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Abstract The main purpose of this paper is to explore the exact solutions of Bianchi type
V spacetime in f(R, T) theory of gravity (Harko et al. 2011). In this context, two exact
solutions are investigated using assumptions of the variation law of Hubble parameter and
constant deceleration parameter. The first solution corresponds to a singular model while
the second solution gives a non-singular model of the universe. The physical quantities for
these models are calculated. Moreover, the energy density and pressure of the universe is
discussed in each case.
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1 Introduction

Recent observations from different sources such as cosmic microwave background [2, 3],
Supernovae Ia (SNIa) experiments [4–9], X-ray experiments [10] and large scale structure
[11, 12] suggest that our present universe is in expansion mode. The phenomenon of dark
energy and dark matter is another interseting topic of discussion [13–22]. Einstein first
introduced the concept of dark energy by including a small positive cosmological constant
in the field equations. But after sometime, he rejected this idea. However, it is now thought
that the cosmological constant is a suitable candidate for dark energy. Another justifica-
tion of dark matter and expansion of universe comes from alternative theories of gravity.
Recently developed f(T) gravity is an alternative theory which is a generalization of telepar-
allel gravity. This theory seems interesting as it may explain the cosmic acceleration without
involving the dark energy. A considerable amount of work has been done in this theory so
far [23–34].

f(R) theory of gravity is another example which involves a general function of Ricci
scalar in the Lagrangian. Many authors have investigated f(R) gravity in different con-
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texts [36–55]. Some review articles [56–59] may be helpful to better understand the
theory. Hendi and Momeni [60] explored black hole solutions in f(R) gravity with con-
formal anomaly. Noether symmetries have been used by Jamil et al. to investigate
f(R) tachyon model [61]. Spherically symmetry has been used extensively to investi-
gate f(R) theory in different context. Multamäki and Vilja [62, 63] explored vacuum
and perfect fluid solutions of spherically symmetric spacetime in metric f(R) grav-
ity for constant scalar curvature. They found that the solutions corresponded to the
already existing solutions in general relativity (GR). Capozziello et al. [64] studied
spherically symmetric solutions in f(R) gravity using Noether symmetries. Conserved
quantities in metric f(R) gravity via Noether symmetry approach have been recently cal-
culated [65]. Vacuum and non-vacuum cylindrically symmetric solutions have also been
explored in this theory [66–68]. Sharif and Shamir [69] gave plane symmetric constant
curvature solutions.

Recently, Harko et al. [1] proposed a new theory named as f(R,T) gravity. In this the-
ory, an arbitrary function of the scalar curvature R and the trace of the energy-momentum
tensor T is used in gravitational Lagrangian. Jamil et al. [70] reconstructed some cos-
mological models in f(R,T) gravity and it was concluded that the dust fluid reproduced
�CDM, phantom-non-phantom era and the phantom cosmology. Gödel type universe is
studied in the framework of f(R,T) modified theories of gravity by Santos [71]. Sharif and
Zubair [72] discussed the reconstruction and stability of f(R,T) gravity with Ricci and mod-
ified Ricci dark energy. The same authors [73] analyzed the laws of thermodynamics in
this theory. However, it has been proved that the first law of black bole thermodynam-
ics is violated for f(R,T) gravity [74]. Houndjo [75] reconstructed f(R,T) gravity by taking
f (R, T ) = f1(R) + f2(T ) where it was shown that f(R,T) gravity allowed transition of
matter from dominated phase to an acceleration phase.

The investigation of Bianchi Type models in modified theories is another interesting
topic of discussion. Jamil et al. [76] studied Bianchi Type I cosmology in generalized Saez-
Ballester theory using Noether gauge symmetry approach. Adhav [77] reported the exact
solutions of f(R,T) field equations for locally rotationally symmetric Bianchi type I space-
time. Study of Bianchi I anisotropic model in f(R,T) gravity has been done by Sharif and
Zubair [78]. In a recent paper [79], we have investigated the exact solutions of Bianchi type
I cosmological model in f(R,T) gravity.

