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Abstract Weak measurement is a new way to manipulate and control quantum systems.
Different from projection measurement, weak measurement only makes a small change
in status. Applying weak measurement to quantum discord, Singh and Pati proposed a
new kind of quantum correlations called “super quantum discord (SQD)” [Ann. Phys.
343,141(2014)].Unfortunately, the super quantum discord is also difficult to calculate.
There are only few explicit formulae about SQD. We derive an analytical formula of SQD
for general X-type two-qubit states, which surpass the conclusion for Werner states and Bell
diagonal states. Furthermore, our results reveal more knowledge about the new insight of
quantum correlation and give a new way to compare SQD with normal quantum discord.
Finally, we analyze its dynamics under nondissipative channels.

Keywords Weak measurement · Super quantum discord · Quantum correlations · X-type
state

1 Introduction

The quantum entanglement plays important roles in quantum information processing [1].
However, besides quantum entanglement there are other quantum correlations also useful
for quantum information processing. It is found that many tasks can be carried out with
quantum correlations other than entanglement [2–4]. In particular, the quantum discord [5–
21] plays an important role in some quantum information processing like to assist optimal
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state discrimination, in which only one side discord is required in the optimization pro-
cess of assisted state discrimination, while another side discord and entanglement is not
necessary [22, 23].

Unfortunately, underlying quantum measurements process quantum states are fragile.
When we measure a quantum state in some orthogonal basis, since quantum discord is
defined by the POVM quantum measurement, the coherence of the state has been loosened.
Taking account of quantum states’ potential privacy, it is reasonable to find a solution to deal
with this problem. Such a solution was making use of weak measurement which induced
by Aharonov-Albert-Vaidman[24]. Applying such a scheme, we can replace the POVM
measurement by weak measurement in the definition of quantum discord, which gives rise
to so called super quantum discord (SQD) [25].

Super quantum discord sheds a new insight on the nature of quantum correlation. It
also has vivid properties, such as the monotony. Super quantum discord not only a new
insight in fundamental physics but also useful in applications. But super quantum discord
is difficult to calculate. There are only few explicit formulae about SQD. The analytical
formulae of Werner states [25] and Bell diagonal states [26] are only two results. In order
to obtain more useful results, we take a new method to compute more general states—X-
type states, which including Werner states and Bell diagonal states. Obviously, our result
include the results in [25] and [26]. Furthermore, in order to show the potential property
of technological implications, we analyze the dynamics of two-qubit X-states under non-
dissipative channels and compare super quantum discord with discord by using the explicit
formulae. This is exemplified by the fact that the super quantum discord often larger than
the quantum discord defined by projective measurement. Also, the super quantum discord
sometime captures more quantum correlations.

This paper is organized as follows. In Section 2, we derive analytical formulae of super
quantum discord for X-states. In Section 3, we compute the super quantum discord of some
concrete examples, and analyze their dynamics under nondissipative channels, we further
compare it with discord and present some new property of super quantum discord.

2 Super Quantum Discord for Two-qubit X-states

Super quantum discord of some special states has been computed recently, the Werner states
and the Bell diagonal states are included. Now, we extend the results about super quantum
discord in [25] and [26] to the whole two-qubit X-states. Let us consider a two-qubit X-state:

ρX =

⎛
⎜⎜⎝

a11 0 0 a14

0 a22 a23 0
0 a∗

23 a33 0
a∗

14 0 0 a44

⎞
⎟⎟⎠ , (1)

where
4∑

i=1
aii = 1, |a2

23| ≤ a22a33, |a2
14| ≤ a11a44. The density matrix ρX can be written as

[27]:

ρX = 1

4

⎛
⎜⎜⎝

1 + d1 0 0 c1 − c2
0 1 + d2 c1 + c2 0
0 c∗

1 + c∗
2 1 + d3 0

c∗
1 − c∗

2 0 0 1 + d4

⎞
⎟⎟⎠ , (2)
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where c1 and c2 are complex, d1, d2, d3 and d4 are real, d1 = c3+a3+b3, d2 = −c3+a3−b3,
d3 = −c3 − a3 + b3, d4 = c3 − a3 − b3. These parameters are determined by the entries
of the density matrix, a3 = a11 − a44 + a22 − a33, b3 = a11 − a44 − a22 + a33, c3 =
a11 + a44 − a22 − a33, c1 = 2(a23 + a14), c2 = 2(a23 − a14).

