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Abstract We propose an arbitrary controlled-unitary (CU) gate and a simultaneous quan-
tum transmission and teleportation (SQTTP) scheme. The proposed CU gate utilizes
photons with cross-Kerr nonlinearities (XKNLs), coherent superposition states (CSSs) and
P-homodyne detectors and consists of the consecutive operation of a controlled-path (C-
path) gate and a gathering-path (G-path) gate It is almost deterministic and feasible with
current technology when strong CSSs and weak XKNLs are employed. Compared with
the existing multi-qubit or controlled gates, which utilize XKNLs, coherent states, and X-
homodyne detectors, the proposed CU gate can increase the feasibility of experimental
realization, and enhance the robustness against the decoherence effect. Based on the CU
gate, we present a SQTTP scheme that simultaneously transmits and teleports two unknown
states of photons between two parties (Alice and Bob) using path-polarization intra-particle
hybrid entanglement (IRHE) by transferring only a single photon. Consequently, it is pos-
sible to experimentally implement SQTTP with a certain success probability using the
proposed CU gate.
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1 Introduction

Quantum communication (QC) is a method to transfer information (quantum or classic)
from one place to another by using quantum phenomena For this purpose, quantum informa-
tion processing (QIP) protocols, such as quantum key distribution (QKD), quantum secret
sharing (QSS), quantum secure direct communication (QSDC) and quantum teleportation
(QTP) [1–16] have been thus far researched. Both the experimental implementation and the
efficiency of QCs and QIPs depend on the two main resources of quantum operation and
quantum entanglement.

The reliable quantum operations are performed by the realization of multi-qubit gates,
such as the arbitrary controlled-unitary (CU) gates. Thus, for the experimental realiza-
tion of QCs and QIPs with a certain success probability, quantum CU gates play a very
important role; accordingly, the deterministic CU gates must be realized with experimental
feasibility. Cross-Kerr nonlinearities (XKNLs) have been well studied, both experimentally
and theoretically. In principle, the XKNL effect can induce efficient photon interactions
with which photonic multi-qubit gates can be implemented, using far fewer physical
resources than linear optical schemes [17–19]. Nemoto et al. proposed nearly deter-
ministic controlled gates using an ancilla photon, linear optical elements, and quantum
non-demolition (QND) detectors based on weak XKNLs, X-homodyne detectors, and feed-
forwards [20]. This indicates that controlled gates can be experimentally realized by the
weak XKNL with a large amplitude of the probe beam in a coherent state. In 2009, Lin et
al. presented an almost deterministic controlled-path (C-path) gate and probabilistic con-
trolled gates, such as controlled-σX (CNOT), Fredkin, Toffoli, and arbitrary CU gates, using
XKNLs, coherent states, X-homodyne detectors, feed-forwards and no ancilla photon [21].
Thereafter, similar schemes for implementing photonic multi-qubit gates were developed.
QCs and QIPs based on the implementation of multi-qubit gates via weak XKNLs [22–32]
have also been investigated.

For a certain success probability, when designing multi-qubit gates using QNDs
based on XKNLs, the feasibility of experimental implementation and the robustness
against the decoherence effect during the process are two important considerations. The
experimental realization of strong XKNLs is still difficult [33], because the nature of the
Kerr medium is extremely weak [34]. Therefore, the multi-qubit gates should be imple-
mented using weak XKNLs which are as weak as possible. However, as described in
Ref. [20], for the condition αθ2 � 1, we must use the extremely strong amplitude of
the probe beam (coherent state); nevertheless, the decoherence effect between the probe
beam (coherent state) and the photon is inevitable in a practice situation [35]. Conse-
quently, for the deterministic distinguishability between the shifted and non-shifted phases
in the coherent state, the devised multi-qubit gates must satisfy the requirements of using
weak XKNLs and optimal (relatively smaller) amplitude of the coherent state to achieve
the feasibility of experimental implementation and the robustness against the decoherence
effect.

Regarding another resource, quantum entanglement, some QCs [1–12] have exploited the
properties of inter-particle entanglement (IEE), which correlates identical types of degrees
of freedom – for example, the spin or the polarization – of two or more particles. Both
the experimental implementation and the efficiency of QCs and QIPs also depend on the
experimental ease of implementation and the efficient maintenance of the entangled states.
Therefore, to successfully achieve both experimental implementation and efficiency, various
types of entanglement must be investigated.
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Hybrid entanglement is the entanglement between different types of degrees of freedom
(such as path, polarization, linear momentum, and spin) [36, 37] and intra-particle hybrid
entanglement (IRHE) is hybrid entanglement within a single particle. IRHE – entangling
degrees of freedom such as the polarization and the linear momentum [38, 39] or the polar-
ization and the angular momentum [40] of a single photon or the path and the spin [41] of
a single neutron – has been demonstrated theoretically and experimentally [38–43]. Since
IRHE is correlated within a single particle, the technique utilizing this type of entanglement
as a resource for an information processing scheme consumes fewer resources (photons)
than the technique utilizing IEE.

Recently, researchers have shown that the path-spin intra-particle hybrid (IRH) entan-
gled state of a single spin-1/2 particle could be transformed to the spin-spin IEE of two
particles (QIP) [13]. Furthermore, QCs using IRHE have been suggested for QKD [14],
unidirectional quantum teleportation (UQTP) [15], and unidirectional quantum transmis-
sion (UQT) [16] Another protocol for QC was recently proposed by Heo et al. [16]
whose work achieved UQT of an unknown state of photon using a single photon’s path-
polarization IRHE. Unlike the aforementioned studies [13, 15, 24] that utilized a BS
and an SF to generate path-spin IRH entangled states, the protocol uses only a sin-
gle polarizing beam splitter (PBS) to generate the entangled states. After passing the
PBS, the unknown state of photon is transformed into a path-polarization IRH entan-
gled state and is later reconstructed by Bob, as in Ref. [16]. Therefore the scheme using
PBS in Ref. [16] uses fewer resources – number of photons and CNOT operations – to
transmit or teleport an unknown state of photon (unidirectional QC) than the scheme in
Ref. [15].