This paper is devoted to explore the exact solutions of Bianchi type V space-
time in the context of f(R,T) gravity. The paper is planned as follows: In sec-
tion 2, we briefly introduce f(R,T) gravity. Section 3 is used to investigate the
exact solutions for Bianchi type V spacetime. Concluding remarks are given in the
last section.

2 f(R,T) Gravity and Field Equations

The f(R,T) theory of gravity is the generalization or modification of GR. The action for this
theory is [1]

S =
∫ √−g

(
1

16πG
f (R, T ) + Lm

)
d4x. (1)

Here f(R,T) is an arbitrary function of the Ricci scalar R and T is the trace of energy momen-
tum tensor Tμν while Lm is the matter Lagrangian. It would be worthwhile to mention here
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that we get the action for f(R) gravity if we replace f(R,T) with f(R). Further, the replace-
ment of f(R,T) with R leads to the action of GR. The energy momentum tensor Tμν is given
by [80]

Tμν = − 2√−g

δ(
√−gLm)

δgμν
. (2)

We assume that the matter Lagrangian merely depends on the metric tensor gμν rather
than its derivatives. This case yields

Tμν = Lmgμν − 2
δLm

δgμν
. (3)

By varying the action S in Eq.(1) with respect to the metric tensor gμν , we get the f (R, T )

gravity field equations

fR(R, T )Rμν− 1

2
f (R, T )gμν−(∇μ∇ν−gμν�)fR(R, T ) = κTμν−fT (R, T )(Tμν+�μν),

(4)
where ∇μ denotes the covariant derivative and

� ≡ ∇μ∇μ, fR(R, T ) = ∂fR(R, T )

∂R
, fT (R, T ) = ∂fR(R, T )

∂T
, �μν = gαβ δTαβ

δgμν
.

Contraction of Eq. (4) provides

fR(R, T )R + 3�fR(R, T ) − 2f (R, T ) = κT − fT (R, T )(T + �), (5)

where � = �μ
μ. This is an important equation because it gives a relationship between R

and T. The standard matter energy-momentum tensor is

Tμν = (ρ + p)uμuν − pgμν, (6)

where uμ = √
g00(1, 0, 0, 0) is the four-velocity in co-moving coordinates and ρ and p

are energy density and pressure of the fluid respectively. In modified theories, the problems
involving energy density and pressure are not any easy task to deal with. Moreover, there
does not exist any unique definition for matter Lagrangian. Thus we may assume the matter
Lagrangian as Lm = −p which gives

�μν = −pgμν − 2Tμν, (7)

and consequently the field equations (4) take the form

fR(R, T )Rμν−1

2
f (R, T )gμν−(∇μ∇ν−gμν�)fR(R, T ) = κTμν+fT (R, T )(Tμν+pgμν),

(8)
It is mentioned here that these field equations depend on the physical nature of matter

field. Many theoretical models corresponding to different matter contributions for f(R,T)
gravity are possible. However, Harko et al. [1] gave three classes of these models

f (R, T ) =
⎧⎨
⎩

R + 2f (T ),

f1(R) + f2(T ),

f1(R) + f2(R)f3(T ).

We consider the first class in this paper, i.e. f(R,T)=R+2f(T). The field equations for this
model take the form

Rμν − 1

2
Rgμν = κTμν + 2f ′(T )Tμν +

[
f (T ) + 2pf ′(T )

]
gμν, (9)

where prime represents derivative with respect to T.
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3 Exact Solutions of Bianchi Type V Model

Here we find the exact solutions of Bianchi V spacetime in the framework of f(R,T) grav-
ity. For the sake of simplicity, we consider natural system of units (G = c = 1) and
f (T ) = λT , where λ is an arbitrary constant. For Bianchi type V spacetime, the line
element is

ds2 = dt2 − A2(t)dx2 − e2mx[B2(t)dy2 + C2(t)dz2]. (10)

Here A, B and C are cosmic scale factors and m is an arbitrary constant. The Ricci scalar
for this spacetime turns out to be