Let {�B
i }, i = 0, 1, be the projective measurements. The discord of a bipartite quantum

state ρAB with the measurement {�B
i } on the subsystem B is the dissimilarity between the

mutual information I (ρAB ) [28] and the classical correlation JB(ρAB) [29]:

D(ρAB) = min
{�B

i }

∑
i

piS(ρA|i ) + S(ρB) − S(ρAB), (3)

where the minimization goes over all projective measurements {�B
i }, S(ρ) = −tr(ρ log2 ρ)

is the von Neumann entropy of a quantum state ρ, ρB is the reduced density matrices of
ρAB and

pi = trAB

[
(IA⊗�B

i )ρAB(IA⊗�B
i )
]
, (4)

ρA|i = 1

pi

trB
[
(IA⊗�B

i )ρAB(IA⊗�B
i )
]
. (5)

The weak measurement operators are given by [30],

P (+x) =
√

1 − tanh x

2
�0 +

√
1 + tanh x

2
�1, (6)

P (−x) =
√

1 + tanh x

2
�0 +

√
1 − tanh x

2
�1, (7)

where �0 and �1 are two orthogonal projectors satisfying �0 + �1 = I , x is the strength
parameter of measurement. The weak measurement operators satisfy: (i) P †(+x)P (+x) +
P †(−x)P (−x) = I , (ii) lim

x→∞ P (+x) = �0 and lim
x→∞ P (−x) = �1.

The super quantum discord is defined by [25]:

Dw(ρAB) = min
{�B

i }
Sw

(
A|{P B(x)}

)
+ S(ρB) − S(ρAB),

where

Sw

(
A|{P B(x)}

)
= p(+x)S

(
ρA|P B(+x)

)+ p(−x)S
(
ρA|P B(−x)

)
, (8)

p(±x) = trAB

[(
IA ⊗ P B(±x)

)
ρAB

(
IA ⊗ P B(±x)

)]
,

ρA|P B(±x) = trB
[(

IA ⊗ P B(±x)
)
ρAB

(
IA ⊗ P B(±x)

)]

trAB

[(
IA ⊗ P B(±x)

)
ρAB

(
IA ⊗ P B(±x)

)] ,

where {P B(x)} is the weak measurement operators on subsystem B .
The weak measurement operators on subsystem B can be expressed as

IA ⊗ P B(±x) =
√

1 ∓ tanh x

2
I ⊗ V �0V

† +
√

1 ± tanh x

2
I ⊗ V �1V

†, (9)

where �k = |k〉〈k|, k = 0, 1, |k〉 is the computational base, and V is a 2 × 2 unitary
transformation. V can be generally expressed as [15]:

V = tI + iy · σ, (10)

where y = (y1, y2, y3) and t, y1, y2, y3 ∈ R1, t2 + y2
1 + y2

2 + y2
3 = 1.
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Table 1 The minimum value of S(ρA|P B(+x)) and p(+x)

(z3, z2, z1) p(+x) λ±

(1,0,0) 1−b3 tanh x
2

1
2

[
1± a3−c3 tanh x

1−b3 tanh x

]

(0,0,1) 1
2

1
2 [1±+|a3 |·tanh x]

(0,1,0) 1
2

1
2

[
1±
√

a2
3+(|c2 |2−|c1−c2|2−|c1+c2|2+(�(c1−c2)+�(c1+c2))2+(�(c1+c2)+�(c1−c2))2) tanh2 x

]

(0,-1,0) 1
2

1
2

[
1±
√

a2
3+(|c2 |2−|c1−c2|2−|c1+c2|2+(�(c1−c2)−�(c1+c2))2+(�(c1+c2)−�(c1−c2))2) tanh2 x

]

To evaluate the super quantum discord of ρX, let us first express ρX in terms of the bases
I ⊗ I, σi ⊗ σj , i, j = 0, 1, 2 (Tables 1 and 2).