In this paper, we first propose a deterministic and experimentally feasible CU gate,
which is composed of the consecutive operations of a C-path gate and a gathering-path
(G-path) gate via weak XKNLs, coherent superposition states (CSSs), P-homodyne detec-
tors, and feed-forwards. Comparing the existing multi-qubit gates [20–26] using XKNLs,
coherent states and X-homodyne detectors, either the nonlinear phase shift θ or the ampli-
tude of the coherent state α required in our CU gate will be relatively reduced while
maintaining the same error probability. Thus, when this CU gate is experimentally imple-
mented, it improves the feasibility and reduces the decoherence effect. Subsequently,
we present a simultaneous quantum transmission and teleportation (SQTTP) scheme for
two unknown states of photons exchanged between Alice and Bob by transmitting only
one photon, using both IRHE and IEE via linear optical devices and the proposed CU
gates.

This paper is organized as follows. In Section 2, we present a CU gate performed by the
consecutive operation of a C-path gate and a G-path gate via XKNLs, CSSs, P-homodyne
detectors, and feed-forwards. We demonstrate that this gate is almost deterministic using
weak XKNLs. Furthermore, compared to the existing multi-qubit gates [20–26] using
coherent states and X-homodyne detectors, our CU gate improves the feasibility of the
experimental implementation and enhances the robustness against the decoherence effect
using CSSs and P-homodyne detectors. In Section 3, we propose an SQTTP scheme that
simultaneously transfers and teleports two unknown photons between Alice and Bob using
both IRHE and IEE, by transferring only a single photon via optical elements, such as a
polarizing beam splitter (PBS), two beam splitters (BSs), two spin flippers (SFs), polarizing
detectors (P-Ds), and three CNOT operations by CU gates, as described in Section 2. Finally,
we discuss the success probability and experimental implementation of the proposed CU
gate and SQTTP in Section 4.
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2 CU Gate with XKNLs, CSSs, P-Homodyne Detectors and Feed-Forwards

Let us consider two types of photon polarization: linear-polarization (|H 〉 is horizontal
and |V 〉 is vertical) and circular-polarization (|R 〉 is right- and |L 〉 is left-circular). The
relationships between the two types are given by:

|H 〉 ≡ |+〉 = 1√
2

(|R 〉 + |L 〉) , |V 〉 ≡ i |−〉 = i√
2

(|R 〉 − |L 〉)
|R 〉 ≡ |0〉 = 1√

2
(|H 〉 − i |V 〉) , |L 〉 ≡ |1 〉 = 1√

2
(|H 〉 + i |V 〉) .

(1)

Thus, the linearly polarized states correspond to the eigen states of σX :
{|H 〉 ≡ |+〉, |V 〉 ≡ i |−〉} and the circularly polarized states to the eigen states of σZ :
{|R 〉 ≡ |0〉 , |L 〉 ≡ |1 〉} In order to explain the CU gate, we introduce the XKNL. The
Hamiltonian of the XKNL has the form

HKerr = �χN1N2, (2)

where Ni is the photon number operator and χ is the strength of nonlinearity of the Kerr
medium. Let us assume that |n 〉i represents a state of n photons (signal), and the probe
beam is in a coherent state |α 〉j . After passing through the Kerr medium, the state of the
signal-probe system is given as follows:

UKerr |n 〉1 |α 〉2 = eiθN1N2 |n 〉1 |α 〉2 = |n 〉1
∣
∣
∣αeinθ 〉2, (3)

where θ = χt and t is the interaction time. During this interaction the signal photon is
unaffected, and the phase of the probe beam |α 〉2 is shifted to

∣
∣αeinθ 〉2 according to the

number of photons n in the state |n 〉1.
Now, we propose a deterministic CU gate that is composed of the consecutive operation

of a C-path gate and a G-path gate, an arbitrary unitary operator U , XKNLs, CSSs, P-
homodyne detectors feed-forwards, and linear optical elements such as PBSs BSs and wave-
plates (WPs), as shown in Fig. 1. Suppose that the initial state of two photons is

|ϕ 〉int = α |R 〉1c |R 〉3t + β |R 〉1c |L 〉3t + γ |L 〉1c |R 〉3t + δ |L 〉1c |L 〉3t , (4)

where the superscripts describe photon paths and the subscripts c and t represent the control
and target photon, respectively. Consequently, the final state |
 〉fin which is performed by
the CU gate will be

|
 〉fin = α |R 〉1c |R 〉4t + β |R 〉1c |L 〉4t + γ |L 〉1c
(

U |R 〉4t
)

+ δ |L 〉1c
(

U |L 〉4t
)

. (5)

If U is σX , then the CU gate will be a CNOT gate: |
 〉fin = α |R 〉1c |R 〉4t + β |R 〉1c |L 〉4t +
γ |L 〉1c |L 〉4t + δ |L 〉1c |R 〉4t . The probe beam is in a CSS C (|α 〉 + |−α 〉) with a normaliza-

tion factor C = 1
/√

2 + 2e−2α2
.

