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Abstract The overall principles of what is now widely known as PT-symmetric quantum
mechanics are listed, explained and illustrated via a few examples. In particular, models
based on an elementary local interaction V(x) are discussed as motivated by the naturally
emergent possibility of an efficient regularization of an otherwise unacceptable presence
of a strongly singular repulsive core in the origin. The emphasis is put on the construc-
tive aspects of the models. Besides the overall outline of the formalism we show how
the low-lying energies of bound states may be found in closed form in certain dynamical
regimes. Finally, once these energies are found real we explain that in spite of a manifest
non-Hermiticity of the Hamiltonian the time-evolution of the system becomes unitary in a
properly amended physical Hilbert space.

Keywords Quantum mechanics · Physical Hilbert spaces · Ad hoc inner product ·
Singular potentials regularized · Low lying energies

1 Introduction

1.1 The Methodical Framework

The scope and range of any study of mathematical structures as used in quantum theory
strongly depend on the domain of prospective applications. In this sense we feel inspired,
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in particular, by the success of nuclear physicist’s strategy of the so called interacting boson
models as reviewed, say, in Ref. [1]. This review may be recalled as illustrating the effi-
ciency of a judicious, nontrivial choice of the Hilbert space, due to which the states of a
given quantum system may be represented in an optimal, computation-friendly manner.

In the concrete nuclear-physics phenomenological setting as presented in Ref. [1] the
argument supporting the importance of availability of several alternative Hilbert spaces
H yielding equivalent physical predictions may be made more specific. Indeed, it is
well known that whenever we perceive an atomic nucleus in terms of its nucleonic (i.e.,
fermionic) degrees of freedom, it is just a routine task to recall the principle of classical-
quantum correspondence and to postulate the existence of a “realistic” Hamiltonian in
its widely accepted kinetic- plus potential-energy “microscopic” form of an operator
h = h(A) = −∑A

i �i + ∑
j

∑
k Vjk . This operator is defined and, by construction,

safely self-adjoint in the traditional Hilbert space H(P ) ≡ L2(R3A) (here, using the nota-
tion as introduced in our review paper [2], the superscript (P ) stands for “primary” alias
“physical”).

In the framework of nuclear physics, unfortunately, the practical success of the use and
study of the realistic Hamiltonians h(A) remained restricted just to the very light nuclei. For
any heavier (and, in particular, heavy) atomic nucleus, the “brute-force” numerical diag-
onalization technique failed to provide a satisfactory precision of energies (in numerical
context) and/or a satisfactory intuitive insight into the structure of wave functions (say, in
the context of testing the predictions experimentally).

In a way reviewed in [1], a decisive and persuasive progress has been achieved after a
replacement of the microscopic, fermionic Hamiltonians by their various effective (and, in
principle at least, isospectral) partners H = H(A) = �−1h(A) � . A particularly productive
principle of construction of the latter effective Hamiltonians H(A) relied upon the intuitively
appealing idea that due to certain specific (and more or less known) features of the “realis-
tic” inter-nucleon forces Vjk , the pairs of fermions inside a nucleus may often be perceived
as coupled, intuitively at least, into certain effective, bosons-resembling quasi-particles.

In the purely pragmatic context, an exceptional and by far the most successful imple-
mentation of the latter constructive recipe has been found in an appropriate adaptation of
the Dyson’s older idea [3] by which one makes an ansatz h = �H �−1 while choosing the
ad hoc “Dyson’s map” � non-unitary. Thus, as long as this implies that

h† =
[
�−1

]†
H † �† = �H �−1 (1)

i.e.,
H † �† � = �† �H , (2)

one has to deal with a new, effective Hamiltonian which appears manifestly non-Hermitian
in all of the generic, non-trivial situations in which the superposition of the two Dyson’s
maps remains nontrivial, �† � = � �= I .

From the point of view of mathematics the latter unexpected observation did not in fact
lead to any really serious complications. Indeed, people (including, and listed by, the authors
of [1]) quickly imagined that although one has H �= H † in the “effective”, bosonic Hilbert
space H(F ) with the “usual” inner product (here, although the superscript (F ) stands for
“friendly”, this acronym may be also re-read as “false”, due to the apparent violation of the
unitarity of the evolution generated by the non-self-adjoint generator H ), one may simply
redefine the inner product using the “metric operator” �. In this way one arrives at another,
physical bosonic Hilbert spaceH(S). The superscript (S) stands here for “standard” because
inside the new, unitarily non-equivalent bosonic Hilbert space H(S), the evolution generated
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by the same generator alias Hamiltonian H appears now, in full agreement with the standard
textbooks on quantum theory, unitary.

