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Abstract This work aims to develop a novel BDI agent programming framework, which
embeds the reasoning under uncertainty (probabilistic logic) and is capable of a realis-
tic simulation of human reasoning. We claim that such a development can be addressed
through the adoption of the mathematical and logical formalism derived from Quan-
tum Mechanics: a scheme fulfilling the necessary requirements is described, useful for
both the interpretation of some peculiarities in human behavior, and eventually the adop-
tion of ‘quantum computing’ formalism for the agent programming. This last possibility
could exploit the power of quantum parallelism in practical reasoning applications. Inte-
gration with the BDI paradigm enables the straightforward adoption of efficient learning
algorithms and procedures, enhancing the behavior and adaptation of the agent to the
environment.

Keywords BDI paradigm · Quantum mechanics · Quantum computing ·
Quantum cognition

1 Introduction

This work has been inspired by previous researches in two different directions: quantum-
mechanical frameworks (specifically, their application to cognitive, social and financial
sciences) and BDI modeling of decision-making processes. The effort will be here to merge
them in a single structure.

The application of quantum models, and related mathematical tools, is nowadays con-
sidered a standard in physical sciences for the explanation of a whole series of different
phenomena. However, only recently this quantum-apparatus, and the concepts underly-
ing it, is being applied as an operational formalism to interpret phenomena, clearly not
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belonging to those scales and/or conditions, where quantum processes occur. This has led
to the formulation of the so called quantum-like [1] and quantum structure paradigms
[2], implemented in a few successful studies related mainly to cognitive sciences. Early
examples are attempts of explaining observations in the fields of human decision mak-
ing (violations of the sure thing principle [3], paradoxes emerging from expected utility
theories [4], experiments about classification and decision [5]) and probability judge-
ment (conjunction and disjunction fallacies [6, 7], order effects [8], the liar paradox [9],
...). Further investigations have also extended the quantum formalism approach to other
cognitive phenomena, such as knowledge representation (invoking different principles of
Quantum Mechanics, ranging from superposition [6] to contextuality and interference [10]),
information retrieval [11], semantic analysis (with envisaged applications also in Artifi-
cial Intelligence [12]) and human perception [13, 14]. Consequences of quantum cognition
aspects have also been claimed to play a role in the behavior of market agents, and thus in
the market psychology [15, 16].

The scope of this paper is the attempt to extend this Quantum Cognition point of view to
more complex decision processes, as performed by human agents. Most of the references
above, in fact, deal with single decisions under controlled conditions. A decision-maker in
the real world, instead, requires processes involving sub-processes, which are themselves
interdependent: its modeling as an agent must cope with this architecture. Intuitively, the
success in introducing quantum formalism - so to explain paradoxes deriving from simple
cognitive processes - points in the direction of applying the same paradigms also to com-
binations of these basic reasoning processes. The ultimate reason may be interpreted as a
strict consequence of physiological quantum effects, or merely as the intrinsic contextual
nature of the reasoning process, where the agent can be thought as an open quantum system,
influenced by the environment.

The notion itself of an agent-based system has spread in contexts other than Artificial
Intelligence, its area of direct interest, becoming a significant computing technology along
the last ten years [17]. An agent is intended as a computational system situated in an envi-
ronment: it is capable of autonomous actions, aiming to achieve specific goals. The agent
does not have complete knowledge of the environment, neither complete control over it,
and the environment can dynamically evolve independently from the agent [18]. The main
problem for an agent is to decide which action fits best its goals, among those actions it can
choose. Such decision-making skills are linked to a mental state of the agent, reflecting its
perceptions, representations, beliefs, desires, trends, etc. Furthermore, the environment may
include interaction with additional agents, and those must be taken into account, when the
reasoning agent designs its plans.

Among the cognitive frameworks introduced to model this problem, in this paper we will
make use of the BDI (‘Beliefs-Desires-Intentions’) paradigm1, given its successful adoption
for the design of those complex systems, requiring a robust implementation, resilient to
interactions with the surrounding environment [19]. However, the classical BDI paradigm
is known to have some limitations, specifically: i) it is based on a deterministic first order
logic, which means decision under uncertainty can not be processed; ii) there is no intrinsic
‘automatic learning/training’ structure2, which must be explicated only when designing the
agent’s reasoning.

1Also known as BWI: ‘Belief-Wish-Intentions’
2In the following, with the word cognitive, we will refer in general to the ensemble of learning, training and
reasoning processes.