In the C-path gate, (Fig. 1), after the control photon c passes through a WP, which per-
forms like the Hadamard operator: |R 〉 → |H 〉, |L 〉 → −i |V 〉, |H 〉 → |R 〉, |V 〉 →
i |L 〉, both the control photon c and target photon t pass through a PBS and a BS. When
passing through the PBS, |H 〉 is transmitted and |V 〉 is reflected. The action of 50:50 BS is
described by:

a+
U → 1√

2

(

a+
U + a+

D

)

, a+
D → 1√

2

(

a+
U − a+

D

)

, (6)
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Fig. 1 The CU gate (black box) comprises the consecutive operation of a C-path gate (red box) and a G-path
gate (blue box) using XKNLs CSSs, P-homodyne detectors and feed-forwards. The CU gate is composed of
three parts, the C-path gate, U operator, and G-path gate. First, in the C-path gate, the two photons (c and t)
in the input state induce the controlled phase shifts θ and −θ in the probe beam (CSS: C (|α 〉 + |−α 〉)) by
the interaction of XKNLs. Then, we measure the probe beam with the P-homodyne detector, |P 〉 〈P|, which
projects the CSS to momentum space According to the measurement outcome P of the P-homodyne detector,
we determine whether or not to operate the phase shifter� (P) and the path-switch S on the target photon t by
feed-forward. After passing the C-path gate, the path of the target photon is split according to the polarization
of the control photon. The target photon goes through path 3 (or 4) when the control photon is |H 〉 (or |V 〉).
In the second step, the unitary operator U on path 4 is applied to the target photon. In the third step of the
G-path gate, the XKNLs induce a phase shift θ in the probe beam (CSS: C (|α 〉 + |−α 〉)) according to the
target photon t . Finally, to gather the target photon on the split path, we apply the unitary operator −σX and
the phase shifter �′ (P) to the control photon and the path-switch S to the target photon via the feed-forward,
depending on the measurement outcome of the P-homodyne detector on the probe beam. Consequently, the
CU gate performs a controlledunitary operation on the input state

where a+
i is a creation operator of a photon on path i (U is an Up path and D is a Down

path). Subsequently, the two photons (c and t) interact with the probe beam in a CSS
C (|α 〉 + |−α 〉) to introduce the phase shifts θ and −θ in the Kerr medium as shown in
Fig. 1. After passing through the PBS, the photon state is transformed to |ϕ 〉01:

|ϕ 〉01 = C√
2

[(

α |H 〉1c |R 〉4t + β |H 〉1c |L 〉4t
) (∣

∣
∣αeiθ 〉 +

∣
∣
∣−αeiθ 〉

)

+
(

−iγ |V 〉1c |R 〉3t − iδ |V 〉1c |L 〉3t
) (∣

∣
∣αe−iθ 〉 +

∣
∣
∣−αe−iθ 〉

)]

(7)

+ C√
2

(

α |H 〉1c |R 〉3t + β |H 〉1c |L 〉3t − iγ |V 〉1c |R 〉4t − iδ |V 〉1c |L〉4t
)

(|α 〉+|−α 〉) .
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Then, the probe beam is measured by a P-homodyne detector [30–32] which projects the
probe beam to momentum space. When α is real, the projection of |ϕ 〉01 onto an eigen state
|P 〉 of the observable P is given by:

|ϕ 〉P:CP = 〈P |ϕ 〉01
= C

[

s0 · √
2 cos (α · P)

]

·
[

α |H 〉1c |R 〉3t + β |H 〉1c |L 〉3t
− iγ |V 〉1c |R 〉4t − iδ |V 〉1c |L 〉4t

]

+ C√
2

[

s1+
] ·

[

e−iαφ+ ·
(

α |H 〉1c |R 〉4t + β |H 〉1c |L 〉4t
)

+eiαφ+ ·
(

−iγ |V 〉1c |R 〉3t − iδ |V 〉1c |L 〉3t
)]

+ C√
2

[

s1−
] ·

[

eiαφ− ·
(

α |H 〉1c |R 〉4t + β |H 〉1c |L 〉4t
)

+ e−iαφ− ·
(

−iγ |V 〉1c |R 〉3t − iδ |V 〉1c |L 〉3t
)]

, (8)

wherewe used the result 〈P ∣
∣αe±iθ〉= 1

4√2π
exp

[

− 1
4 (P ∓2α sin θ)2−iα cos θ(P∓ α sin θ)

]

.

s0 = 1
4
√
2π

e− 1
4 (P)2 , s1± = 1

4
√
2π

e− 1
4 (P∓2α sin θ)2 , φ± = cos θ (P ∓ α sin θ) . (9)

In Fig. 2, we plot s0 · √
2 |cos (α · P)| (rapid oscillation) and s1± (Gaussian curve) as a

function of the P-homodyne measurement result of (8).

Fig. 2 The probability distribution functions of the measurements of the probe beam in CSS, acquired by
a P-homodyne measurement: The blue, black and red functions correspond to S1−, S0 · √

2 |cos (α · P)| and
S1+, respectively. P0+ and P0− are the midpoints of the three peaks
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These functions have peaks at −2α sin θ , 0 and 2α sin θ , and the two midpoints between
the three functions are P0± = ±α sin θ , as shown in Fig. 2. Assuming that the distances
|2α sin θ | (between the peak of s0 · √

2 cos (α · P) and the peaks of s1±) and |4α sin θ |
(between the peaks of s1±) are sufficiently large, there is little overlap between the three
functions. Then, a P-homodyne detector distinguishes the probe beam in the coherent states
with a certain probability. If we obtain the measurement result P, which is in the regime of
P0− < P < P0+, we can construe that the state of the two photons c and t is:

|ϕ 〉CP = α |H 〉1c |R 〉3t + β |H 〉1c |L 〉3t − iγ |V 〉1c |R 〉4t − iδ |V 〉1c |L 〉4t . (10)

This state |ϕ 〉CP is performed by the C-path operation, which switches path 3 of the target
photon t to path 4 if the polarization of the control photon c is |V 〉, on the initial state |ϕ 〉int
in (4). On the other hand, if the measurement result P is larger than P0+ or smaller than P0−,
the state of the two photons is given by:

|ϕ 〉P>P0+ = e−iαφ+ · (

α |H 〉1c |R 〉4t + β |H 〉1c |L 〉4t
) + eiαφ+ · (−iγ |V 〉1c |R 〉3t − iδ |V 〉1c |L 〉3t