We may summarize that the introduction of the “standard” Hilbert-space-metric operator
� = �†� �= I enables us to replace the original, correct but computation-unfriendly
physical representation space H(P ) by its unitarily equivalent amendment H(S) (which may
be called, deservedly, “sophisticated” [2]). The whole idea may be given the form of a
diagram

We see that for formal reasons it is recommended that the P ↔ S unitary equivalence is
realized in two steps. Firstly, the kets |ψ � ∈ H(P ) (notice their “curved” denotation as
proposed in [2]) are interpreted as Dyson-map images |ψ � = �|ψ〉 of their “bosonic”
representants in an auxiliary, unphysical, “false”, F−superscripted Hilbert space, |ψ〉 ∈
H(F ). Secondly, a new inner product is introduced, in H(F ), just to define, formally, another,
viz., the second physical Hilbert space H(S).

The main advantage of the resulting representation of a given quantum system via a
triplet of Hilbert spaces may be seen in the underlying implicit assumption of the thor-
ough simplification h → H of the Hamiltonian paid by an affordable complication of
the Hermitian conjugation in the physical Hilbert space. Indeed, we have to replace the
traditional “transposition plus complexification” maps (viz., h → h† and H → H †)
in H(P ) and H(F ), respectively, by their more sophisticated, metric-dependent analogue
H → H ‡ = �−1H †� in H(S).

1.2 Non-Hermitian Differential-Operator Hamiltonians

Naturally, the key assumption of the decisive simplicity of the “new” Hamiltonian H has
been successfully verified not only in the above-mentioned realistic context of the models
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of nuclei but also, say, for the first-quantized Klein-Gordon equation [4]. An exceptional
methodical role has been played by the Buslaev’s and Grecchi’s “wrong-sign” anharmonic
oscillator [5] where both of the Hamiltonian-operator representatives H = H(BG) and h =
h(BG) preserved the elementary differential-operator form containing just a local interaction
potential, viz.,

H(BG) = 1

2

(

− d2

dy2
+ j2 − 1

4(y − iε)2

)

− g2(y − iε)4 , y ∈ R (3)

and

h(BG) = − d2

dx2
+ (1 − gx)2x2 − 1

2
(2gx − 1) , x ∈ R (4)

(see also [6]; incidentally, even the special j = 1 case of this model proved worth a
rediscovery).

In the case of many other, generic complex local potentials entering the differential
operators

H = − d2

dy2
+ V (y) , y ∈ R (5)

many authors revealed that the spectrum may still remain real, discrete and bounded from
below [7–10]. In other words, every demonstration that a mathematically tractable opera-
tor (5) possesses such a spectrum opens the possibility of assigning, to it, the status of an
observable (i.e., e.g., of a Hamiltonian) of a hypothetical quantum system, i.e., the status of
a self-adjoint operator in an ad hoc physical Hilbert space H(S).

Several theoretical as well as practical challenges emerge. Even in the context of pure
mathematics one quickly reveals that any – even approximate – construction of the metric
� is by far not easy [11]. The difficulties of mathematical nature are accompanied by their
phenomenological parallels. The most important one lies in the generic loss of the locality of
the operator � which is reflected by the loss of the observability of the coordinate. This may
have a destructive impact upon the traditional “kinetic plus potential energy” tractability of
Hamiltonians (5). Their “point-particle” interpretation may get lost [12], certain “no-go”
theorems emerge in the context of scattering [13], etc.

Amazing as it may seem, all of these difficulties may prove more than compensated by
the perspective of innovations (in this context, Refs. [14, 15] offer a useful reading). An
encouragement of realistic quantum model-building may be sought also in the flexibility
of the phenomenologically motivated choice of non-trivial metrics. For illustration one may
recall Ref. [4] where the old problem of proper quantum-mechanical interpretation of Klein-
Gordon equation (describing, e.g., the physics of pionic atoms) has been resolved via the
use of � �= I .

In our present paper we intend to point out that the quantum theory in its three-Hilbert-
space-representation (THSR) form may find one of its fairly interesting new illustrations
and applications in the apparently traditional context of (5) where one would merely add the
new assumption that the potential V (y) itself is singular and, hence, not well defined along
the real line of y. This is, in fact, the situation which was assumed in our recent paper [16]
where we felt inspired by the toy model (3) of Ref. [5] and where we studied Schrödinger
equation

[

− d2

ds2
+ U(s)

]

φn(s) = En φn(s) , U(s) ≡ V [x(s)] = (s − iε)2 + g2

(s − iε)6
(6)

in which s ∈ R, i.e., in which one had to assume that y /∈ R in the context of (5).
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In Ref. [16] we emphasized that the obligatory starting point of the applications of the
THSR formalism should be seen in the demonstration of the reality of the spectrum. For the
present review-paper purposes these considerations will be briefly summarized in Section 3.
In subsequent Section 4 we shall then extend the class of potentials as well as the scope of
the method. We shall complement the large−g approximate constructions of Section 3 by a
systematic higher-order perturbation-expansion technique. This will enable us to study the
singular models at finite couplings g 
 ∞.

Being well aware of the fact that our perturbation series may have (and probably do have
[17]) a vanishing radius of convergence, our perturbation-series description of the systems
with finite couplings will be complemented and paralleled (i.e., tested, in Section 5) by
an independent numerical reconstruction of the spectrum using the so called Riccati-Padé
method [18, 19]. We shall reveal that for a number of specific choices of strongly singular
potentials, extremely small error bars may be reached by our perturbation-series estimates.