712 Int J Theor Phys (2015) 54:710–726

Several preliminary studies have tried to overcome these obstacles, by integrating the
BDI agent with a learning framework, or with logic modules, able to explicitly deal with
uncertainty (e.g. fuzzy logics) [20–22]. This necessity for the introduction of probabilistic
reasoning is derived from the intrinsically incomplete information, that an agent has about
the environment. The adoption of probabilistic cognitive algorithms has its own weaknesses,
though. A trade-off must be found, between the reasoning efficiency and the complexity of
the algorithm. Moreover, an environment is always, by definition, a dynamic environment,
where the decision process must be taken on a time-scale, which is small compared to the
time-scales for the environment variations. Intuitively, whatever action has been planned, it
could be turned ineffective by a modified environment where it is then being operated. On
the other side, the agent can not be too impulsive, but must premeditate about the optimal
action according to circumstances [23].

The work presented here copes with these limitations, proposing a quantum BDI agent-
programming framework, which:

1. Embeds the reasoning under uncertainty (probabilistic logic);
2. Enables the straightforward adoption of learning algorithms;
3. Enhances the agent reasoning performances, and thus its adaptation to the environment.

Notice that we are replacing the classical Boolean algebra with an orthomodular associative
algebra (i.e. the structure of quantum logics), which, in a BDI formulation, acts on events
and propositions [38]. The interested reader can find additional details in [39] and [40] for
quantum computing applications; while in [41] and [42]) is a focus about a few axiomatic
definitions of the logics. The paper is structured as follows: the first section introduces the
research methods and principles, that have led to the development of the model proposed.
The last sections describe our quantum BDI agent’s model. Conclusions and future lines of
research are given at the end of the paper.

2 Methods and Framework: The Classical BDI Paradigm

As stated in the Introduction, the BDI paradigm is focused on the reasoning of an agent, who
has limited resources [19], where ‘resources’ refer to computational power and/or memory.
Thus, the agent has a finite amount of time to improve the results of its reasoning, and
this timing must be adapted to the conditions imposed by the dynamic environment, in
which the agent operates. There can be two extreme approaches in dealing with the timing
problem. A first possibility is an ‘ever-adapting’ solution: the agent reacts changing his
plans to whatever small change in the surrounding environment. On the opposite side, a
‘static’ approach may suggest to keep the plans fixed, and react to whatever stimulus without
further reasoning.

Both cases are intuitively inefficient. In the first one, the agent’s resources would be
focused in the reasoning process: in a fast-changing environment, this approach could even
lead to an agent far too reactive, who in practice is unable to act. The second case, instead,
designs an agent unable to adapt to changes in the operative scenario, and whenever these
changes alter significantly the reasoning input, the actions chosen by the agent may become
counterproductive.

In a nutshell, the BDI paradigm attempts to mediate between these two extremes,
introducing the concepts of belief, desire and intention.
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Beliefs are facts an agent believes about the world, i.e. the world representation an
agent has. The agent obtains these beliefs through its own personal perception of the
surrounding, and they are thus true only for the agent3: beliefs are no ‘objective truth’.

Desires are the goals of the agent, i.e. a final state the agent desires to reach. An agent
may have more desires at once, and they may even be conflicting.

Intentions are referred to the agent’s commitment to its plans, in achieving its goals.
Intentions can not be conflicting: once the agent has programmed its actions, it can only
intend a subset of his desires.

Commitments are the basis for the intentions: the agent is committed to an intention as far
as the agent believes that the commitment to this intention is a way of achieving his goals.
Given that, the agent is ‘allowed’ to think about those plans only, that are linked to this
intention. Notice that, in general, intention is considered a synonymous of commitment, and
the subtle difference outlined is neglected. For our purposes, this same simplified definition
is going to be adopted in the rest of this document.

Commitment is a key-point in the BDI agent’s formulation, as it balances the two extreme
‘timing situations’ described above. In fact, once the agent has acquired its beliefs, and it
is committed to a specific goal, some kind of filtering occurs in the reasoning, so that the
agent selects only plans compatible with the final goal, and excludes all incompatible plans.
In this way, the computational cost of the reasoning can be greatly reduced, leaving space
for the action. However, in order to design a flexible agent, a conditional revision of the
commitment is required.