)

|ϕ 〉P<P0− = eiαφ− · (

α |H 〉1c |R 〉4t + β |H 〉1c |L 〉4t
) + e−iαφ− · (−iγ |V 〉1c |R 〉3t − iδ |V 〉1c |L 〉3t

)

,

(11)

where the states |ϕ 〉P>P0+ and |ϕ 〉P<P0− differ in the global phase. Subsequently, according
to the feed-forward, which depends on the measurement result P, the phase shifter � (P)

and the path-switch S are performed on the target photon t in the state |ϕ 〉P>P0+
(|ϕ 〉P<P0−

)

.
The transformed state |ϕ 〉F−F will be:

|ϕ 〉P>P0+|ϕ 〉P<P0−
feed-forward−−−−−−−−−−−−−→ |ϕ 〉F−F =α |H 〉1c |R 〉3t + β |H 〉1c |L 〉3t − iγ |V 〉1c |R 〉4t −iδ |V 〉1c |L 〉4t ,(12)

where the state |ϕ 〉F−F is the same as the state |ϕ 〉CP in (10). Consequently, the state
|ϕ 〉P>P0+

(|ϕ 〉P<P0−
)

can be transformed to the state |ϕ 〉CP (the performed C-path oper-
ation) using feed-forward. The sum

(

P CP
error

)

of the error probabilities of the measurement
which correspond to the overlap between S1− and S0 · √

2 |cos (α · P)|, between S1+ and
S0 · √

2 |cos (α · P)|, or between S1+ and S1− in (8), is given by:

P CP
error = |C|2

[∫ P0+

0

(

|s1+|2 + |s1−|2
)

dP +
∫ ∞

P0+

(

2
∣
∣
∣s0 · √

2 cos (α · P)

∣
∣
∣

2 + |s1−|2
)

dP

]

≈ |C|2 · 3
2

[

1 − erf

(
2α sin θ

2
√
2

)]

= 3

4

[

1 − erf

(
2α sin θ

2
√
2

)]

, (13)

where erf(x) is a Gauss error function and 2α sin θ is the amplitude of the distance between
the functions s0 · √

2 cos (α · P) and s1− (or s1+), as shown in Fig. 2. When α is real and
� 1, |C|2 = 1/2. For the nearly deterministic C-path gate, P CP

error is smaller than 10−6 when
2α sin θ ∼ 2αθ > 9. This indicates that if we can choose the amplitude α of the probe beam
to be sufficiently large, then the weak XKNL (θ  1) can be utilized for the C-path gate.
Thus, using weak XKNLs, a CSS and a P-homodyne detector with the condition 2αθ > 9,
this C-path gate is nearly deterministic with a certain success probability (P CP

succ = 1). After
passing the C-path, the path of the target photon is split, as shown in (10).
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In the second step, the target photon in the state |ϕ〉CP (10) passes through an arbitrary
unitary operator U on path 4. The transformed state |ϕ〉U is represented as:

|ϕ 〉U = (U)4t |ϕ 〉CP = α |H 〉1c |R 〉3t + β |H 〉1c |L 〉3t − iγ |V 〉1c
(

U |R 〉4t
)

− iδ |V 〉1c
(

U |L 〉4t
)

.

(14)
For example, if U is σX , σZ or iσY , then the state |ϕ〉U will be given by:

|ϕ 〉σX
= (σX)4t |ϕ 〉α = α |H 〉1c |R 〉3t + β |H 〉1c |L 〉3t − iγ |V 〉1c |L 〉4t − iδ |V 〉1c |R 〉4t ,

|ϕ 〉σZ
= (σZ)4t |ϕ 〉α = α |H 〉1c |R 〉3t + β |H 〉1c |L 〉3t − iγ |V 〉1c |R 〉4t + iδ |V 〉1c |L 〉4t ,

|ϕ 〉iσY
= (iσY )4t , |ϕ 〉α = α |H 〉1c |R 〉3t + β |H 〉1c |L 〉3t + iγ |V 〉1c |L 〉4t − iδ |V 〉1c |R 〉4t ,

(15)
These are the output states of the unitary operation of CNOT, controlled-σZ(CZ) or
controlled-σY (CY) on the initial state of the two photons (4), respectively. Since the path of
the target photon is divided into the two paths 3 and 4 in (14), we use the G-path gate to
merge the split path of the target photon to a single path.

In the G-path gate of the third step, as described in Fig. 1, the target photon in |ϕ 〉U
passes through a BS. After the CSS C (|α 〉 + |−α 〉) is shifted to C

(∣
∣αe−iθ 〉 + ∣

∣−αe−iθ 〉)
by the phase shifter, the target photon t induces a controlled phase shift θ in the probe beam
by the interaction of XKNL. Then, the transformed state |
 〉01 is given by:

|
 〉01 = C√
2

[

α |H 〉1c |R 〉4t + β |H 〉1c |L 〉4t
−iγ |V 〉1c

(

U |R 〉4t
)

− iδ |V 〉1c
(

U |L 〉4t
)]

(|α 〉 + |−α 〉)

+ C√
2

[

−α |H 〉1c |R 〉3t − β |H 〉1c |L 〉3t − iγ |V 〉1c
(

U |R 〉3t
)

−iδ |V 〉1c
(

U |L 〉3t
)] (∣

∣
∣αe−iθ

〉 +
∣
∣
∣−αe−iθ

〉)

. (16)

Subsequently, the P-homodyne detector measures the probe beam. The projection of |
 〉01
onto an eigen state |P 〉 of the observable P is given as follows:

|
 〉P:GP = 〈P |ψ 〉01
= C

[

s0 · √
2 cos (α · P)

]

·
[

α |H 〉1c |R 〉4t + β |H 〉1c |L〉4t − iγ |V 〉1c
(

U |R 〉4t
)