R = −2

[
Ä

A
+ B̈

B
+ C̈

C
− 3m2

A2
+ ȦḂ

AB
+ ḂĊ

BC
+ ĊȦ

CA

]
. (11)

Using Eq. (9), we get

ȦḂ

AB
+ ḂĊ

BC
+ ĊȦ

CA
− 3m2

A2
= (8π + 3λ)ρ − λp, (12)

B̈

B
+ C̈

C
+ ḂĊ

BC
− m2

A2
= λρ − (8π + 3λ)p, (13)

C̈

C
+ Ä

A
+ ĊȦ

AC
− m2

A2
= λρ − (8π + 3λ)p, (14)

Ä

A
+ B̈

B
+ ȦḂ

AB
− m2

A2
= λρ − (8π + 3λ)p (15)

and the 01-component turn out to be

2
Ȧ

A
− Ḃ

B
− Ċ

C
= 0. (16)

Here p denotes the average pressure along the directional axes and ρ is the energy density
of the perfect fluid. These are five non-linear differential equations with five unknowns
namely A, B, C, ρ and p. Following the approach of Saha and Rikhvitsky [81], we get
respectively

B

A
= d1 exp

[
c1

∫
dt

a3

]
, (17)

C

B
= d2 exp

[
c2

∫
dt

a3

]
, (18)

A

C
= d3 exp

[
c3

∫
dt

a3

]
, (19)

where c1, c2, c3 and d1, d2, d3 are integration constants which satisfy the following
relation

c1 + c2 + c3 = 0, d1d2d3 = 1. (20)
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Using Eqs. (17)-(19), we can write the unknown metric functions in an explicit way

A = ap1 exp

[
q1

∫
dt

a3

]
, (21)

B = ap2 exp

[
q2

∫
dt

a3

]
, (22)

C = ap3 exp

[
q3

∫
dt

a3

]
, (23)

where
p1 = (d1

−2d2
−1)

1
3 , p2 = (d1d2

−1)
1
3 , p3 = (d1d2

2)
1
3 (24)

and

q1 = −2c1 + c2

3
, q2 = c1 − c2

3
, q3 = c1 + 2c2

3
. (25)

It is mentioned here that p1, p2, p3 and q1, q2, q3 also satisfy the relation

p1p2p3 = 1, q1 + q2 + q3 = 0. (26)

By making use of Eq. (16), we get the constraint equations as follows

p1 = 1, p2 = p3
−1 = P, q1 = 0, q2 = −q3 = Q. (27)

Thus, the metric coefficients become

A = a, B = aP exp

[
Q

∫
dt

a3

]
, C = aP −1 exp

[
−Q

∫
dt

a3

]
. (28)

3.1 Some Important Physical Parameters

Now we give definitions of some important physical parameters. The average scale factor a
and volume scale factor V are defined as

a = 3
√

ABC, V = a3 = ABC. (29)

The generalized mean Hubble parameter H is given by

H = 1

3
(H1 + H2 + H3), (30)

where
H1 = Ȧ

A
, H2 = Ḃ

B
, H3 = Ċ

C
are defined as the directional Hubble parameters in the

directions of x, y and z axis respectively. The mean anisotropy parameter A is

A = 1

3

3∑
i=1

(
Hi − H

H

)2

. (31)

The expansion scalar θ and shear scalar σ 2 are defined as follows

θ = u
μ

;μ = Ȧ

A
+ Ḃ

B
+ Ċ

C
, (32)

σ 2 = 1

2
σμνσ

μν = 1

3

[(
Ȧ

A

)2

+
(

Ḃ

B

)2

+
(

Ċ

C

)2

− ȦḂ

AB
− ḂĊ

BC
− ĊȦ

CA

]
, (33)

where

σμν = 1

2
(uμ;αhα

ν + uν;αhα
μ) − 1

3
θhμν, (34)
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hμν = gμν − uμuν is the projection tensor. The deceleration parameter q is a measure of
the cosmic accelerated expansion of the universe. It is defined as follows

q = − äa

ȧ2
. (35)