A successful confirmation of the applicability of the two independent methods to a new
class of quantum models in a fairly nonstandard domain of their implementation will be
obtained. Still, our main message will lie elsewhere. Our numerically obtained values of
the low lying bound-state energies will be re-read as not possessing, within error bars, any
imaginary components. In other words, a “spectrum-reality” confirmation will be declared
covering the dynamics beyond the currently published area of not too singular potentials.

Our present observations will finally be discussed in Section 6. Naturally, our study of
singular potentials still leaves multiple open questions unanswered. It must be emphasized,
nevertheless, that whenever available, the better, rigorous mathematical proofs of the reality
of spectra of non-Hermitian Hamiltonians (5) appeared almost prohibitively complicated
even for regular potentials [10, 20].

2 The Key Problem: The Reality of the Spectrum

Let us reemphasize that in our present class of models with complex “coordinates” y and
“potentials” V (y) the conventional self-adjoint nature of the Hamiltonian is certainly lost in
the “false” space H(F ). Still, whenever one proves that the resulting spectrum of energies
is real and discrete and bounded from below, the way is open towards the reconstruction of
the appropriate Hilbert space H(S) in which our Hamiltonian becomes self-adjoint. Let us
now recall, for illustration purposes, a few most elementary examples.

2.1 Radial Regular Examples

In 2001, Dorey, Dunning and Tateo [10] considered various complex potentials V (y) in
Schrödinger equations and they attracted the reader’s attention, in particular, to the weakly
singular centrifugal-like components V (DDT )(y) = �(�+1)/y2 of the interactions. As long
as the threshold behavior of the general wavefunctions then remained easily tractable in
closed form,

ψ(y) ∼ c1y
�+1 + c2y

−� , |y| 
 1,

these authors were allowed to ignore the singularity whenever they restricted the “coordi-
nate” y to the lower half of the complex plane, Im y = −ε < 0.

Now we see the difference. For the real y one would only be allowed to work on a half-
axis, with y ∈ (0, ∞). For the complex y = s− iε the boundary conditions must necessarily
be changed – while one omits the redundant boundary condition in the origin y = 0, a new
constraint emerges as the left asymptotic boundary condition enters the scene at s → −∞.
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Naturally, not only physics (i.e., the interpretation of measurements) but also mathematics
(i.e., typically, spectra – see, for example, [7]) get changed.

2.2 A Wrong-Sign Quartic Example

Buslaev and Grecchi [5] were probably the first who demonstrated, constructively, that the
Dyson’s isospectral mapping � between Hamiltonians may cause a truly thorough change
of the Hilbert space. In loc. cit. they constructed the mapping between Hamiltonians (3) and
(4) and showed that in the former operator the change of the parameter ε does not change the
spectrum at all. In the light of the analyticity properties of the potentials such an observation
is not too surprising. At the same time, in the context of Ref. [16] the same freedom of the
choice of ε (which, in fact, meant the freedom of a parallel shift of the complex line of y in
Schrödinger equation) proved to be of fundamental importance.

Any generalization of the Buslaev’s and Grecchi’s results to a less exceptional poten-
tial acquires, as a rule, the form of an approximate construction. In this spirit, the new
and particularly challenging strongly singular and PT −symmetrically regularized inverse-
sextic-repulsion model of (6) will be now considered as a methodical guide as well as one
of the most natural candidates for an apparently non-Hermitian (in the “false” space H(F ))
but (in the “standard” space H(S)) still unitarily evolving quantum model.

3 Strongly Repulsive Potentials

The reasons of our interest in the strongly singular and complex-shift regularized quantum
models are explained in Appendix A below. Our discovery of their mathematical appeal
dates back to Ref. [21] where their perturbative tractability has been revealed and tested.
Perturbation expansions were found to work there for a broad complex-valued subfamily
of regular potentials. In this sense, it will only be necessary to demonstrate here that the
presence of the strongly repulsive barriers need not obstruct the applicability of the same
large−g perturbation-expansion techniques.

3.1 Schrödinger Equations at Special Values of ε

The main weak point of the rather universal large−g perturbation-expansion technique as
explained, e.g., in Ref. [17] is that its convergence to exact results cannot be guaranteed in
general. One only has to use the formalism as a source of suitable asymptotic series and
approximants. In this sense, such a perturbation recipe will still satisfy our present needs
sufficiently well.

The essence of the formalism lies in several assumptions. Firstly, one must require that in
the regime of large couplings g the potential develops a pronounced minimum with a negli-
gible imaginary component. Thus, the first derivative of the potential function must vanish
at a certain complex value of the coordinate x = Rm. One writes V ′(Rm) = 0 and treats
such a formula as an elementary algebraic equation determining, implicitly, the unknown
eligible complex minima Rm. For our model of (6), in particular, the latter equation reads
2R8

m = 6g2 and leads to the eight well-separated closed-form candidates for the minimum,

Rm = R ei π (m−1)/4 , R = |31/8g1/4| � 1 , m = 1, 2, . . . , 8 .