− iδ |V 〉1c
(

U |L 〉4t
)]

+ C√
2

[

s1+
] · eiαφ+ ·

[

−α |H 〉1c |R 〉3t − β |H 〉1c |L 〉3t − iγ |V 〉1c
(

U |R 〉3t
)

− iδ |V 〉1c
(

U |L 〉3t
)]

+ C√
2

[

s1−
] · e−iαφ+ ·

[

−α |H 〉1c |R 〉3t − β |H 〉1c |L 〉3t − iγ |V 〉1c
(

U |R 〉3t
)

− i δ |V 〉1c
(

U |L 〉3t
)]

, (17)

where s0, s1± and φ+ are given in (9). If we obtain the measurement result P, which is in
the regime of P0− < P < P0+, we can construe that the state of the two photons c and t is:

|
 〉GP = α |H 〉1c |R 〉4t + β |H 〉1c |L 〉4t − iγ |V 〉1c
(

U |R 〉4t
)

− iδ |V 〉1c
(

U |L 〉4t
)

. (18)
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The path of this state |
 〉GP is merged with path 4 by the G-path gate. On the other
hand, if the measurement result P is larger than P0+ or smaller than P0−, the state of the two
photons is given by:

|
 〉P>P0+ = eiαφ+ ·
[

−α |H 〉1c |R 〉3t − β |H 〉1c |L 〉3t − iγ |V 〉1c
(

U |R 〉3t
)

− iδ |V 〉1c
(

U |R 〉3t
)]

|
 〉P<P0− = e−iαφ+ ·
[

−α |H 〉1c |R 〉3t − β |H 〉1c |L 〉3t − iγ |V 〉1c
(

U |R 〉3t
)

− iδ |V 〉1c
(

U |L 〉3t
)]

,

(19)

where the states |
 〉P>P0+ and |
 〉P<P0− have different global phases. Subsequently, we
perform a −σX and the phase shifter �′ (P) on the control photon c, and the path-switch S

on the target photon t in the state |
 〉P>P0+
(|
 〉P<P0−

)

by feed-forward according to the
measurement result P. The transformed state |
 〉F−F will be:

|
 〉P>P0+|
 〉P<P0−

feed-forward−−−−−−−−−−−−−→ |
 〉F−F = α |H 〉1c |R 〉4t +β |H 〉1c |L 〉4t −iγ |V 〉1c
(

U |R 〉4t
)

−iδ |V 〉1c
(

U |L 〉4t
)

,

(20)

where the state |
 〉F−F is the same as the state |
 〉GP in (18). Thus, the output state is
always the state |
 〉GP . After passing the control photon c in the state |
 〉GP through a
WP, we finally obtain the output state |
 〉fin which is performed by the operation of the CU
gate, as in (5). When the G-path gate utilizes the same CSS amplitudes of (α) and phase
shift (θ) as the C-path gate, the error probability P GP

error of this gate is the same as in (13);
P GP

error = P CP
error . Consequently, the error probability P CU

error of the single CU gate, which is
composed the consecutive operations of C- and G-path gates, is given by:

P CU
error = P CP

error + P GP
error −

(

P CP
error · P GP

error

)

∵ P CP
error = P GP

error

= 2P CP
error −

(

P CP
error

)2
(21)

where P CP
error = 3

4

[

1 − erf
(
2α sin θ

2
√
2

)]

, as in (13). Thus, the CU gate is nearly deterministic
(

P CU
error < 10−5

)

for 2α sin θ ∼ 2αθ > 9. Furthermore, our multi-qubit gate using CSS and
a P-homodyne detector is experimentally more efficient than the existing multi-qubit gates
that use the coherent state and an X-homodyne detector [20–26]. Compared with the C-path
gate in Ref. [21], it has an error probability given by

Perror = 1

2

[

1 − erf

(
2α (1 − cos θ)

2
√
2

)]

≈ 1

2

[

1 − erf

(

αθ2

2
√
2

)]

. (22)

This error probability is also applied to other multi-qubit gates [20, 22–26] via weak XKNLs
using the coherent state and an X-homodyne detector. If we choose the same error prob-
ability (< 10−6), the condition of 2αθ > 9 is required for the deterministic operation of
our C-path gate as in (13). However, for the same error probability (< 10−6), the condi-
tion αθ2 > 9 is required for the C-path gate in [21] Consequently, our method of using the
CSS and P-homodyne detector can reduce the nonlinear phase shift or the strength of the
coherent state, in the regime of θ  1 (weak XKNL) and α � 1. Therefore our proposed
CU gate not only increases the feasibility of experimental realization but also enhances the
robustness against the decoherence effect.
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3 Simultaneous Quantum Transmission and Teleportation (SQTTP) Scheme

Figure 3 shows the scheme for the simultaneous quantum transmission (QT) of the unknown
photon state |
 〉T from Alice to Bob and QTP of photon state |ϕ 〉B from Bob to Alice.
Let us consider an unknown state of photon |
 〉T = α |H 〉T + β |V 〉T that Alice wants to
send to Bob along path Q. After passing through the PBS, the initial state |� 〉int becomes
a path-polarization IRH entangled state |� 〉IRHE, as follows:

|� 〉int = α |H 〉QT + β |V 〉QT PBS−−−−−−→ |� 〉IRHE = α |H 〉PT + β |V 〉QT , (23)

with |α|2 + |β|2 = 1 Subsequently, Alice performs a CNOT operation in which the photon
T in |� 〉IRHE acts as a control qubit and the right-circularly polarized state |R 〉a is used
as a target qubit. The possible results of the CNOT operation depend on the two types of
polarized state (linear and circular) and can be summarized as follows:

UCNOT (|H 〉1 |R 〉2) = 1√
2

(|H 〉1 |H 〉2 − |V 〉1 |V 〉2) ,

UCNOT (|H 〉1 |L 〉2) = 1√
2

(|H 〉1 |H 〉2 + |V 〉1 |V 〉2)

UCNOT (|V 〉1 |R 〉2) = 1√
2

(|H 〉1 |V 〉2 + |V 〉1 |H 〉2) ,

UCNOT (|V 〉1 |L 〉2) = −1√
2

(|H 〉1 |V 〉2 − |V 〉1 |H 〉2) (23-1)

UCNOT (|H 〉1 |H 〉2) = |H 〉1 |H 〉2, UCNOT (|H 〉1 |V 〉2) = −i |V 〉1 |V 〉2
UCNOT (|V 〉1 |H 〉2) = |V 〉1 |H 〉2, UCNOT (|V 〉1 |V 〉2) = i |H 〉1 |V 〉2 (23-2)

where the states of photons 1 and 2 are used as the control and target qubit, respectively,
and are defined with respect to {|H 〉 ≡ |+〉, |V 〉 ≡ i |−〉}, {|R 〉 ≡ |0 〉, |L 〉 ≡ |1 〉} as in

Fig. 3 The SQTTP scheme consists of a PBS and a CNOT operation on Alice’s side and two BSs, two SFs,
two CNOT operations and two P-Ds on Bob’s side. |
 〉T (|ϕ 〉B) is an unknown state of photon that Alice
(Bob) wants to send to Bob (Alice). |R 〉a (|R 〉b) is recovered for the teleported (transferred) unknown state
of photon by Bob (Alice) using the unitary operation UA (UB). The suitable operation is determined by the
information on the initial path of the transferred photon T , the measured path and polarization of photon
T in P-DB02, and the measured polarization of photon B in P-DB01. The CNOT operation on Alice’s side
reconstructs the teleported photon state from Bob to Alice (|ϕ 〉B → |R 〉a) while two CNOT operations on
Bob’s side reconstruct the transmitted state of photon from Alice to Bob (|
 〉T → |R 〉b) and teleport the
unknown state of photon (|ϕ 〉B) from Bob to Alice
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(1). In Fig. 4, the CNOT operations that Alice and Bob use to recover and teleport unknown
photons in SQTTP, are practically implemented by CNOT gates (the consecutive operation
of a C-path gate and a G-path gate via XKNLs, CSSs, P-homodyne detectors, and feed-
forwards), as described in Section 2. According to (23-1), after the CNOT operation, the
output state |� 〉Alice of Alice becomes an inter-particle (IE) entangled state between the
polarizations of the two photons T and a, which depend on the path in the following manner:

|� 〉IRHE CNOT(T −a)−−−−−−−−−−−−−→ |� 〉Alice = 1√
2

[

α
(

|H 〉PT |H 〉a − |V 〉PT |V 〉a
)

+ β
(

|H 〉QT |V 〉a + |V 〉QT |H 〉a
)]

. (24)

Equation (24) can also be expressed as follows:

|� 〉Alice = 1√
2

[(

α |H 〉PT + β |V 〉QT
)

|H 〉a −
(

α |V 〉PT − β |H 〉QT
)

|V 〉a
]

. (25)

Equations (24) and (25) show that the state |� 〉Alice can be expressed as a linear com-
bination of IE entangled states between the polarizations of the two photons T and
a as shown in (24), and also be expressed as a linear combination of IRH entangled
states between the path and polarization of photon T as shown in (25) Alice trans-
mits photon T in the state |� 〉Alice to Bob’s side, while photon a remains on Alice’s
side.

On Bob’s side, after photon T in the state |� 〉Alice passes the BS and SF (on path P),
Bob performs a CNOT operation, in which photon T in |� 〉Alice is used as a control qubit

Fig. 4 The CNOT operations performed between the control photon T (the transmission photon: Alice’s
unknown state |
 〉T ) and the target photons a b (B) [Alice’s recovering photon state |R 〉a , Bob’s recover-
ing (unknown) photon states |R 〉a (|ϕ 〉B)], shown in Fig. 3. These CNOT operations are implemented by the
CU gates, in which the C-path and G-path gates are consecutively performed by XKNLs, CSSs, P-homodyne
detectors, and feed-forwards, as described in Section 2. If the unitary operator U in the middle between the
C-path and G-path gates is σX , then the CU gate will become a CNOT (controlled-σX) gate. The details of
this CNOT gate are presented in Appendix
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and the right-circularly polarized state of photon |R 〉b is used as a target qubit. According
to the operations of the BS SF and CNOT in (23-1), the state |
 〉01 is given by:

|� 〉Alice

BS, SF(path P),CNOT(T −b)−−−−−−−−−−−−−−−−−−−−→

|
 〉01 = 1

2
√
2

[(

|H 〉PT |H 〉a + |V 〉PT |V 〉a
)

(α |V 〉b + β |H 〉b)

−
(

|H 〉PT |V 〉a − |V 〉PT |H 〉a
)

(α |H 〉b − β |V 〉b)
−

(

|H 〉QT |V 〉a + |V 〉QT |H 〉a
)

(α |V 〉b + β |H 〉b)
+

(

|H 〉QT |H 〉a − |V 〉QT |V 〉a
)

(α |H 〉b − β |V 〉b)
]

, (26)

where the operationUSF of the SF isUSF = |H 〉 〈V |+|V 〉 〈H |. By the CNOT operation in
(26), the expansion coefficients α, β of Alice’s unknown photon T appear in Bob’s photon
state b. The IEE between the two photons T and a is still maintained.

