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Abstract The Green’s function is an essential tool for the description of scattering. Spec-
tral singularities such as exceptional points have a very specific effect upon the structure of
Green’s functions. It is well known that the coalescence of two eigenvalues gives rise to a
pole of second order in addition to the usual first order pole. The present paper describes
the general patterns of Green’s functions at exceptional points of arbitrary order. The higher
orders of the pole terms as well as their respective coefficients - being matrices - are pre-
sented in terms of the underlying Hamiltonian. For the coalescence of three eigenvalues this
appears to be of immediate physical interest while the coalescence of four or more levels is
still awaiting experimental realisation in the laboratory.
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1 Introduction

Spectral singularities associated with a Hamilton operator H are expected to have specific
effects upon the Green’s function. It is defined by

G(E)=(EI - H)!

with I being the identity. The well known singularities of G(E) are of course first order
poles which correspond to solutions of the Schrodinger equation with the boundary condi-
tions of purely outgoing waves. In the present context we will not touch upon the continuous
spectrum of H and branch points of G(E) associated with it. Physically, the poles cor-
respond to bound states (usually, or rather conventionally, at negative energies) and to
resonances when they occur in the second Riemann sheet in the lower complex energy
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plane. While these are well established facts from scattering theory [1] (see also [2]) there
are spectral singularities of a different nature that have distinctly different effects upon the
singularity structure of the Green’s function. As a consequence, there can be dramatic phys-
ical effects in a great variety of phenomena. It is the exceptional points (EPs) that give rise
to special physical effects associated with particular singularities of the Green’s function
(see for instance [3]).

For reader’s convenience we present a short resumé about EPs in the following sec-
tion. Here we mention that it is well known [4] that the Green’s function has a pole of
second order in addition to the usual first order pole at the simplest EP where two levels
coalesce. When a cross section is obtained from the square of the modulus of the scatter-
ing function T(E) = V + VG(E)V the interference of the first and second order pole
term can invoke specific effects; this has been used in a recent paper [5] to explain reso-
nance shape asymmetries familiar from Fano-Feshbach resonances in atomic and nuclear
physics.

In the present paper we derive a general expression for the Green’s function at an EP
of arbitrary finite order. The occurrence of an EP3 (three coalescing levels) seems to be
of topical interest: it has been encountered in specific non-linear problems [6] and also
suggested for three coupled wave guides [7]. With increasing sophistication of experimental
techniques higher order EPs may become within reach in the laboratory.

So far we did not specify a particular Hamiltonian to which the Green’s function is
referring. In fact, at an EP the particular physical problem has always the same mathematical
structure depending only on the order of the EP. Moreover, while a Green’s function, like the
Hamiltonian, appears usually as an infinite dimensional matrix or, for G(E), as an integral
operator, at an EP it can be reduced to a finite dimensional matrix with the dimension given
by the order of the EP. This is clarified in the following section.

The derivation presented here is aimed at physicists. Similar results have been reported
in recent mathematical textbooks about linear operators and treating in particular resolvents
of non-hermitian operators (see for instance [8, 91).! An even older treatise [10] gives an
explicit expression resembling our result. However, it is felt that our derivation has a special
appeal to physicists as it does not follow the strictly formal pattern used in the Mathemat-
ics literature but rather uses the parallel between energy and time domain of propagators
(Green’s functions).

2 Exceptional Points

Whenever an eigenvalue problem depends on a parameter A there are generically spe-
cific parameter values, usually complex, where two eigenvalues coalesce. In contrast to a
degeneracy of eigenvalues being associated to a higher dimensional eigenspace, a coales-
cence is characterised by a simultaneous coalescence of the corresponding eigenvectors.
Moreover, the norm of the one eigenvector vanishes which is sometimes referred to as ’self-
orthogonality’ [11]. At these specific points a matrix eigenvalue problem yields a matrix
that cannot be diagonalised. They have been dubbed exceptional points in a textbook by
Kato [12]. These singularities can occur only for non-hermitian operators; note, however,
that genuine degeneracies can also occur for non-hermitian operators.

1T am indebted to Dr Uwe Guenther who pointed out to me these references
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At the EPs the coalescing eigenvalues have an algebraic singularity: it is a square root
branch point as a function of the parameter A under consideration. Formally there is the
expansion

E12(M) = Egp £const\/A —Agp + ...

As stated above, the Green’s function acquires an additional pole of second order at the EP
[3, 4]. Here we mention that the square root singularity, that is the Riemann sheet structure,
has been shown experimentally to be a physical reality [13, 14], and more recently in an
experiment including time reversal symmetry breaking [15] (see also [16]).

In the vicinity of an EP a high (or infinite) dimensional problem can be reduced to
an effective two-dimensional problem owing to the vanishing of the norm of the coa-
lescing eigenvectors. This can be understood from the spectral representation which reads
for H

[y (|
H = E,——— 1
2 (Wllyr) W

where we distinguish between left hand and right hand eigenvectors as H is not necessarily
hermitian or complex symmetric.> When approaching an EP where the two levels E, .,
and E, .1 coalesce, the vanishing of the denominator outweighs all other terms. In other
words, when the parameter for which the EP occurs, is in close vicinity of the branch point,
H can be represented by an effective two-dimensional matrix. However, there is a caveat: if
a further EP occurs in close vicinity of the EP under consideration on one of its two sheets,
the simple reduction to a two-dimensional problem cannot work (see also [17]).