In almost every realistic situation, an agent has no exact idea in which state the environ-
ment is. Its knowledge is imperfect, due to a lack of information. In this case, the agent is
only able to assign a likelihood to its beliefs [24]. The problem of decision-making under
these uncertain conditions has been afforded in probability theory and decision making
theory.

Moreover, the definition of probability implicitly adopted is another delicate issue.
The standard definition is in fact a so-called frequentist probability: the ratio between
cases where the proposition is found true, by the total number of cases considered. In
the field of agent programming, it is better to refer to subjective probability, where ‘sub-
jective’ refers to the quantitative uncertainty that each agent has about the actual state
of the world, and not to the arbitrariness of the state itself. In fact, different agents may
have different knowledge about the same event, and therefore assign different likelihoods
to it.

2.1 Bayesian Agent Modeling

A rather successful framework for implementing the reasoning of the agent in BDI models
is given by the adoption of Bayesian networks. A Bayesian network (also called a condi-
tional probability network), is a directed acyclic graph (DAG), where the nodes are random
variables Xi , each having a set of parent variables P(Xi) associated with them. From each
element in P(Xi) there is an edge pointing to each node of the set {Xi}.

3E.g. a robot’s sensor, able to measure the external temperature, permits the robot to have a belief about the
real, current value of this variable. If the sensor’s reading is 50◦C, one can not infer that this is certainly the
actual value: the sensor may be out-of-service.
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The parents of a random variable Xi are the elements of the minimal set of predecessors
of Xi . That is, Xi is conditionally independent from all other variables Xj<i /∈ P(Xi)

preceding it in the graph order:

P (X1, X2, ...,Xn) =
n∏

i=1

P (Xi |P(Xi)) (1)

Such a network underlies an ensemble of conditional probabilities, including also the apri-
oristic probabilities of variables, which have no parent variables. In the literature, several
works have tried to integrate the Bayesian framework with the BDI modeling: starting with
conceptual proposals void of a rigorous implementation [23], up to recent works, dealing
in depth with technical details [25]. The main idea of these proposals was to treat the main
features of the BDI model, as outlined in Section 2, as variables in a conditional probabil-
ity network, with aprioristic probabilities being bound to the agent’s uncertainty about its
knowledge of the environment. Such an integration allows the agent to manage uncertain
events and propositions [25], in a probabilistic formulation (which includes, as a special
case, the deterministic Boolean logic).

However, in our opinion, the tools of quantum mechanics offer a unique, proper for-
mulation of probabilistic aspects in logical reasoning. The modeling possibilities offered
in a quantum framework are, in fact, not reproducible by deterministic approaches, and
the quantum formalism offers a sound and elegant implementation of contextual reasoning,
which may be required by a probabilistic BDI paradigm. In particular, for those decision
processes where a background noise leads to non-linear probabilistic phenomena for the rea-
soning under uncertainty. This possibility is investigated in the following sections, through
a concise logical and mathematical formalization.

3 The Quantum BDI Agent’s Model

Among the various possibilities to model non-linear probabilities [26], we choose here
the Heisenberg matrix formulation of the quantum-mechanical formalism. In the follow-
ing, the concepts of finite-dimensional Hilbert spaces will be used, leading to discrete
random variables4: for all the details in the notation and axioms, the interested reader
may refer to [1, 27]. No discussion will be made about the dynamic implications of
the theory: time-dependent variables and related concepts will be left apart for future
analyses.

As the first, let us introduce some formal definitions which are the base of the framework
under development.

Definition 1 An atomic state is identified by a ‘ket’, belonging to an orthonormal basis of
a Hilbert space of finite dimension N .

Definition 2 An elementary state is a linear combination of atomic states, normalized to
unity.

4It is possible to extend the formalism developed to the case of continuous variables, but this poses some
difficulties which prevent a straightforward extension.
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That is, an elementary state can be whatever ket belonging to the Hilbert space, spanned
by the orthonormal basis of finite dimension N . From the quantum-mechanical point of
view, such a state is a pure state of a system of dimension N . Therefore, the density matrix
of this pure state is the diagonal representation of an observable, and the values on its main
diagonal can be interpreted as the probabilities of outcomes, of measures performed on the
observable.