In order to obtain an efficient approximation recipe we need to require the positivity of
the second derivative of our potential at its stationary points. Such a necessary condition
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is restrictive and not too easily satisfied. Fortunately, the verification yields the same real
quantity at all m for our toy model,

V ′′(Rm) = 2 + 42
g2

R8
m

= 2 + 42
g2

3g2
= 16 .

In a systematic analysis we reveal that the uppermost root R3 lies on the cut. A hardly
solvable regularized double-well Schrödinger equation is also obtained if one selects the
complex line of its integration as intersecting the pairs of stationary points R2 and R4 or R1
and R5 or R8 and R6.

The last and only eligible candidate for a “useful” stationary point is the purely imaginary
root R7 which is, in this sense, unique. We come to the conclusion that once we let the
complex line x(s) cross the complex point R7 (it is easy to show that this means that we
choose ε = R) we have satisfied all requirements. Consequently, along the line x(s) the real
part of our potential is really characterized by a pronounced minimum while its imaginary
component becomes negligible in the regime of large parameters R (cf. Fig. 1). Hence, we
may try to apply the recipe of Ref. [21]. Let us now describe the results in full detail.

3.2 Harmonic-Oscillator Approximation

Let us recall our potential,

V (x) = x2 + R8

3x6
. (7)

At the large real R and at the small complex shifts iε = s − x(s) the shape and
s−dependence of function (7) remains dominated by its singularity. For the large ε ∼ R

this domination gets suppressed. The complex function V [x(s)] acquires a deep minimum
at x = −iR (cf. Fig. 1) so that we may try to Taylor-expand the potential near the point
R7 ≡ −iR,

V [x(s)] = −4

3
R2 + 8s2 − i

56

3R
s3 − 42

R2
s4 + i

84

R3
s5 + 154

R4
s6 −

−i
264

R5
s7 − 429

R6
s8 + i

2002

3R7 s9 + 1001

R8
s10 − . . . . (8)

The decrease of the higher-order terms appears so quick that the harmonic-oscillator term
is dominant and that the radius of convergence of the series remains large, equal to R.
The most important observation is that along the line of the integration of the equation, the
imaginary components of the potential become entirely negligible.

Fig. 1 The real and imaginary
parts of the upwards-shifted
potential function of (7), with
W(s) = 4R2/3 + V [x(s)] and
ε = R = 100
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The polynomial truncations of series (8) remind us of the popular complex power-law
interaction models (cf. Ref. [14]). Once we restrict our attention just to the first two terms
of series (8) we even arrive at the exactly solvable model of the usual, real harmonic oscil-
lator. Its low-lying spectrum of bound states is well known yielding the fairly reliable
approximation

En = −4R2

3
+ (2n + 1)

√
8 + O

(
1

R

)

, n = 0, 1, . . . . (9)

All of the higher-order contributions lead just to asymptotically vanishing corrections to the
energies. Thus, the first few orders of perturbation theory lead to the low-lying energy levels
which are all equidistant, real and negative.

We may summarize that the main message delivered by this section is that under the
assumption that the real coupling constant g is kept very large, the low lying spectrum of
energies can be found, in spite of the manifest non-Hermiticity of Hamiltonian H

(IS)
1 , real.

One may expect that the Hamiltonian may be reinterpreted again as self-adjoint in an ad
hoc space H(S).

4 Systematic Perturbation Expansions

Our considerations of preceding section were restricted to large g � 1. After the publi-
cation of the first results of this type via arXiv [16] our present team of authors has been
established to analyze the possibilities of an extension of these observations to the less fic-
titious dynamical regime of smaller, finite couplings g < ∞ in the same potential as well
as to some other, more general singular potentials, say, of the two-term form

V (x) = −(ix)2+α − g2

(ix)6+β
. (10)

Each of these functions may enter the ordinary differential Schrödinger equation subject to
the same replacement x → x(s) = s − iε as above.

4.1 The Case of Real Potentials as a Methodical Guide

Hamiltonian operators of the usual self-adjoint form (where V (x) is real, non-singular and
confining) admit the approximate determination of the low lying spectrum of bound states
via a localization of the real minimum x0 ∈ R of the potential, i.e., via a determination of
the root x0 of a transcendental algebraic equation V ′(x0) = 0 under constraint V ′′(x0) > 0
[17]. In such a case one can also amend the approximation using perturbation theory. After
a change of variables x = x0 + βs where −∞ < s < ∞ and where β is an arbitrary
auxiliary real scaling factor, one may expand V (x0 + βs) in Taylor series near s = 0,

V (x0 + βs) =
∞∑

j=0

Vjβ
j sj . (11)

In the new Hamiltonian operator

H = β−2

⎛

⎝− d2

ds2
+ V2β

4s2 +
∞∑

j=3

Vjβ
j+2sj

⎞

⎠ (12)
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we choose β = V
−1/4
2 so that