The behavior of models is determined by the sign of q. The positive value of decelera-
tion parameter indicates a decelerating model while the negative value gives inflation. Here
we need an additional constraint as there are four equations and five unknowns. Thus we
use a well-known relation [82–84] between the average scale factor a and average Hubble
parameter H to solve the equations,

H = la−n, (36)

where l and n are positive constants. Using Eqs. (30) and (36), we get

ȧ = la1−n (37)

and the deceleration parameter becomes

q = n − 1. (38)

Integrating Eq. (37), it follows that

a = (nlt + k1)
1
n , n �= 0 (39)

and
a = k2 exp(lt), n = 0, (40)

where k1 and k2 are constants of integration. Thus we get two different models of the
universe corresponding to these values of the average scale factor.

3.2 Singular Model of the Universe

For the model of the universe when n �= 0, the metric functions A, B and C become

A = (nlt + k1)
1
n , (41)

B = P(nlt + k1)
1
n exp

[
Q(nlt + k1)

n−3
n

l(n − 3)

]
, n �= 3 (42)

C = P −1(nlt + k1)
1
n exp

[
−Q(nlt + k1)

n−3
n

l(n − 3)

]
, n �= 3. (43)

The directional Hubble parameters H1, H2 and H3 take the form

H1 = l

nlt + k1
, (44)

H2 = l

nlt + k1
+ Q

(nlt + k1)
3
n

, (45)

H2 = l

nlt + k1
− Q

(nlt + k1)
3
n

. (46)

The mean generalized Hubble parameter and volume scale factor are

H = l

nlt + k1
, V = (nlt + k1)

3
n . (47)
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The mean anisotropy parameter becomes

A = 2Q2

3(nlt + k1)(6−2n)/n
. (48)

The expansion scalar and shear scalar for this model are given by

θ = 3l

nlt + k1
, σ 2 = Q2

(nlt + k1)6/n
. (49)

The energy density and pressure of Bianchi V universe for this model turns out to be

ρ = 1

12(λ + 2π)(λ + 4π)

[
4(λ + 3π)

{
3l2

(nlt + k1)2
− Q2

(nlt + k1)
6
n

}

− λ

{
3l2(1 − n)

(nlt + k1)2
+ 2Q2

(nlt + k1)
6
n

}]
, (50)

p = −1

12(λ + 2π)(λ + 4π)

[
4π

{
3l2

(nlt + k1)2
− Q2

(nlt + k1)
6
n

}

+ (3λ + 8π)

{
3l2(1 − n)

(nlt + k1)2
+ 2Q2

(nlt + k1)
6
n

}]
. (51)

The plots of energy density ρ, pressure p and equation of state parameter w = p/ρ

against time coordinate t are shown in Figs. 1 and 2 respectively. It is can be seen from
Fig. 2 that w → 1

3 as t → ∞ which indicates that the model corresponds to a radiation
dominated universe as the time grows.
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Fig. 1 Behavior of energy density and pressure versus time for t > 0 with n = 2, λ = 1, l = 1, k1 = 0
and Q = 1



Int J Theor Phys (2015) 54:1304–1315 1311

2 4 6 8 10
t

0.2

0.1

0.0

0.1

0.2

0.3

w

Fig. 2 Behavior of w versus time for t > 0 with n = 2, λ = 1, l = 1, k1 = 0 and Q = 1

3.3 Non-singular Model of the Universe

For the model when n = 0, the metric coefficients A, B and C turn out to be

A = k2 exp(lt), (52)

B = Pk2 exp(lt) exp

[
−Q exp(−3lt)

3lk2
3

]
, (53)

C = P −1k2 exp(lt) exp

[
Q exp(−3lt)

3lk2
3

]
. (54)

The directional Hubble parameters H1, H2 and H3 are

H1 = l, H2 = l + Q exp(−3lt)

k2
3

, H3 = l − Q exp(−3lt)

k2
3

. (55)