Introducing in particular the atomic state of belief, and adopting the bra-ket notation
|bi > for the i-th belief state, we can define the Hilbert space:

HB(l)
= span{|bp >}p=1,...,P (2)

and to allow the description of the agent mental state via composite quantum systems [34],
we combine the (sub-)spaces HB(l)

into:

Definition 3 The global belief space of an agent, that is the space HB, defined via the
tensor product of spaces HBl

(l = 1, ..., L)

HB = HB1 ⊗ HB2 ⊗ .... ⊗ HBL
=

L⊗

l=1

HBl
(3)

Therefore, a belief state |ψB > of an agent5 may be whatever ket belonging to the global
space HB. Consider now the states constructed as superpositions of atomic states:

|ψB1 > = 1√
P1

P1∑

l1=1

|bl1 >

|ψB2 > = 1√
P2

P2∑

l2=1

|bl2 >

... ... ... ... ... ...

|ψBL
> = 1√

PL

PL∑

lL=1

|blL > (4)

where the kets bl1,...,N
are respectively in each subspace Bl=1,...,L.

Definition 4 The default belief state of an agent is the state:

|ψB >=
L⊗

l=1

|ψBl
> (5)

that is, a pure state of the global space B. It can be noticed that the following fundamental
properties hold:

Theorem 1 |ψB > is normalized (to unity).

Theorem 2 All the probabilities of outcomes of measures, performed for the observables
of each subspace HBi

(i = 1, ...,L), are (classically) conditionally independent from each
other.

5I.e. its mental state, according to its beliefs, at a certain moment of the reasoning.
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Analogously to the definitions outlined for the belief space, we can introduce corre-
sponding definitions for the intentions and desires spaces for the agent’s mental state. In
particular, representing as |iq > the q-th atomic state of intention:

HI(m)
= span{|iq >}q=1,...,Q (6)

is a subspace which concurs to define:

Definition 5 The global intention space is the tensor product HI

HI = HI1 ⊗ HI2 ⊗ .... ⊗ HIM
=

M⊗

m=1

HIm (7)

Finally, calling |dr > the r-th atomic state of desire, and HD(n)
the space spanned by

these atomic states:

Definition 6 The global desire space of an agent is the tensor product HD:

HD = HD1 ⊗ HD2 ⊗ .... ⊗ HDN
=

N⊗

n=1

HDn . (8)

For each subspace Im (m = 1, ...,M) and Dn (n = 1, ...,N) it is possible to define,
respectively, intention states |ψI > and desire states |ψD >, as already done for belief
states.

Correspondingly to (5), a default intention state |ψI > and a default desire
state |ψD > can also be defined, and in these cases hold again Theorems 1
and 2.

It may be observed that Theorem 2 intuitively derives from the tensor product construc-
tion of the global space: an observable Â acting on the subspace Hk alone can be written
for the global space H as: Â = Î1 ⊗ ... ⊗ Âk ⊗ ... ⊗ ÎK , with Î the identity operator.
This brings us to the conclusion that measurements performed on observables of a certain
subspace do not affect observables of all the others, as expected from the theory of com-
posite quantum systems: there is no interference among different subspaces of the global
space. Formally, those observables, which are diagonal in the chosen basis representation,
are mutually commuting observables.

An agent in a default state for both the belief and desire spaces can be understood as in
neutral behaviour, or without ”personality”: the default state is, in fact, a superposition of
all possible beliefs and desires - for each subspace - which are mutually exclusive6 and have
equal probabilities to occur. Notice also the absence of entanglement among the subspace
states |ψB,D,I >, introduced to construct the default state, which is a pure separable state
for the global space H by construction (it is a tensor product of pure subspace states).

The mental state of an agent is a state belonging to the tensor product space of the
three spaces of beliefs, intentions and desires: the global space H = HB ⊗ HD ⊗ HI .
An operator Ĉ on this space can be intended as an agent characterization. When Ĉ acts
on the default state, the final state may need to be normalized again (this is strictly
necessary, given the probabilistic framework). Successive application of operators, and

6This characterization descends from describing these states as Hilbert space basis vectors: if one is certainly
TRUE, than all the others must be FALS E.
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normalization of resulting states, produces a density operator, which can be put in form
of a Bayesian quantum network (see Section 4). We make this statement clearer with
some examples, dealing for simplicity with only the beliefs and the intentions of the
agent.