H = √
V2

⎛

⎝− d2

ds2
+ s2 +

∞∑

j=1

Vj+2

V2
βj sj+2

⎞

⎠ . (13)

Now one decides to apply perturbation theory to Schrödinger equation

1√
V2

Hψ = εψ (14)

and one obtains the usual perturbation series for the eigenvalues

ε =
∞∑

j=0

εjβ
j . (15)

By construction one has ε0 = ε0(v) = 2v + 1, v = 0, 1, . . .. Since the transformation
(β, s) → (−β, −s) leaves the Hamiltonian invariant we may conclude that ε2j+1 = 0 at all
j = 0, 1, . . ..

In the above context the main mathematical idea lying beyond the considerations
of Ref. [16] (cf. also Section 3 above) is that all of the main components of the above con-
struction may remain applicable even if one leaves the real axis of x and if one performs an
analytic continuation of potential V (x) into the complex plane of x. The only news is that
in the complex case, the potential need not have the required real-harmonic-oscillator min-
ima at all. Vice versa, the existence of these very specific minima (as shown, constructively,
above) should be perceived as a very specific feature of certain “privileged” potentials. In
other words, not all potentials would prove tractable by the present method.

4.2 Perturbation Expansions Near a Complex Minimum x0

Let us now return to our family of potentials of (10) and let us try to determine all of its
complex stationary points from the vanishing-derivative condition V ′ = 0. For methodi-
cal purposes we may just contemplate the small exponents α and β. We find out that the
eligible negative imaginary stationary point x0 as obtained at α = β = 0 (i.e., the com-
plex coordinate x0 = R7 = −iT in the notation of Ref. [16]) merely moves to an amended
α �= 0 �= β candidate for the minimum xmin = −iT where the real quantity T is such that
(say, at positive α and β)

T 8+α+β = g2 6 + β

2 + α
.

At this stationary point we also evaluate the second derivative exactly,

V ′′(xmin) = (2 + α)T α (8 + α + β) .

This number is real and positive so that the assumptions of the applicability of the method
of Section 4.1 are satisfied. The imaginary part of the potential remains negligible and the
leading-order harmonic-oscillator approximation of Ref. [16] will keep working.

We are now prepared to Taylor-expand the potential. Besides the zero-order term

−T 2+α (8 + α + β)

6 + β

and besides the vanishing first order term we evaluate easily also the second order term

1/2
(

2 β + α β + 16 + 10 α + α2
)

T α .
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The not too exciting news are coming with the third-order correction

1/6 i (2 + α) T −1+α
(
α + α2 − 56 − 15 β − β2

)

where, incidentally, the last bracket factorizes, (8 + α + β) (α − 7 − β). Finally, the fourth-
order part of the potential reads

−1/24
(

2 β3 + α β3 + 24 α β2 + 48 β2+

+191 α β + 382 β + 502 α − α2 + 2 α3 + α4 + 1008
)

T −2+α

and may be simplified as well. Indeed, the bracket factorizes again,

(2 + α) (8 + α + β)
(
α2 − 8 α − α β + 63 + 16 β + β2

)
.

The long factor still factorizes over

α± = 4 + 1/2 β ± 1/2
√

−188 − 48 β − 3 β2

where the discriminant will vanish at the real roots β = −8 ± 2/
√

3. One may also add that
the alternative factorization over

β± = 1/2 α − 8 ± 1/2
√

−3 α2 + 4

seems simpler.
Once one moves to the higher orders of perturbation series, an explicit display of formu-

lae would become clumsy and counterproductive. Still, it is possible to store the formulae
in the computer and use them just for an evaluation of numerical predictions.

The computer-supported analysis and numerical tests of these results will be shown to
enable us to conclude that the discussion as given in Ref. [16] remains applicable also to
the more complicated potentials. The inclusion of the new parameters α and β does not
change the overall qualitative picture of the spectra. In what follows, we shall need just a
routine procedure for obtaining the perturbation series approximation up to the M−th term,
yielding the approximate energy values E

(M)
n of the n−th bound state in broad intervals of

finite couplings g.

4.3 Sample Choices of the Integer Values of α and β

We will extend the results of Ref. [16] in two ways. Firstly we shall perform explicit calcula-
tions while restricting our attention to certain special integer values of α and β, considering
the family of singular potentials

V (x) = x2m + λ

x2n
, λ = mR2(m+n)

n
, m, n = 1, 3, . . . . (16)

In the spirit of preceding Section 4.2 we redefined the coupling, g → R(g), and choose m

and n as positive integers.
Formally, we may now apply perturbation theory up to arbitrarily large order. In this man-

ner we obtain numerical results which may be compared with some other, nonperturbatively
obtained values of bound state energies (cf. Section 5 below). Technically, the construction
of the perturbation series will be facilitated by the friendlier notation of (16).