In order to teleport the unknown state of photon |ϕ 〉B = χ |H 〉B +
δ |V 〉B

(|χ |2 + |δ|2 = 1
)

to Alice, Bob performs an SF (on path P) and a CNOT operation,
in which photon T in |
 〉01 is used as a control qubit and the unknown state of photon | 〉B
is used as a target qubit, according to (23-2). Subsequently, after photon T is injected into
the BS, the final photon state |
 〉Bob:Q is expressed as follows:

|
 〉01 SF(path P), CNOT (T −B),BS−−−−−−−−−−−−−−−−−−−−−−−−−→

|
 〉Bob:Q = 1

2
√
2

[

|H 〉QT (α |V 〉b + β |H 〉b) {|R 〉B (χ |V 〉a − δ |H 〉a) + |L 〉B (χ |V 〉a + δ |H 〉a)}

− |V 〉PT (α |H 〉b − β |V 〉b) {|R 〉B (χ |V 〉a − δ |H 〉a) + |L 〉B (χ |V 〉a + δ |H 〉a)}
+ |V 〉QT (α |V 〉b − β |H 〉b) {|R 〉B (χ |H 〉a + δ |V 〉a) + |L 〉B (χ |H 〉a + δ |V 〉a)}
+ |H 〉PT (α |H 〉b+β |V 〉b) {|R 〉B (χ |H 〉a +δ |V 〉a)+|L 〉B (χ |H 〉a +δ |V 〉a)}

]

, (27)

where the polarized state of photon B is expressed in terms of circular polarization
{|R 〉c, |L 〉c} If Alice transfers an unknown photon to Bob along path P , α |H 〉PT +β |V 〉PT ,
and if Bob wants to send |ϕ 〉B = χ |H 〉B + δ |V 〉B to Alice, the final state |
 〉Bob: P will
be expressed as follows:

|
 〉Bob: P = 1

2
√
2

[

|H 〉PT (α |V 〉b+β |H 〉b) {|R 〉B (χ |V 〉a −δ |H 〉a)+|L 〉B (χ |V 〉a+δ |H 〉a)}

− |V 〉QT (α |H 〉b − β |V 〉b) {|R 〉B (χ |V 〉a − δ |H 〉a) + |L 〉B (χ |V 〉a + δ |H 〉a)}
+ |V 〉PT (α |V 〉b + β |H 〉b) {|R 〉B (χ |H 〉a + δ |V 〉a) + |L 〉B (χ |H 〉a − δ |V 〉a)}
+ |H 〉QT (α |H 〉b−β |V 〉b) {|R 〉B(χ |H 〉a+δ |V 〉a)+|L 〉B(χ |H 〉a−δ |V 〉a)}

]

. (28)

Next, Bob measures both the path and the polarization of photon T in basis {|H 〉T , |V 〉T }
(using P-DB02) and the polarization of photon B in basis {|R 〉c, |L 〉c} (using P-DB01) but
Bob does not measure the polarization of photon b. After these measurements, the state of
photon b collapse to one of four possible states and the state of photon a to one of eight
possible states. Subsequently, Alice announces to Bob the initial path information of the
transferred photon T and Bob communicates to Alice the measured path and polarization
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Table 1 The collapsed states of the photons (photons a and b) and the suitable unitary operations (UA,UB)

depending on Alice’s path and Bob’s measurement outcomes

information of photon T and photon B through the public channel. By performing proper
operations UA on Alice’s target photon a and UB on Bob’s target photon b, they can recover
the teleported unknown state of photon χ |H 〉a + δ |V 〉a and the transferred unknown state
of photon α |H 〉b + β |V 〉b Table 1 summarizes all possible states of Alice’s and Bob’s
target photons (photons a and b) and the optimal unitary operators (UA and UB), which
depend on the initial path information of the transferred photon T and the measured path and
polarizations of photon T and photonB. Alice performs QT, in which the transferred photon
T (from Alice to Bob) is in an unknown path-polarization IRH entangled state generated by
a PBS, according to the method described in Ref. 16 Also, Bob can teleport his unknown
state of photon B to Alice using IEE between the polarizations of the two photons T and
a. Unlike QT of photons, during QTP, the sender (Bob) does not directly send an unknown
state of photon but instead uses a classical channel to send the information about the state of
photon, and the receiver (Alice) then uses the information to reconstruct its unknown state
Consequently, SQTTP is a bidirectional QC (QT and QTP) using CNOT gates, as described
in Section 2.

4 Conclusion

In this paper, we proposed a scheme for SQTTP that performs mutual transfer of two
unknown states of photons between Alice and Bob. This scheme is developed based on
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improvements applied to unidirectional QC to establish bidirectional QC, which are detailed
in Ref. 16. Our protocol consists of both QT that transfers Alice’s unknown state of pho-
ton to Bob and QTP that simultaneously teleports Bob’s unknown state of photon to Alice.
In our protocol, both participants simultaneously become message senders and message
receivers by the transfer of only a single photon between them, as in the scheme from Ref.
16. To accomplish this exchange, the path and polarization of the transferred photon (Alice’s
initial photon T ) are entangled (IRHE) using a PBS and then Bob teleports his unknown
state of photon B using the CNOT operation and the physical properties of IEE between
photons T and a.

Because the SQTTP scheme is based on the CU (CNOT) gate, its success probabil-
ity and realization feasibility strongly depend on the deterministic performance and the
experimental implementation of the CU gate. Therefore, we propose a nearly determinis-
tic CU gate that can be operated by the consecutive performance of C-path and G-path
gates via weak XKNLs CSSs, P-homodyne detections and feed-forwards as described in

Section 2 The error probability of the single CU gate is P CU
error = 2P CP

error − (

P CP
error

)2
,

where P CP
error = 3

4

[

1 − erf
(

2αθ
/

2
√
2
)]

is the error probability induced by the overlaps

between the three functions s0 · √
2 cos (α · P), s1− and s1+ of Fig. 2. Thus, the CU gate

has P CU
error < 1.02 × 10−5 (nearly deterministic) for 2αθ > 9. Additionally, the XKNL is

not necessarily very large (θ  1) because it can be compensated by using CSSs with very
large amplitude.