Take in consideration a bi-dimensional belief space HB and a bi-dimensional space HI :
the global mental space for the agent will then be a four-dimensional Hilbert space, which
is the tensor product of the two subspaces. Denoting with |bp > and |iq > (p, q ∈ {1, 2})
the basis kets of HB and HI , respectively, then |bp > ⊗ |iq >:= |bpiq > is a state
of an orthonormal basis for the space HB ⊗ HI , which we do consider the eigenbasis of
some observable Â, that in our scheme will therefore deal with observation of the desire
and intention of the agent. In the Heisenberg matrix formalism, the basis for this case is
composed by four-dimensional column vectors, e.g. :

|b1i1 > =

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ (9)

and equivalently for |b1i2 >, |b2i1 > and |b2i2 >. It is well known how a pure state |� >

for the global system can be always written as a linear combination of the basis states:

|� >=
∑

p,q

πpq |bpiq > (10)

and leads to a pure state density projector:

ρ̂P = |� >< �| (11)

with specific properties [36]. A global mixed state, instead, can be described as a non-
coherent convex sum of pure state density matrices:

ρ̂M =
∑

i

λi ρ̂P,i (12)

which retains some (but not all) of the properties of ρ̂P , and in particular the trace-
normalization tr(ρ̂P,M) = 1, which follows from the probabilistic interpretation of the
density operator (see also (17) in the following).

Example 1 As a first case, we will suppose a mixed global state, which is represented by a
diagonal density operator in the basis chosen7:

ρ̂MS =
∑

p,q

|πpq |2|bpiq >< bpiq | (13)

We can re-formulate ρ̂ in (13) as a density matrix:

ρMS =

⎛

⎜⎜⎝

|π11|2 0 0 0
0 |π12|2 0 0
0 0 |π21|2 0
0 0 0 |π22|2

⎞

⎟⎟⎠ (14)

7It is skipped here the particular case of a pure separable global state, represented by a diagonal density
operator, as it can be reduced to the trivial case where the density matrix in (14) has only one non-vanishing
diagonal element, i.e. the global state is an eigenstate of the global density matrix. All other considerations
done for Example 1 would nevertheless hold for this specific case.
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where tr(ρMS) = ∑
pq |πpq |2 = 1. It is important to notice how, in this case, ρ̂MS repre-

sents no entangled state. In fact, it is easy to see the separability of ρ̂MS as a product state
of two sub-system density matrices:

ρMS = ρ(B) ⊗ ρ(I) (15)

which are both diagonal:

ρ(B) =
(|μ11|2 0

0 |μ22|2
)

; ρ(I) =
(|ν11|2 0

0 |ν22|2
)

(16)

Drawing on the theory of composite systems, a state as described by ρ̂MS does not exhibit
correlations among the subsystems introduced8. The state of each subsystem, in fact, can
be described by a well defined state such as (16), independently from the state, the global
system is in [36].

To better explain what this means in terms of probability calculus and the agent’s reason-
ing, using the relations above and interpreting the diagonal elements of the density matrix
as populations, we can calculate the probabilities for the system to be in one of the basis
eigenstates:

P (bpiq) =
⎛

⎜⎝

δ(11)(pq)

δ(12)(pq)

δ(21)(pq)

δ(22)(pq)

⎞

⎟⎠

⎛

⎜⎜⎝

|π11|2 0 0 0
0 |π12|2 0 0
0 0 |π21|2 0
0 0 0 |π22|2

⎞

⎟⎟⎠
(
δ(11)(pq) δ(12)(pq) δ(21)(pq) δ(22)(pq)

)

= |πpq |2 (17)

In terms of the BDI scheme, (17) can be interpreted as the probability for the agent to
intend the action iq , when it has the belief bp. Now, tracing out the diagonal reduced density
matrix9 ρ(I), its diagonal elements can be interpreted as populations (i.e. probabilities) of
the possible states, the “intention” subsystem can occupy. Then, it is possible to derive:

P (iq) = P (b1iq ) + P (b2iq ) q = 1, 2 (18)

that is the classical total probability law, for the agent to undertake intention iq . Therefore,
for the case of a separable density matrix, the system can be reduced to the classical one:
there are no quantum interference effects.

