1

otherwise. (4.26)

If m �= n,
J (g) = 0 if #τ(g) �= 2, whereτ(g) = {t : gt = n} (4.27)

and

J (g) = 1

4(n − m)2

⎛
⎝

j−1∏
t �∈τ(g)

2(n − gt )

⎞
⎠

−1

if#τ(g) = 2. (4.28)

Proof The integrand (4.23) of (4.24) could have a pole inside of Dn only at zn = 2n + 1.
In the cases (4.25) and (4.27) the pole’s order ≥ 2 or Fg(z) is analytic on Dn, so J (g) = 0.
In the cases (4.26), (4.28) the pole’s order is one and J (g) is the residue of Fg(z) at zn.

2 An odd potential vo in (4.2) As it is noticed in (4.6),

v0
jk = 〈

(δ (x − b) − δ (x + b))hj , hk

〉

= [1 − (−1)j+k]ajak (4.29)

=
{

0, ifj + k even
2ajak, ifj + k odd

(4.30)

where

ak = hk(b), k = 0, 1, . . . (4.31)

With b > 0 fixed, from now on we will use (ak) as in (4.31). By Lemmas 4.2 and 4.3
for n ≥ N∗

Tj (n; v0) ≡ Tj (n) = 0 ifj odd; (4.32)

in particular
T1(n) = 0, T3(n) = 0. (4.33)

To evaluate T2(n) we sum up (we did it in (4.16) in general setting) Cauchy integrals of
functions

(z − zn) · 1

z − zm

· v0
mk · 1

z − zk

· v0
km · 1

z − zm

(4.34)
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If m �= n it is analytic for any k so Cauchy integral is zero. If m = n

v0
mk = 0 ifn − k is even. (4.35)

Therefore, by Lemma 4.3, j = 2, with zn − zk = 2(n − k),

T2(n; v0) ≡ T2(n) =
∞∑

k = 0
k − n odd

v0
nkv

0
kn

zn − zk

=
∞∑

k = 0
k − nodd

2anak · 2akan

2(n − k)
= 2a2

nσ̃ (n)

(4.36)

where

σ̃ (n) =
∞∑

k = 0
n − kodd

a2
k

n − k
(4.37)

The technical analysis of this sequence (4.37) and its variations is the core of our
forthcoming paper which complements the present one. All the proofs will be given
there. In meantime we can refer a reader to [18], Sections 5–8.

It will bring us the proof of the main result of this paper:

Theorem 4.4 The operator

L = − d2

dx2
+ x2 + s[δ (x − b) − δ (x + b)], b > 0, s ∈ C

has a discrete spectrum σ(L).
There exists an absolute constant D such that with

N∗ = (D|s| log e|s|)2 (4.38)

all eigenvalues λn = λn(L) in the half-plane {z ∈ C : �z > N∗} are simple, and

λn = (2n + 1) + s2 κ(n)

n
+ ρ̃(n), |ρ̃(n)| ≤ C

log n

n3/2
(4.39)

where

κn = 1

2π

[
(−1)n+1 sin(2b

√
2n) − 1

2
sin(4b

√
2n)

]
(4.40)

The proof of the theorem is based on the following lemma.

Lemma 4.5 With σ̃ (n) ∈ (4.37)

σ̃ (n) = (−1)n+1 1

2

sin(2b
√

2n)√
2n

+ ρ(n), (4.41)

|ρ(n)| ≤ C
log n

n
(4.42)

An even potential ve ∈ (4.3) Recall (4.7); now

ve
jk = [1 + (−1)j+k]ajak (4.43)
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=
{

0, ifj + kodd
2ajak, ifj + k even

(4.44)

Therefore, by Lemma 4.3, j = 1,

T1(n; ve) ≡ T1(n) = ve
nn = 2a2

n (4.45)

and [compare (4.32) to (4.46)]

T2(n; ve) ≡ T2(n) = 2a2
nσ

′(n), (4.46)

σ ′(n) =
∞∑

′
k = 0

n − keven

a2
k

n − k
, (4.47)

where
∑′ means that k �= n.

But for the even potential there is no trivial claim T3(n) = 0. We could make formal
references to Lemma 4.3 but let us again look into those terms which form the sum-trace
T3(n). We integrate functions

F = (z − zn) · 1

z − zm

· 2amak · 1

z − zk

· 2aka� · 1

z − z�

· 2a�am · 1

z − zm

(4.48)

excluding (by (4.44)) triples (m, k, �) if at least one of the differences m − k, k − �, � − m

is odd.
If m = n then we can take only k, � �= n, otherwise the order of the pole at zn would be

≥ 2 and Cauchy integral (4.24) be zero. Then the partial sum of (4.14) over triples

{(m, k, �)|m = n, k �= n, � �= n, k − n, � − n even}
would be

2a2
n

∑′
k, �

n − k,

n − �even

a2
ka

2
�

(n − k)(n − �)
= (4.49)

= 2a2
n

(
σ ′(n)

)2
. (4.50)

If m �= n Cauchy integral of F ∈ (4.48) is not zero only if k = � = n, i.e., if we have two
(and only two) zeros in the denominator to balance the factor (z − zn). This set of triples

{(m, k, �)|m �= n, k = � = n, m − n even} (4.51)

leads to the subsum in T3(n) coming from (4.48)

2a4
n

∞∑
′

m = 0
m − neven

a2
m

(n − m)2
= 2a4

nτ
′(n) (4.52)
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If we combine (4.49) – (4.52) we conclude that

T3(n; ve) = 2a2
n

[
σ ′(n)2 + a2

nτ
′(n)

]
(4.53)

We will analyze the sequences σ ′, τ ′ in a forthcoming paper as well.
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