ρX = 1

4

(
I +

∑
i

�(ci)σi ⊗ σi

)
+ 1

4
[(b3 − a3)I ⊗ σ3 + (�(c1) + �(c2)σ1 ⊗ σ2)],

where �(ci),�(ci) are the real and complex parts of ci . By using the relations

V †σ1V =
(
t2 + y2

1 − y2
2 − y2

3

)
σ1 + 2 (ty3 + y1y2) σ2 + 2(−ty2 + y1y3)σ3,

V †σ2V =
(
t2 + y2

2 − y2
1 − y2

3

)
σ2 + 2 (ty1 + y2y3) σ3 + 2(−ty3 + y1y2)σ1,

V †σ3V =
(
t2 + y2

3 − y2
1 − y2

2

)
σ3 + 2 (ty2 + y1y3) σ1 + 2(−ty1 + y2y3)σ2,

�0σ3�0 = �0, �1σ3�1 = −�1, �jσk�j = 0 for j = 0, 1, k = 1, 2 in [15]. Setting
a1 = z1�(c1) + z2�(c2), a2 = z2�(c2) − z1�(c1), with z1 = 2 (−ty2 + y1y3), z2 =
2 (ty1 + y2y3), z3 = t2 + y2

3 − y2
1 − y2

2 , we have the ensemble {ρA|P B (±x), p(±x)} after
weak measurement, from (4) and (5)

p(+x) = 1

2
(1 − b3z3 tanh x) , (11a)

ρA|P B(+x) = 1

2

[
I + tanh x (−a1σ1 − a2σ2) + (a3 − c3z3 tanh x) σ3)

1 − b3z3 tanh x

]
, (11b)

p(−x) = 1

2
(1 + b3z3 tanh x), (12a)

ρA|P B(−x) = 1

2

[
I + tanh x(a1σ1 + a2σ2) + (a3 + c3z3 tanh x)σ3)

1 + b3z3 tanh x

]
. (12b)

Table 2 The minimum value of S(ρA|P B(−x)) and p(−x)

(z3, z2, z1) p(−x) λ′±

(1,0,0) 1+b3 tanh x
2

1
2

[
1± a3+c3 tanh x

1+b3 tanh x

]

(0,0,1) 1
2

1
2 [1±|a3 |·tanh x]

(0,1,0) 1
2

1
2

[
1±
√

a2
3+(|c2 |2−|c1−c2|2−|c1+c2|2+(�(c1−c2)+�(c1+c2))2+(�(c1+c2)+�(c1−c2))2) tanh2 x

]

(0,-1,0) 1
2

1
2

[
1±
√

a2
3+(|c2 |2−|c1−c2|2−|c1+c2|2+(�(c1−c2)−�(c1+c2))2+(�(c1+c2)−�(c1−c2))2) tanh2 x

]
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The eigenvalues of ρA|P B(+x) and ρA|P B(−x) are given by

1

2

⎡
⎢⎣1 ±

√
(a3 − c3z3 tanh x)2 + (a2

2 + a2
1

)
tanh2 x

1 − b3z3 tanh x

⎤
⎥⎦ , (13)

1

2

⎡
⎢⎣1 ±

√
(a3 + c3z3 tanh x)2 + (a2

2 + a2
1

)
tanh2 x

1 + b3z3 tanh x

⎤
⎥⎦ . (14)

We now compute the minimum value of S(ρA|P B(+x)) and the corresponding p(+x) by
using the method of Hessian matrix and the symmetries in (9–13). In order to avoid redun-
dant narrating, we only give the result in the following tables, and the minimum value lies
at z3 = 0 or z3 = 1. The extremum lies at the following points:

Similarly for the minimum value of S(ρA|P B(−x)) and p(−x), we have:
From Tables 1 and 2, for a given state ρX , one can get the minimum values of λ± and

λ′±, which give rise to

Sw(ρA|P B(+x)) = −λ+ log2 λ+ − λ− log2 λ−, (15)

Sw(ρA|P B(−x)) = −λ′+ log2 λ′+ − λ′− log2 λ′−, (16)

and the super quantum discord

Dw(ρX) = p(+x)Sw(ρA|P B(+x)) + p(−x)Sw(ρA|P B(−x)) + S(ρB
X) − S(ρX). (17)

3 Dynamics of Super Quantum Discord Under Nondissipative Channels

In this section, firstly we will verify our formulae with examples and illustrate that it is an
extension of results in [22-23]. The first one is Werner state [31] which is known to be a
special X-state,

ρW =

⎛
⎜⎜⎝

1+z
4 0 0 z

2
0 1−z

4 0 0
0 0 1−z

4 0
z
2 0 0 1+z

4

⎞
⎟⎟⎠ .