Example 2 Consider now a pure global state |� > that is entangled, whose density
matrix representation in the basis chosen is not diagonal, for example the superposition
|� >= π11|b1i1 > +π21|b2i1 >, which reads in density matrix form:

ρ =

⎛

⎜⎜⎝

|π11|2 0 π∗
11π21 0

0 0 0 0
π11π

∗
21 0 |π21|2 0

0 0 0 0

⎞

⎟⎟⎠ (19)

8It is worth to briefly comment also the more general case where the global density matrix is separable as
ρMS = ∑

i λiρi(B) ⊗ ρi(I). Here correlations among the subsystems are expected; nevertheless, for this case
it would be still possible to describe two-system probabilities as classical probabilities [35].
9Notice ho w the reduced density matrix ρ(I), given the separability outlined, coincides with the term in the
product of (15).
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It is well known that (19) describes a non-separable state [36]. That is, ρ̂ can not be
described in terms of a decomposition as in (12). Nevertheless, it is still useful to adopt a
reduced density matrix formalism. In fact, within the brief notation where ρlk

jk indicates the
coefficient corresponding to the element |bj ik >< blik | of ρ̂:

ρ(B) = T rHI
(ρ) =

∑

j,l

∑

k

ρlk
jk|bj >< bl | (20)

is the reduced density matrix for the belief subsystem, in matrix form:

ρ(B) =
( |π11|2 π∗

11π21

π11π
∗
21 |π21|2

)
. (21)

Using (19) and recalling
tr(ρ) = |π11|2 + |π21|2 = 1 (22)

it is easy to see that ρ̂(B) represents a mixed state (tr(ρ2
(B)) < 1). This was expected,

given that we started with an entangled state. ρ̂(B) embeds all the (partial) information about
|� >, which is accessible through local operations, acting on the (B) subsystem alone. In
particular, it is possible to use ρ̂(B) for investigation of the correlations between the belief
and intention subspaces. Suppose, in particular, that the task is to infer the outcome of
measurements in the intention subspace, given the belief state10 the agent is in.

As the first, suppose |bi > basis vectors can be given in terms of the basis |i1 >, |i2 > as:

|bi >=
∑

j

cij |ij > j = 1, 2 cij ∈ C (23)

with
∑

j |cij |2 = 1, under the condition of orthonormal bases. In order to infer the proba-
bility that the agent will assume e.g. the state |i1 >, we can use the expectation value of the
projector on such a state, that is:

tr(ρ̂(B)|i1 >< i1|) (24)

Using (23) to rewrite11 (20) in terms of {|ii >}, it is possible to calculate the result of (24),
that is explicitly:

c2
11|π11|2 + c2

21|π21|2 + 2Re
(
c∗

11π
∗
11c21π21

)
(25)

In order to interpret the result in (25), we can observe how in terms of probabilities P (.):

|πij |2 : P (bi) (26)

|cij |2 : P (bj |ai) (27)

where (26) descends directly from (21), expressing the probability that the agent has the
belief state |bi >, while interpreting the coefficients cij as “conditional probabilities”
depends on (23).

Generalizing this result, we have found that:

P (ij ) = P (ij |b1)P (b1) + P (ij |b2)P (b2) + 2Re
[
A∗(ij |b1)A

∗(b1)A(ij |b2)A(b2)
]

(28)

where A(.) and A(.|.) are amplitudes of (conditional) probability. Now, if the first row
of (28) is still the classical law of total probability, the third additional term, called the
‘interference’ term, introduces an effect that is typical of quantum probability [1, 29].

10I.e. the only information supposed directly accessible.
11Which is the same as a change in the basis used for ρ(B).
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Finally, to satisfy the normalization for the probabilities of observables defined on the
space spanned by {|i1 >, |i2 >}, one must impose

∑
j P (ij ) = 1, which leads to the

conclusion that the sum of the interference terms is null. This phenomenon is known in
physics as interference patterns [28].

4 The Quantum Probability Network

The examples discussed above outline the main peculiarities of a scheme inspired by quan-
tum mechanics, and the differences, compared with the usage of a classical probability
scheme. In this section we will use the same approach as in the previous paragraph, but
focusing on possible computational implementations. Thus, it will be introduced the con-
cept of quantum probability networks, or Bayesian quantum networks [30–32], which are
used as framework for the agent’s decision tree in a quantum-BDI approach.