Actually, for the situation just described, a three dimensional matrix would be needed.
In fact, if additional parameters are at one’s disposal, one can choose them such that the
two EPs lying near to each other merge into the coalescence of two simple EPs that share a
Riemann sheet; it is equivalent to the coalescence of three energy levels denoted by EP3 in
[18]. As stated in the Introduction situations of this kind have been encountered in particular
non-linear problems [6] and suggested for wave guides [7]. In principle, such generalisation
can be spun further and extended to the coalescence of arbitrary order. Obviously, for an
EPN (N coalescing levels) an N-dimensional matrix is needed. In fact, at the EPN the
Jordan normal form of the reduced Hamiltonian has the structure of the N-dimensional
matrix, viz.

n

Ergp 1 0
Hppy =S C s ©)
L
0 EEP

where the matrix S specifies the particular Hamiltonian considered. Note that (2) is the
minimal form that a Hamiltonian can assume at an EPN.

The following section presents the form of the Green’s function for an EP of arbi-
trary order. To ease the derivation we first restrict ourselves to an EP4 from which the
generalisation to arbitrary N becomes obvious.

2 As our interest is focussed on EPs the continuous spectrum is not explicitly indicated.
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3 Green’s Function

Similar to (1) there is a representation for the Green’s function which reads

B [UAIUA
G =2 E, i) @

However, for our purpose this form turns out to be rather tedious to be handled at an EP of
higher order than two. In fact, when an EPN is approached by the parameter A — Agpy

there are N vanishing denominators each with a leading term behaving as ~ (A—Agpn) s
[18]. Note also that the N levels are connected a follows

N=EEPN+COI’ISt.N)»—)xEPN+...

.....

with the N levels lying on the N different sheets of the N-th root. Instead of engaging in
the tedious analysis of (3) when A — Agpy — note that the N terms tending to infinity
have to conspire in subtle cancellations to yield the final result — it is more transparent to
use the Fourier transform G () of G (E) at the EP. For easy presentation we demonstrate the
procedure for N = 4.

At the EP4 we may represent the Hamiltonian as well as its Green’s function by a four
dimensional matrix. To obtain the Green’s function (propagator) in the time domain we have
to solve the ordinary differential equation

do
i \6) = Hip) “)

where H has now the form
H=5J5"" 5)
with
Epp 1 0 0
0 Egp 1 0
0 0 Egp 1 | ©)
0 0 0 Egp

Since the matrix S is time independent (4) reduces to

J =

d
i 10 =J1x) with  |¢) = S[x) @)

which is solved by
Ix () =g®Ix (@) ®)
with the time dependent restricted Green’s function at the EP4

2 3
. t .10
1 it —-75 —lg

X 2
gy =01 it —5 fexp(—iEgpr). ©
00 1 it
00 0 1
The full Green’s function is thus given by
G(t)=Sg(t)S™! (10)

and the solution of (4) reads

19 (1)) = G(1)|p(0)).
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Our aim is focussed upon G (E). It is now rather straightforward using (9) and (10) to
perform the Fourier transform in reverse from the time to the energy domain. In fact, the
matrix in (9) has the powers (i)* nicely arranged with k = 0 being the main diagonal,
k = 1 being the side diagonal and so forth. Furthermore we observe the identities (denoting
by I the identity matrix)

0100
0010
0001
0000

0010
0001
0000
0000

0001
0000
0000
0000

J—FEppl =

(J —EgpD)* =

(J —Eppl)® =

Multiplying these identities from the left by S and from the right by S~! changes the matrix
J into H. We read off the coefficients (matrices) of the powers i)k for G(t): fork =0it
is the unit matrix, for k # 0 itis (H — Egp 1)*/k!. For the Fourier transform we employ
the usual rule

k

N
it) —»> ——
@i 1R
to obtain the final result
1 M, M3 My

+ + ——
E—Egp (E—Egp)*> (E—Egp) (E—Egp)*

G(E) = Y
where My = (H — Egp I)k_l. Note that the matrix rank of My is 4 — (k — 1), in particular
the rank of My - the coefficient (matrix) of the forth order pole - is unity. In fact, it is
straightforward to show that

My = |V pa) (W pal
being the dyadic product of the one (and only one) eigenstate of H at the EP4. Note that the
scalar product ( ng palVE pa) vanishes.

The generalisation is obvious. At an EPN the Green’s function reads:
M> My
+ +ooit -
E—Egp (E — Egp)? (E—Egp)N

G(E) = (12)

where the matrix rank of My = (H — Egp DETis N — (k — 1) and that of My =
Yt o V(W p | s unity.

4 Summary

It has been demonstrated that using the Green’s function in the time domain is a transparent

procedure to obtain the Green’s function and from it its Fourier transform G(E). A direct
approach starting from G(E) would, in contrast, be rather cumbersome. At an EPN, an
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exceptional point where N levels coalesce, the Green’s function G (E) turns out to be a sum
of pole terms of the order 1 to N with coefficients — being N-dimensional matrices — given
as polynomials of the underlying Hamiltonian. The result has turned out to be of physical
relevance for N = 2, where the result has been known before, and is expected to be of
physical interest for higher orders such as N = 3 and N = 4.

We refrain from extending the result to N — oo without further scrutiny. In fact, the
convergence of (12), when the limit N — oo is considered, is expected to depend on the
particular form of H. Also, as this question does not appear to be of particular physical
interest we leave this question to a more mathematically minded audience. We note, how-
ever, that a very special many body problem can give rise to an exceptional point of infinite
order in the limit N — oo but only for a specific interaction of rank unity [19]. Recently,
EPs of a variety of N-dimensional matrix models have been studied with an emphasis on
large values of N [20].
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