The mean anisotropy parameter and shear scalar for this model become

A = 2Q2

3l2k2
6 exp(6lt)

, σ 2 = Q2

k2
6 exp(6lt)

. (56)

The mean generalized Hubble parameter, expansion scalar and volume scale factor turn
out to be

H = l, θ = 3l, V = k2
3 exp(3lt). (57)

The energy density and pressure of universe here become

ρ = 1

12(λ + 2π)(λ + 4π)

[
4(λ + 3π)

{
3l2 − Q2

k2
6 exp(6lt)

}

− λ

{
3l2 + 2Q2

k2
6 exp(6lt)

}]
, (58)

p = −1

12(λ + 2π)(λ + 4π)

[
4π

{
3l2 − Q2

k2
6 exp(6lt)

}

+ (3λ + 8π)

{
3l2 + 2Q2

k2
6 exp(6lt)

}]
. (59)
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Fig. 3 Behavior of energy density and pressure versus time for t > 0 with n = 2, λ = 1, l = 1, k2 = 1
and Q = 1

The plots of ρ, P and w against time coordinate t are shown in Figs. 3 and 4 respectively.
It is evident from Fig. 4 that w → −1 as t → ∞ which indicates that the non-singular
model corresponds to a vacuum fluid dominated universe.

4 Concluding Remarks

In this paper, we discuss the phenomenon of current accelerated expansion of universe in the
context of recently proposed f(R,T) theory of gravity. For this purpose, we take f (R, T ) =
R + 2λT and investigate the exact solutions of Bianchi type V cosmological model. We
use the assumption of constant value of deceleration parameter and the law of variation
of Hubble parameter to find the solutions of field equations. We obtain two solutions that
correspond to two different models of universe. The first solution gives a singular model
with power law expansion while the second solution provides a non-singular model with
exponential growth of universe. The physical parameters for these models are discussed
below.

The singular model of the universe corresponding to n �= 0 possesses a point singularity
when t ≡ ts = − k1

nl
. The volume scale factor and the metric coefficients A, B and C vanish

at this singularity point. The cosmological parameters H1, H2, H3, H, θ , and σ 2 are all
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Fig. 4 Behavior of w versus time for t > 0 with n = 2, λ = 1, l = 1, k2 = 1 and Q = 1
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infinite at this point of singularity. The mean anisotropy parameter A also becomes infinite
at this point for 0 < n < 3 and vanishes for n > 3. Moreover, the isotropy condition, i.e.,
σ 2

θ
→ 0 as t → ∞, is verified for this model. When we choose k1 = 0, Fig. 1 suggests

that energy density of the universe goes to zero as the time grows. The pressure approaches
negative infinity as t → 0. This strong negative pressure indicates the presence of dark
energy in our universe. For this model, equation of state parameter w → 1

3 as t → ∞
which shows that universe is radiation dominated. All these observations suggest that the
universe starts its expansion with zero volume, strong negative pressure from t = ts and it
will continue to expand for 0 < n < 3.

The non-singular model of the universe corresponds to n = 0 with average scale factor
a = k2 exp(lt). The expansion scalar θ and mean generalized Hubble parameter H turn out
to be constant in this case. The physical parameters H1, H2, H3, σ 2 and A are all finite
for finite values of t. Moreover, the metric functions are defined for finite time while the
isotropy condition is satisfied. There is an exponential increase in the volume as the time
grows. However, energy density is approximately zero initially and becomes constant after
some time. Pressure of the universe is also in negative zone for this model which may be
an indication of dark energy in the universe. It is evident from Fig. 4 that w → −1 as
t → ∞. which shows that the exponential model corresponds to a vacuum fluid dominated
universe. According to recent observations [85], the expansion of the universe is acceler-
ating when w ≈ −1. Therefore, the solution supports the phenomenon of expansion of
universe and it is expected that the problematic issues such as dark energy and acceler-
ated expansion of universe may be addressed using modified theories of gravity especially
f(R,T) gravity.
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