Consider the same bi-dimensional Hilbert subspaces as in the Examples of Section 3, and
the corresponding 4-dimensional ‘tensor product space’ H(B) ⊗ H(I), with its orthonormal
basis {|b1i1 >, |b1i2 >, |b2i1 >, |b2i2 >}. This time, we will consider a fully general global
state, in density matrix notation:

ρ� = |� >< �| =

⎛

⎜⎜⎝

C∗
11C11 C∗

11C12 C∗
11C21 C∗

11C22
C∗

12C11 C∗
12C12 C∗

12C21 C∗
12C22

C∗
21C11 C∗

21C12 C∗
21C21 C∗

21C22
C∗

22C11 C∗
22C12 C∗

22C21 C∗
22C22

⎞

⎟⎟⎠ (29)

Generalizing the considerations that led to (28) in Example (2), it is possible to intuitively
interpret:

Cij = A(ij |bi)A(bi) (30)

and recalling (26) and (27), it is easy to prove that the following conditions hold:∑
j |A(ij )|2 = 1 and

∑
j |A(ij |bi)|2 = 1. Finally, it may be also noticed how:

A(j) =
∏

i

A(j |i) (31)

where the product is performed for all those variables i, from which the j th variable
depends.

As a straightforward generalization of the scheme outlined for the sample global space
introduced, whatever density matrix ρ̂ of a global system leads to a structure which can be
graphically represented as a Bayesian quantum network. That is, a graph where each node
is associated with a em probability amplitude (instead of a probability, like in a Bayesian
classical network), but the same rules for the calculus of marginal probabilities are still valid
[30].

Following previous work [32], a formal definition of a Bayesian quantum networks,
suitable for a computational approach, is the following.

Definition 7 A Bayesian quantum network is a directed acyclic graph DAG(V,E),
where V = {v1, v2, ..., vn} and E = {e1, e2, ..., em} are respectively the sets of nodes and
edges. Each node is associated with a complex number A(vi|Pvi

), which - in the most gen-
eral case - is a function of the node vi and its ‘parent’ nodes Pvi

. The amplitude A indicates
the ‘conditional amplitude’, a concept which is analogous to the conditional probability of
classical Bayesian networks.
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Conditional amplitudes must satisfy:
∑

i

|A(vi|Pvi
)|2 = 1 (32)

∑

i

|A(vi)|2 = 1 (33)

A(vi) =
∏

Pvi

A(vi|Pvi
) (34)

Equation (34) may be also written as: A(v.) = ∏
vi

A(vi |Pvi
), where it is introduced a

vector v., which includes as components all the random variables which are described by
the net, therefore:

∑
v.(A(v.))2 = 1.

From the graphical point of view, this conditional inter-dependence among the nodes is
described as a (directed) arc, starting from the parent node, and ending on the child node12.
As in the classical case, each node represents a random variable, but here it is indeed a quan-
tum variable, whose state can be described by a density matrix. Diagonal elements of the
density matrix can be interpreted as the probabilities for a possible outcome, when measur-
ing the variable. In general, the graph representing the Bayesian network may have some
loops: this relaxes the assumption of an acyclic graph, without losing the main properties of
this approach [32].

We stress that, once a correspondence has been established between a density matrix
(which is positive-definite), and a Bayesian network, still lack some rules concerning the
operations allowed with the density matrix. In particular, consider the application of a her-
mitian unitary matrix (i.e. an operator), defined in all of the Hilbert space where the possible
states of the agent are defined. After the evolution induced by the application of the operator,
the final matrix must still satisfy the requirements for a Bayesian network: for its elements
the equations (32), (33), (34) must still be valid (see Section 2).

5 The Reasoning of a Quantum BDI Agent

In order to make here a clearer description of how to apply the Bayesian quantum framework
to the BDI reasoning, we will focus on the process of ‘attribution of a goal’, where an agent:

– analyses the main features of its environment, to establish which goals are feasible;
– understands how they can be produced, and if some of them conflict with others;
– for each achievable goal, elaborates some intended actions, which fit best the accom-

plishment of the goal.

In other words, an agent intends an action because of its will to achieve a goal, and it
desires goals, which in turn are influenced by the environment he lives in. By ‘intend’ we
mean here a possible future behavior of the agent; rather than, the intentions of an agent
are declarations about what he will actually do, and up to a certain extent, they are an
indication of its real future actions. In principle, an intention does not necessarily need to
be accomplished as an action: the attribution of goals and intentions is a process under

12A child node is then understood as conditioned by all and only the source nodes, of those arcs ending in
the child node, see also Tables 1, 2, 3.
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uncertainty. In fact, a goal may need several actions, which are ruled by multiple pre- and
post-conditions.