Fig. 5 Plots of the error probabilities of the C-path gate (black) using CSS and a P-homodyne detector
and the existing multi-qubit gate (red) using coherent state and an X-homodyne detector, as a function of θ

(the phase shift of the XKNL) for a probe beam amplitude of α = 1000. The black and red plots are the

functions P CP
error = 3

[

1 − erf
(

2αθ
/

2
√
2
)]/

4 and Perror =
[

1 − erf
(

αθ2
/

2
√
2
)]/

2 respectively.

For example, when θ = 0.0045, P CP
error ≈ 5.1 × 10−6 and Perror ≈ 0.495
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On the other hand, the extremely strong amplitude of the probe beam (CSS) may give
rise to a stronger decoherence effect (more difficult experimental implementation [35]).
From this point of view, our CU gate can use a smaller probe beam amplitude compared to
the existing multi-qubit gates (using the coherent state and X-homodyne detector) [20–26]
because the requirement 2αθ > 9 in our deterministic CU gate is much more relaxed than
the existing condition αθ2 > 9 in the multi-qubit gates [20–26]. Although natural XKNLs
are extremely weak, θ ≈ 10−18 [34], it has been established that the nonlinearity magni-
tude could be largely improved, to about θ ≈ 10−2 with the help of electromagnetically
induced transparency (EIT) [44, 45], which is effectively employed in the multi-qubit gates.
When the amplitude of the nonlinear phase shift θ is 10−2, the amplitudes of the probe
beams in our CU gate (CSS) and the existing multi-qubit gates (coherent state) should be
α(CSS) > 450 (in (13)) and α(coherent) > 90000 (in (22)) for the same error probabilities as
Perror < 10−6.

Furthermore, as shown in Fig. 5, if the same probe beam amplitude (α = 1000) is uti-
lized for the multi-qubit gates, the amplitudes of the XKNLs in our CU gate corresponding
to P CU

error are weaker than those in the existing multi-qubit gates [20–26] corresponding
to Perror . Consequently, the proposed CU gate, which uses the weak XKNLs, CSSs, P-
homodyne detectors and feed-forwards, is almost deterministic P CU

error < 1.02 × 10−5 for
2αθ > 9, and can reduce the nonlinear phase shift or the strength of the probe beam
compared to the existing multi-qubit gates, which use the coherent state and X-homodyne
detectors. Thus, our CU gate can improve the feasibility of experimental realization and the
robustness against the decoherence effect with respect to present techniques. In conclusion,
our scheme (SQTTP) is experimentally applicable with a certain success probability.

Appendix

CNOT Gates in SQTTP

In Section 2, both the control photon and the target photon of the initial state are in a single
path of the CU gate, as shown in (1). However, on Alice’s and Bob’s side of the SQTTP, the
path of the control photon T is divided into two paths P andQwhen path-polarization IRHE
is generated as shown in Fig. 3. In our SQTTP scheme, we use a modified CNOT gate, such
as in Fig. 4, which contains a split path of the control photon T . The details are shown in

Fig. 6. For example, let us assume that the control photon is in a state 1√
2

(

|H 〉Pc + |V 〉Qc
)

and the target photon in |R 〉t . The initial state |φ 〉int is given by:

|φ 〉int = 1√
2

(

|H 〉Pc |R 〉3t + |V 〉Qc |R 〉3t
)

, (A.1)

where the target photon t is in path 3. After the control photon c passes through the two
WPs, the two photons (c and t) are injected to the C-path gate Then, the state |φ 〉int is
changed to |φ 〉CP

|φ 〉int WPs(Control photon)−−−−−−−−−−−−−−−−−−−→ 1√
2

(

|R 〉Qc |R 〉3t + i |L 〉Qc |R 〉3t
)

(A.2)

C-path gate−−−−−−−−−−−−→ |φ 〉CP = 1

2

(

|H 〉Pc |R 〉3t + i |H 〉Qc |R 〉3t − i |V 〉Pc |R 〉4t − |V 〉Qc |R 〉4t
)

.
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Fig. 6 The CNOT gates in SQTTP scheme (Figs. 3 and 4): The split path (P and Q) of the control photon c

and the single path of the target photon t , the multi-qubit gates perform the interaction of XKNLs to between
CSSs and two photons (c and t) according to the path (P and Q), respectively. If the unitary operator U in
the middle of the C-path and G-path gates is σX , then the CU gate becomes a CNOT gate

After the application of the unitary operator σX , G-path gate and two WPs, the state |φ 〉CP

is finally transformed to |φ 〉fin as follows:

|φ 〉CP

σX(Target photon : path 4)−−−−−−−−−−−−−−−−−−−−−−−→ 1

2

(

|H 〉Pc |R 〉3t + i |H 〉Qc |R 〉3t −i |V 〉Pc |L 〉4t −|V 〉Qc |L 〉4t
)

G-path gate−−−−−−−−−−−−→ 1

2

(

|H 〉Pc |R 〉4t + i |H 〉Qc |R 〉4t − i |V 〉Pc |L 〉4t − |V 〉Qc |L 〉4t
)

WPs(Control photon)−−−−−−−−−−−−−−−−−−−→ |φ 〉fin= 1

2

(

|R 〉Pc |R 〉4t + i |R 〉Qc |R 〉4t + |L 〉Pc |L 〉4t −i |L 〉Qc |L 〉4t
)

= 1√
2

[
1√
2

(

|R 〉Pc |R 〉4t + |L 〉Pc |L 〉4t
)

+ i√
2

(

|R 〉Qc |R 〉4t − |L 〉Qc |L 〉4t
)]

. (A.3)

where the initial state is |φ 〉int = 1√
2

(

|H 〉Pc |R 〉3t + |V 〉Qc |R 〉3t
)

,in (A.1).
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