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Abstract This paper discusses a new wormhole solution that admits conformal motion,
given a noncommutative-geometry background. After a discussion of the wormhole geom-
etry and the energy conditions, the analysis proceeds with the calculation of the active
gravitational mass, a discussion of the TOV equation describing the equilibrium conditions,
as well as the nature of the total gravitational energy. The wormhole spacetime is not asymp-
totically flat and is therefore cut off at some radial distance and joined to an exterior vacuum
solution.
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1 Introduction

Noncommutative geometry aims to place General Relativity and the Standard Model on the
same footing in order to describe gravity and the electro-weak and strong forces as grav-
itational forces in a unified spacetime [1]. It is based on the realization that coordinates
may become noncommutative operators on a D-brane [2, 3]. The result is a fundamen-
tal discretization of spacetime due to the commutator [xμ, xν] = iθμν , where θμν is an
antisymmetric matrix. Noncommutativity replaces point-like structures by smeared objects
[4–7] and is intended to eliminate the divergences that normally appear in General Relativ-
ity. It is an intrinsic property of spacetime and does not depend on any particular features
such as curvature.

A standard way to model the smearing effect is by using a Gaussian distribution of
minimal length

√
θ due to the uncertainty. So the energy density of the static, spherically

symmetric and particle-like gravitational source has the form [4, 8]

ρ = M

(4πθ)
3
2

e− r2
4θ , (1)

where M is the total mass of the source which here could be considered as a diffused
centralized object such as a wormhole [6].

A number of studies inspired by noncommutative geometry can be found in the litera-
ture [9–11]. Thus Rahaman et al. [9] showed that a noncommutative-geometry background
is able to account for producing stable circular orbits, as well as attractive gravity, without
any need for exotic dark matter. Garattini and Lobo [10] obtained a self-sustained worm-
hole in noncommutative geometry. Under their semi-classical approach the energy density
of the graviton one loop contribution to a classical energy in a traversable wormhole back-
ground and the finite one loop energy density is considered as a self-consistent source for
these wormhole geometries. Kuhfittig [11] showed that a special class of thin-shell worm-
holes possess small regions of stability around a thin shell, even though they are unstable in
classical general relativity. Some other works on wormholes, in connection with their origin
and development (with or without noncommutative-geometry), can be looked at in the fol-
lowing references [12, 13]. On the other hand, for Lorentzian traversable wormhole, where
it would allow travel in both directions from one part of the spacetime of this universe or
the another universe, one has to go through the seminal papers of Thorne and his coworkers
[14, 15].

Our starting point is the search for a natural relationship between the wormhole geometry
and the matter source supporting such a wormhole, with the help of the Einstein field equa-
tions. So we turn to the well-known inheritance symmetry contained in the set of conformal
Killing vectors (CKV) [16–20]

Lξgik = ξi;k + ξk;i = ψgik. (2)

Here L is the Lie derivative operator and ψ the conformal factor. The vector ξ generates the
conformal symmetry, while the metric tensor gik is conformally mapped into itself along
ψ . Over time, CKV’s have provided ever deeper insights into the spacetime geometry. In
the process these conformal symmetries assist in generating exact solutions of the Einstein
field equations that may, in turn, be used to model various relativistic, astrophysical, and
cosmological phenomena [21–24].

To obtain the desired connection to the relativistic as well as astrophysical modeling of a
wormhole in the framework of noncommutative geometry, our principal aim is the construc-
tion of a stable configuration fueled by a suitable amount of exotic matter. To this end, we
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have introduced conformal Killing vectors and basic equations in Section 2. The important
properties of the wormhole thus obtained have been examined in Section 3, including stud-
ies on (i) active gravitational mass, (ii) TOV equation, and (iii) total gravitational energy,
explored and discussed in several Sub-sections. A succinct summary of these results is
provided in Section 4.