First of all we notice that if V (−x) = V (x) and if a and s are real, then U(s) =
V (ia + s) has the property U(−s)∗ = V (−ia − s) = V (ia + s) = U(s) called, usually,
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PT −symmetry. Once we consider just the family of spiked oscillators (16) where λ > 0
and where m and n are positive integers, the first minimality condition V ′(x0) = 0 yields

x0 =
(

λn

m

)1/[2(m+n)]
eiπk/(m+n), k = 0, 1, . . . , 2(m + n) − 1. (17)

The root x0 remains purely imaginary if we require that m + n is even. This choice may
simplify the discussion and it will be preferred in what follows. It also implies that for the
second derivative we have

V ′′(x0) = 4m(m + n)x
2(m−1)
0 . (18)

We see that V ′′(x0) > 0 only if m is odd. Thus, whenever we want to keep our present
discussion fully analogous to the one of Ref. [16], the value of n should be also chosen odd.

5 The Numerical Determination of the Energies

5.1 Quadratically Convergent Numerical Method

For our present purposes it is important that the quickly convergent Riccati-Padé method
(RPM, [18, 19]) of the numerical determination of the eigenvalues of Hamiltonians is well
adapted also to the treatment of the present, spatially asymmetric and complex potentials.

The key idea of the method is that one considers a correct wave function together with
its logarithmic derivative

f (x) = −ψ ′(x)

ψ(x)
(19)

which, obviously, satisfies Riccati equation

f ′(x) − f (x)2 + V (x) − E = 0 . (20)

Once we Taylor-expand

f (x) =
∞∑

j=0

fj (x − x0)
j (21)

and substitute (21) into (20) we obtain the coefficients fj in terms of the two unknowns
E and f0 = −ψ ′(x0)/ψ(x0). Next, splitting the sequence of coefficients into two
subsequences,

fe,j = f2j , fo,j = f2j+1, j = 0, 1, . . . (22)

we obtain both E and f0 as the roots of the system of the two coupled nonlinear algebraic
equations

Hd
De(E, f0) = ∣

∣fe,i+j+d−1
∣
∣D
i,j=1 = 0 ,

Hd
Do(E, f0) = ∣

∣fo,i+j+d−1
∣
∣D
i,j=1 = 0 (23)

(cf. Refs. [18, 19] for more details).

5.2 Centrifugal-Like Spikes, n = 1

Before one applies the RPM numerical technique to singular models it seems useful to test
the approach on a minimally singular example with n = 1. Conveniently, we may then
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introduce the slightly modified, regularized logarithmic derivative

f (x) = σ

x
− ψ ′(x)

ψ(x)
. (24)

With σ =
(

1 ± √
4R4 + 1

)
/2 this choice exactly removes the pole of ψ ′(x)/ψ(x) at the

origin. In this case f (x) satisfies the modified Riccati equation

f ′ + 2σ

x
= f (x)2 + E − x2m . (25)

With the ansatz

f (x) = x

∞∑

j=0

fj (E)x2j (26)

we obtain the accurate eigenvalues in the form of the roots of the modified Hankel determi-
nants Hd

D(E) = ∣
∣fi+j+d+1

∣
∣D
i,j=1. For sufficiently large D we may, typically, choose d = 0.

In this manner the application of the RPM philosophy becomes more efficient than in the
generic case.

5.3 The Test of the Large-Order Perturbation Results

As long as we restricted our quantitative analysis to the subfamily (16) of potentials (10),
we may proceed in the closest parallel with Section 3. In particular, we may again put
x0 = −iR, i.e., choose the same, very special and “user-friendly” distance ε = R from the
real line.

Beyond the leading-order-approximation framework as accepted in Ref. [16] we may
now compare the exact numerical RPM predictions with those given by the semi-analytic
perturbation expansions. In our present generalized, two-parametric models the function
U(x) = V (x − iR) still does not exhibit any singularities and it still possesses just a single
global and pronounced minimum at x0. Asymptotically this function is smooth and behaves
as the power x2m when |x| → ∞.

This implies that a priori we may expect, in general, a good performance of perturbation
theory. In order to test this expectation we decided to carry out the respective calculations for
several lowest eigenvalues and for the decreasing sequence of couplings R = 20, 10, 2, 1.5
and 1.

For illustration the “exact” RPM results for ground states are displayed first, in Table 1.
The Table shows the lowest eigenvalue obtained by means of the RPM technique for several
values of exponents m and n as discussed in Section 4.3 above.

Our subsequent tests of the performance of the perturbation series (i.e., of the precision
of the N−th order perturbative ground-state approximants E[N]) were based on the direct
comparison with the RPM-based numerical results (of any prescribed precision). A suffi-
ciently representative sample of these comparisons is summarized in Fig. 2. We used there a
characteristic “intermediate” coupling constant R = 2 and the same values of the exponents
m and n as in Table 1 above.