As pre-conditions one may include, for example: prejudice, competences, work-loads, ...
of the agent. They may be directly observed, or indirectly deduced by the actions performed
by the agent and its interaction with the environment. These conditions force the agent to
follow a plan instead of another, once he believes that it will have the most favourable out-
come. Within a Bayesian network nomenclature, factors which can not be directly observed
are called latent factors and they are very important in the field of machine learning [33].
However, further discussing their role in the model is far beyond the scope of this work,
which restricts the attention to those factors only, which can be trivially deduced a-posteriori
with the generalized Bayes’ rule.

For representing the quantum case of the reasoning scheme outlined above, we will refer
again to the use of a directed acyclic graph. In Fig. 1 it is shown a Bayesian network of
nodes (i.e. random variables), related to beliefs, desires and intentions. The whole graph
represents the interdependence of these nodes: conditional relationships embedded in the
density matrix. The total pr obability space for the graph is the tensor product of the spaces
for the variables:

Htot = Hb1 ⊗ Hb2 ⊗ Hb3 ⊗ Hb4 ⊗ Hd1 ⊗ Hd2 ⊗ Hi1 ⊗ Hi2 ⊗ Hi3 ⊗ Hi4 (35)

Tables 1, 2 and 3 are exemplifications of the connections for each node, referred explicitly
to the logic spaces of beliefs, desires and intentions. The transition amplitudes among nodes

b1

Precondition

b2

Precondition

b3

Precondition

d1Goal b4

Precondition

i 1Plan d2 Sub-Goali 2Plan

i 3 Plan i 4 Plan

OR

AND

Fig. 1 An example of the reasoning scheme for a quantum BDI agent
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Table 1 Partial nodes and relative amplitudes of transitions, in the belief space, for the example given in
Fig. 1

Graph (portion) Subspace considered Arc dependence

Hb1 A(b1)

Hb2 A(b2)

Hb3 A(b3)

Hb4 A(b4)

can be used to calculate the global density matrix for the system, and enable the computation
of all the conditional distributions. In particular, like in a Bayesian classical network, one
may pin some of the variable values, as given by evidences or a-priori probabilities, and
then derive all the other probabilities a-posteriori, from the density matrix.

Theoretically, this derivation is exact, but the number of computational loops - needed
for the calculation of the density matrix - increases exponentially with the variables,
thus producing an infeasible computational time whenever the number of nodes is huge.

Table 2 Partial nodes and relative amplitudes of transitions, in the desire space, for the example given in
Fig. 1

Graph (portion) Subspace considered Arc dependence

Hb1 ⊗ Hb2 ⊗ Hb3 ⊗ Hd1 A(d1|b1b2b3)

Hb4 ⊗ Hd2 A(d2|b4)
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Table 3 Partial nodes and relative amplitudes of transitions, in the intention space, for the example given in
Fig. 1

Graph (portion) Subspace considered Arc dependence

Hd1 ⊗ Hi1 A(i1|d1)

Hd1 ⊗ Hi2 A(i2|d1)

Hd2 ⊗ Hi3 A(i3|d2)

Hd2 ⊗ Hi4 A(i4|d2)

This problem can be overcome for applicative purposes13 by the adoption of approximate
algorithms estimating the density matrix elements with reduced complexity [30].

6 Conclusions and Future Developments

We have proposed a novel framework for the modeling of complex agent-based systems,
according to the BDI paradigm. The formalism provides a unified description of the agent
reasoning, which includes both deterministic as well as uncertain situations. We envisage
that this formalism is also able to cope with noisy environments, which can be a major
advantage in the modeling of communication and decision-making systems.

The basis of the formalism proposed is the Heisenberg representation of quantum
mechanics, for the particular case of finite-dimensional systems. This formalism has
been combined with a Bayesian structure. Such a merge enables a quantum mechanical
description of decision processes, and may be easily implemented in future quantum com-
puting tools, profiting of the so-called quantum parallelism to increase the efficiency and
implementability of this ‘quantum-BDI’ scheme in decision-making.

An important future development of our scheme may be the description of dynamic sys-
tems (i.e. networks dealing with changing beliefs and other pre-conditions): this specific
case has been cited several times in this work, but not yet discussed in detail. One of the
key problems to solve is how to formulate the logics, so to take into account the additional
time-variable, and to adopt consistent time-operators acting on the states of the system,
to preserve the basic features of the formulation exposed. Another interesting direction

13Indeed, an agent requires near real-time decision-making.
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for further investigation is the treatise of continuous variables, thus extending the discrete
approach developed here. Such an extension may be invoked in stochastic Petri networks,
and therefore in all practical problems underlying this formalism.
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