2 Conformal Killing Vectors and Basic Equations

In this section we turn our attention to traversable wormholes, starting with the static
spherically symmetric metric

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2θ dφ2). (3)

Here ν and λ are the metric potentials of the spacetime and function of radial coordinate
r only.

The Einstein field equations are stated next:

e−λ
[

λ′

r
− 1

r2

]
+ 1

r2
= 8πρ, (4)

e−λ
[

1

r2
+ ν′

r

]
− 1

r2
= 8πpr, (5)

and
1

2
e−λ

[
1

2
(ν′)2 + ν′′ − 1

2
λ′ν′ + 1

r
(ν′ − λ′)

]
= 8πpt , (6)

where ρ, pr and pt are respectively the matter-energy density, radial and tangential
pressures of the fluid distribution.

Equation (2) now implies the following:

ξ 1ν′ = ψ; ξ 4 = C1 = constant;
ξ 1 = ψr

2
and ξ 1λ′ + 2ξ 1

,1 = ψ. (7)

These, in turn, imply that
eν = C2

2r2, (8)

eλ =
(

a

ψ

)2

, (9)

and

ξ i = C1δ
i
4 +

(
ψr

2

)
δi

1, (10)

where C2 and a are integration constants. We note from the (8) and (9) that to get the explicit
forms of the metric potentials we have to fix the values of the constants C2 and a, and
also the conformal factor ψ . However, to find out solvable pattern of the Einstein equations
(4)-(6) we can, at first hand, transform these in terms of ψ . Thus using solutions (8) and (9),
equations (4)-(6) take the forms as follows:

1

r2

[
1 − ψ2

a2

]
− 2ψψ ′

ra2
= 8πρ, (11)

1

r2

[
1 − 3ψ2

a2

]
= −8πpr, (12)
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ψ2

a2r2
+ 2ψψ ′

ra2
= 8πpt . (13)

At this point it is necessary to assume relationships between the physical parameters ρ,
pr and pt . There are two possibilities: either (1) to choose a suitable form of ρ or (2) to
choose a suitable relation between pr and pt . Following Nicolini et al. [4], we concur that
the first choice is clearly preferable.

3 Model of a Wormhole and its Properties

It has been argued by several authors [25, 26] that noncommutative geometry offers conjec-
ture of smeared or diffused objects to eliminate point-like structures. To get this smearing
effect we choose the mass density of a static, spherically symmetric, diffused, particle-like
gravitational source as provided in (1).

Thus, using (1), (11) becomes

1

r2

[
1 − ψ2

a2

]
− 2ψψ ′

ra2
= 8π

(
M

(4πθ)
3
2

e− r2
4θ

)
. (14)

Solving this equation, we get

ψ2 = a2 −
(

4Ma2

r
√

4πθ

)[
−re− r2

4θ + √
θπ erf

(
r

2
√

θ

)]
− Da2

r
, (15)

where Da2 is an integration constant.
Using this result, we get the exact analytical form for all the parameters, stated next:

pt = 1

8π

[
1

r2
− 8πM

(4πθ)
3
2

e− r2
4θ

]
, (16)

pr = − 1

8πr2

[
1 − 3

{
1 −

(
4M

r
√

4πθ

) (
−re− r2

4θ + √
θπ erf

(
r

2
√

θ

))
− D

r

}]
, (17)

eν = C2
2r2, (18)

and

eλ = 1

1 −
(

4M

r
√

4πθ

)(
−re− r2

4θ + √
θπ erf

(
r

2
√

θ

))
− D

r

. (19)

If the metric coefficient eλ is written in terms of shape function b(r), i.e., if

eλ = 1

1 − b(r)
r

, (20)

then b(r) takes the form

b(r) =
(

4M√
4πθ

) [
−re− r2

4θ + √
θπ erf

(
r

2
√

θ

)]
+ D. (21)