The picture demonstrates, in general, the good performance of the partial sums
E[N] of order N . We see that the logarithmic error of the perturbation series
log

∣
∣
(
E[N] − ERPM

)
/ERPM

∣
∣ decreases, in most cases, in a sufficiently long interval
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Table 1 The lowest RPM (i.e., exact) eigenvalue for several spiked oscillators

R m = n = 1 m = 1, n = 3

20 -798.00062499975585957 -530.50539390089880261

10 -198.00249998437519531 -130.50687623309973953

5 -48.009999000199950014 -30.513112355071711530

2 -6.0622577482985496524 -2.5774188753856708289

1.5 -2.6097722286464436550 -0.35218352259563351294

1 -0.23606797749978969641 0.848803366333102053806

m = 3, n = 1 m = n = 3

20 -255998040.41035854784 -127997600.00562501215

10 -3999510.1106623371002 -1999400.0225007778344

5 -62377.559943373182961 -31100.090049835809532

2 -236.61574750381748921 -104.5752232235887004

1.5 -34.899091771582975476 -10.358453053216073663

1 -12.250254250322260411 1.52979838806531408256

of the perturbation order N . Still, the individual forms of the interaction carry certain
specific characteristics.

5.3.1 Potential V (x) = x2 + λ/x2

At m = n = 1 our approach leads to simplifications because ε4j = 0, j = 1, 2, . . .. As
expected the rate of convergence of perturbation series decreases with R. It even appears
to converge at the coupling as small as R = 1. On the other hand, the RPM numerical
technique yields 20 accurate digits with D = 2 (d = 0) disregarding the value of R. Inci-
dentally, the m = n = 1 eigenvalue problem (i.e., the PT symmetric harmonic oscillator of
Ref. [7]) is exactly solvable so that we may be sure that both our methods yield approximate
results that converge towards the exact ground-state energy E00 = 2 − √

4R4 + 1.
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Fig. 2 Logarithmic error log
∣
∣
(
E[N ] − ERPM

)
/ERPM

∣
∣ for the ground state with R = 2 for the oscillators

given by m = n = 1 (squares), m = 1, n = 3 (filled squares), m = 3, n = 1 (circles) and m = n = 3 (filled
circles)
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5.3.2 Potential V (x) = x2 + λ/x6 of section 3, i.e., m = 1, n = 3

In this case perturbation expansion starts to oscillate, considerably, at a not yet too small
value of R = 2. The RPM appears to converge for all R but the rate of its convergence
decreases with the decreasse of R rather quickly. One could say that among our quadruplet
of toy models the oldest model of Ref. [16] seems least open towards perturbation-expansion
amendments.

5.3.3 Potential V (x) = x6 + λ/x2 , i.e., m = 3, n = 1

Perturbation expansions start to oscillate at smaller R = 1.5 and they are, at all R,
more stable than in the preceding example. Incidentally, also the rate of the conver-
gence of the purely numerical RPM results is perceivably higher than in the preceding
case.

5.3.4 Potential V (x) = x6 + λ/x6 , i.e., m = n = 3

In picture Fig. 2 we see that in spite of certain growth of complexity of the underlying for-
mulae the numerical rate of convergence of the perturbation-theory approximations remains
very satisfactory and does not exhibit oscillations even at the very high orders. Empiri-
cally one may reveal a certain apparent regularity (or periodicity in a monotonic decrease
of perturbation-series errors) but no immediate explanation of this phenomenon seems
available to us at present.

6 Summary

The recent extension of quantum theory to Hamiltonians H = −d2/dx2 + V (x) �= H †

where the coordinate is not observable, x /∈ R, was reviewed here and tested in an inno-
vative context of the strongly singular potentials, say, of the form V (x) = (ix)const x2 +
g2/[(ix)const ′x2]. Three standard (viz., large−g, perturbation-expansion and numerical
Riccatti-Padé) construction techniques were shown applicable to such a class of models. All
of these methods were shown to yield mutually compatible results supporting the hypothe-
sis of reality of the energies of the low-lying bound states, i.e., of a potentially self-adjoint
nature of the Hamiltonian in a properly chosen ad hoc physical Hilbert space H(S) with a
nontrivial metric � �= I .

Originally, a similar, purely empirical observation of the possible reality of energies of
bound states in a repulsive singular PT symmetric potential was made, in Ref. [16], in a
very restricted dynamical regime of very large repulsion strength g → ∞. In our present
continuation of this study we proceeded to the sub-asymptotic dynamical regime of finite
couplings g < ∞ alias R < ∞.

What is shared here with Ref. [16] is the explicit clarification of the highly nontrivial
physical non-equivalence and of a deep phenomenological contrast between the traditional,
real-half-axis choice of the radial coordinate r and the innovative, PT −symmetry-inspired
complex (i.e., anomalous, unobservable) choice of the line of integration of the seemingly
not too much different Schrödinger equation. In fact, the two complementary parts of an
entirely new field of research in quantum theory are encountered. This fact may be perceived
as a welcome and encouraging extension of possibilities of the model-building in quantum
mechanics.
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One should also mention that in the future analyses of singular models our deeper
understanding of the possible underlying physics will require a further extension of the con-
struction, in particular, towards some (i.e., at least, leading-order-form) metrics which would
define the above-mentioned “Hermitizing” inner products in Hilbert space H(S). What one
could find encouraging also in this context is, for the present particular choice of interaction
models, the large-coupling negligibility of the imaginary part of the potentials near their
minima at x0.