We have assumed the particle-like gravitational source in (1), which is positive and there-
fore results in a shape function that is monotone increasing, so b′(r) > 0 (Fig. 1). The throat
of the wormhole is located at r = r0, where b(r) − r cuts the r-axis, shown in Fig. 2. We
also observe that for r > r0, b(r) − r < 0, which implies that b(r)/r < 1, an essential
requirement for a shape function. Finally, since b(r)−r is decreasing for r > r0, b′(r0) < 1,
which is the flare-out condition.
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Fig. 1 Diagram of the shape function of the wormhole for specific values of the parameters: θ = 0.1, M = 1

One can note that Fig. 3 shows the asymptotic behavior b(r)/r → 0 as r → ∞. Unfor-
tunately, the redshift function does not approach zero as r → ∞ due to the conformal
symmetry. So the wormhole spacetime is not asymptotically flat and will therefore have to
be cut off at some radial distance and joined to an exterior vacuum solution.

From (8), the redshift function is given by

1

2
ν(r) = ln(C2r). (22)

So we match our interior solution to the exterior Schwarzschild solution at a junction
interface r = R. Using this matching condition, we can determine the constant C2:

C2 = eν(R)/2

R
. (23)

So, obviously the redshift function is finite in the region r0 < r < R, as required.
Finally, let us check whether the material threading the wormhole violates the energy

conditions. According to Fig. 4, the Null Energy Condition (NEC) and the Weak Energy
Condition (WEC) are violated, conditions that are necessary to hold a wormhole open. It
is interesting to note that the Strong Energy Condition (SEC) is met away from the throat.
By contrast, when dealing with noncommutative wormholes that do not admit conformal
motion, the SEC is violated [7].

3.1 The Tolman-Oppenheimer-Volkoff (TOV) Equation

At this point let us consider the equilibrium stage that can be achieved for matter threading
the wormhole. To that end, we write the TOV equation as derived by solving the Einstein
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Fig. 2 The throat of the wormhole, occurs where b(r) − r cuts the r-axis

Fig. 3 Asymptotic behavior of the shape function of the wormhole given in Fig. 1
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Fig. 4 Variation of the left-hand sides of the respective expressions for the energy conditions plotted
against r

equations for a general time-invariant, spherically symmetric metric in the following form
[27–29]:

− MG (ρ + pr)

r2
e

λ−ν
2 − dpr

dr
+ 2

r
(pt − pr) = 0, (24)

where MG = MG(r) is the effective gravitational mass within the region (from r0 up to the
radius r), and is given by

MG(r) = 1

2
r2e

ν−λ
2 ν′. (25)

The TOV (24) describes the equilibrium condition for the wormhole, subject to the
gravitational force Fg (due to gravitating mass), the hydrostatic force Fh (due to hydro-
static fluid), and the anisotropic force Fa (due to anisotropy of the system). To study the
equilibrium of the physical system, we write (24) suitably in the following form

Fg + Fh + Fa = 0, (26)

where

Fg = −ν′

2
(ρ + pr)

= 1

8πr3

[
1 − 3

{
1 −

(
4M

r
√

4πθ

)(
−re− r2

4θ + √
θπ erf

(
r

2
√

θ

))}]

− M

r(4πθ)
3
2

e− r2
4θ , (27)
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Fh = −dpr

dr
= 1

2πr3
+

(
3M√
4πθ

)⎛
⎝ e− r2

4θ

r3

⎞
⎠ +

(
3M

2π
√

4πθ

)
e− r2

4θ

+
(

3M

4θ
√

4πθ

) ⎛
⎝e− r2

4θ

r

⎞
⎠ −

(
9M

√
θπ

2π
√

4πθ

)(
erf ( r

2
√

θ
)

r4

)
, (28)

and

Fa = 2

r
(pt − pr) = 1

4πr

[
1

r2
− 8πM

(4πθ)
3
2

e− r2
4θ

]

+ 1

4πr3

[
1 − 3

{
1 −

(
4M

r
√

4πθ

) (
−re− r2

4θ + √
θπ erf (

r

2
√

θ
)

)}]
. (29)

The profiles of Fg , Fh, and Fa are shown in Fig. 5. Since the gravitational force is
by far the weakest, the counterbalancing is accomplished mainly by the hydrostatic and
anisotropic forces outside the throat. Figure 5 indicates that the overall equilibrium can
indeed be achieved by these forces, as a consequence of the conformal motion and the
noncommutative geometry.

3.2 Total Gravitational Energy

We have already observed that the material composing the wormhole violates the NEC and
WEC, and must therefore be of the exotic rather than normal type. The total gravitational
energy of a structure composed of normal baryonic matter is negative. So it is important to
determine the nature of the gravitational energy in a wormhole setting.

Fig. 5 Three different forces acting on the fluid elements in static equilibrium plotted against r
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Lynden-Bell et al. [30] prescribed the formula for the total gravitational energy of any
stationary spacetime (considering absence of black holes) as follows: Eg = Mactive − EM ,
where Mactive is the total mass as defined earlier and EM is the gravitational binding energy.
However, following Nandi et al. [31], we can obtain an expression for this total gravitational
energy in it’s explicit form, applied particularly to a wormhole:

Eg = 1

2

∫ r

r0

[ 1 − √
grr ]ρr2dr + r0

2
. (30)

Here grr =
[
1 − b(r)

r

]−1
as defined in terms of shape function b(r), and the quantity r0

2

is associated with the effective gravitational mass [31]. It can be argued that since
√

grr > 1,
then Eg < 0 (attractive) if T 0

0 > 0 and that Eg > 0 (repulsive) if T 0
0 < 0 [31, 32]. We are

now interested to evaluate Eg and hence take the range of the integral to be from the throat
r0 to the embedded radial space of the wormhole geometry. So the total gravitational energy
of the wormhole is given by

Eg =
[
− .0129r2

θ
3
4

+ .0037r3

θ
3
2

+ .0011r4

θ
7
4

+ 0(r5)

]r

r0

+ r0

2
. (31)

Due to complicated nature of the integrand, we cannot obtain an exact analytical form
and must therefore approximate the total gravitational energy graphically. The plot for total
gravitational energy, obtained by retaining terms up to fourth order in (31), indicates that
Eg > 0. Note that we get Eg > 0 here in spite of T 0

0 > 0. This is because the matter
distribution that supported the wormhole structure violates the NEC and WEC. In other
words, there is a repulsion around the throat (See Fig. 6). This repulsive nature or positivity
of Eg is very much expected in a physically valid wormhole.

Fig. 6 Plot of Eg as a function of r
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4 Concluding Remarks

In this paper we investigate traversable wormholes admitting conformal motion that are also
supported by a noncommutative-geometric matter source. Some of the important features
of the present investigation can be formulated as follows:

(1) Since, due to the conformal symmetry, the spacetime is not asymptotically flat, it was
necessary to cut off the material and to match the interior wormhole solution to an
exterior Schwarzschild spacetime at a junction interface r = R.

(2) We also calculated the active gravitational mass in the region extending from r = r0

to r = R, and then observed that at a certain stage the active mass, Mactive, tends
to the total mass, M , of the system. This effect then indicates that a distant observer
would not be able to distinguish between the gravitational nature of the wormhole and
a compact mass of the source.

(3) This is followed by a discussion of the TOV equation describing the effect of the con-
formal motion on the equilibrium stage for the wormhole in terms of the gravitational
force Fg, the hydrostatic force Fh, and the anisotropic force Fa .

(4) It is shown that the total gravitational energy is positive, attributable to the repulsion
around the throat.

(5) Finally, in the framework of wormhole construction, the matter violating the NEC
condition plays a significant role in avoiding the collapse of the tunnel. Given that this
type of matter constitutes a sharp departure from the behavior of normal matter, we are
justified in considering a Gaussian distribution for modeling the matter distribution in
the sense that it succeeds in supplying fuel for constructing the wormhole.
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