It is necessary to add that the subject itself is by far not exhausted. First of all, our
present, RPM-based demonstration of the absence of the imaginary parts in energies is more
or less purely numerical. Secondly, the perturbation method we tested remains restricted
just to the low-lying part of the spectrum of energies. Even its compatibility with indepen-
dent numerical RPM results does not offer a rigorous proof of course. A priori, within our
present methodical framework one still cannot exclude the possibility of the presence of
some exponentially small imaginary components in the energies.

This being said, our non-rigorous numerical results may still be declared important
because their existence strengthens the intuitively sound persuasion that the time evolution
of the underlying quantum systems cannot deviate from unitarity too much. In other words,
one may expect that on a pragmatic and approximative level it is possible to consider our
user-friendly new Hamiltonians as operators with a good chance of being perceived also as
PT −symmetric and self-adjoint with respect to a suitable, nontrivial physical inner product
in the underlying Hilbert space of admissible quantum states.

On the background provided by our previous paper [16] let us add that what is also pro-
vided by the present new models, methods and calculations is a long-expected extension of
the leading-order approximations towards a systematic formalism of full-fledged perturba-
tion theory. Certain semi-analytic features (i.e., Taylor-series nature) of our parallel RPM
computations might be, perhaps, also re-classified as bringing an independent new insight
into the structure of the spectra and, in particular, of the wave functions.

Appendix A: Two-parametric family of regularized singular interactions:
phenomenological aspects

One of the key merits of the bound-state Schrödinger equations of the ordinary differential
form

[

− d2

dx2
+ V (x)

]

ψn(x) = En ψn(x) , n = 0, 1, . . . (27)

is that they combine a broad phenomenological applicability and methodical appeal with
the formal friendliness of the linear differential equations of the second order. This has
been re-emphasized in Ref. [16] where a judiciously chosen next-to-harmonic toy-model
potential was studied in a specific strong-repulsion dynamical regime in which g � 1.
In a continuation and generalization of this analysis (cf. Section 4 here) one introduces a
coordinate-dependent generalization of the couplings,

V (x) = Vα,β,g(x) = x2 μα(x) + g2 νβ(x)

x6
. (28)

Both of the additional non-constant functions of x possess the same one-parametric power-
law forms of μα(x) = (ix)α , α ≥ 0 and νβ(x) = 1/(ix)β , β ≥ 0.
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This made the shape of the potential more flexible. Moreover, one may return to the
original potential via an elementary limiting transition α → 0 and β → 0. Far from this
limit, on the contrary, the shape of the function(s) μα(x) and νβ(x) may be adapted more
easily to phenomenological needs.

The list of formal reasons for our choice further incorporates also the quasi-solvable
nature of similar forces (cf. the fifth item in Table Nr. 1 of Ref. [22]), i.e., the feature which
was made popular in monograph [23]) or the tractability of at least some of the related
eigenvalue problems using continued fractions [24] or a specific simplicity of the asymptotic
estimates of wave functions [25].

It makes sense to add that the studies of non-Hermitian but real-spectra-exhibiting quan-
tum models may be perceived as one of the most dynamical branches of development of
quantum theory after 1998 (see, e.g., reviews [14, 15, 26]). One of the fairly productive sub-
branches of these efforts was devoted to the mathematical idea (which may be dated back
to the early nineties [5, 27]) that the spectrum of bound states may be in fact controlled and
modified by the mere ad hoc redefinition of the integration path of x ∈ S ⊂ C (cf., e.g.,
[28]).

A consequent further extension of the latter mathematical idea (related closely to the
presence of the strong singularities in V (x) but getting us already beyond the limits of our
present considerations) may be based on the question of what happens when the localization
of the underlying integration path S is allowed to leave the plain complex plane (endowed,
possibly, with a cut oriented upwards). In this direction it has been proposed [29] that in
the definition of the integration path S one may and should try to replace the (cut) com-
plex plane C by a more general Riemann surface R. In the latter scenario (cf. also [30,
31]) one treats the general Riemann surface R as composed, in usual manner, of a set of
individual Riemann-sheet cut planes, R = ⋃

j Rj where Rj ∼ C. Then the path S of inte-
gration may and should encircle the branch-point singularities of R, giving rise to several
alternative, non-equivalent quantum systems living on the respective “tobogganic” complex
curves. Thus, every such a system is described not only by the ordinary differential equation
but also by the topologically nontrivial tobogganic path S (connecting, in general, several
individual Riemann sheets) and, in addition, by a suitable definition of inner product in the
underlying sophisticated physical Hilbert space H(S) (cf. [30] for a deeper discussion of the
latter point in tobogganic context).
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