Based on formulae of the previous section, we are able to calculate eigenvalues λ±i =
λ′±i = 1±z tanh x

2 , i = 1, 2, 3, 4. As everyone knows, for the Werner state, all eigenvalues

get the same results for any measurement basis. The eigenvalues of ρB
W are 1

2 , 1
2 , and the

eigenvalues of ρW are 1+3z
4 , 1−z

4 , 1−z
4 , 1−z

4 . From (16) the super quantum discord of ρW is

Dw = −1 − z tanh x

2
log2

1 − z tanh x

2
− 1 + z tanh x

2
log2

1 + z tanh x

2
+ 1

+ 3(1 − z)

4
log2

1 − z

4
+ 1 + 3z

4
log2

1 + 3z

4
,

which is in coincident with the result in [25].
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As another example, we consider the Bell diagonal states [32]

ρ =

⎛
⎜⎜⎜⎝

1+c3
4 0 0 c1−c2

4
0 1−c3

4
c1+c2

4 0
0 c1+c2

4
1−c3

4 0
c1−c2

4 0 0 1+c3
4

⎞
⎟⎟⎟⎠ .

From (10–13) we get λ±1 = λ′
±1 = 1±c1 tanh x

2 , λ±2 = λ′
±2 = 1±c2 tanh x

2 , λ±3 = λ′
±3 =

1±c3 tanh x
2 , λ±4 = λ′

±4 = 1±c3 tanh x
2 . It is also easy to calculate the eigenvalues of ρB

are 1
2 , 1

2 and the eigenvalues of ρ are 1−c1−c2−c3
4 ,

1−c1+c2+c3
4 ,

1+c1−c2+c3
4 ,

1+c1+c2−c3
4 . Let

c = max{c1, c2, c3}, by (16), we have the super quantum discord

Dw = − 1 − c tanh x

2
log2

1 − c tanh x

2
− 1 + c tanh x

2
log2

1 + c tanh x

2

+ 1 + 1 − c1 − c2 − c3

4
log2

1 − c1 − c2 − c3

4

1 − c1 + c2 + c3

4

+ 1 + c1 − c2 + c3

4
log2

1 + c1 − c2 + c3

4

1 + c1 + c2 − c3

4
log2

+ 1 + c1 + c2 − c3

4
,

which coincides with the result in [26].
By above examples we illustrated how to apply the main result and recover the results in

Refs.[22-23] as special cases.
Due to the fundamental significance and potential applications of super quantum discord,

the evolution of super quantum discord under bit-flip noise which characterized by Kraus
operators

E0 = √
p

(
1 0
0 1

)
, E1 = √1 − p

(
0 1
1 0

)
(18)

has been considered. We have the channel “local bit-flip(�lbf)”:

�lbf(ρX) = (I ⊗ E0)ρX(I ⊗ E0)
† + (I ⊗ E1)ρX(I ⊗ E1)

†. (19)

Under this channel, the entries of the density matrix have the following transformations:

channel a11 a14 a22

local bit-flip a22 + pa11 − pa22 a23 + pa14 − pa23 a11 − pa11 + pa22

channel a23 a33 a44

local bit-flip a14 − pa14 + pa23 a44 + pa33 − pa44 a33 − pa33 + pa44

channel a∗
23 a∗

14
local bit-flip a∗

14 − pa∗
14 + pa∗

23 a∗
23 + pa∗

14 − pa∗
23

As an illustrative example, we choose a subfamily of X-types. Let us consider

ρX =

⎛
⎜⎜⎝

0.25 0 0 0.0625
0 0.25 0.125 0
0 0.125 0.25 0

0.0625 0 0 0.25

⎞
⎟⎟⎠ . (20)
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Fig. 1 Super quantum discord (dashed line) and quantum discord (solid line) as function of x

Since quantum discord has also been employed in the study of quantum computation as an
important resource, we prefer to compare super quantum discord and discord under noisy
channels. It can be seen from Fig. 1 that the super quantum discord attains the maximum
value at x = 0, where the weak measurement is the weakest. When x → ∞, the super
quantum discord approaches quantum discord.

Interestingly, the above relation motives us to introduce the super quantum discord and
discord when the signal through noisy channels. From (14–16), we get p(+x) = p(−x) =
0.5, λ+ = λ′+ = max{0.5, 0.5 + 0.1875 · tanh x, 0.5 + 0.0625 · tanh x}, λ− = λ′− =
min{0.5, 0.5 − 0.1875 · tanh x, 0.5 − 0.0625 · tanh x}. Due to the symmetry of tanh x, we
take x > 0. Namely, p(+x) = p(−x) = 0.5, λ+ = λ′+ = 0.5+0.1875 · tanhx, λ− = λ′− =
0.5 − 0.1875 · tanh x. Under the local bit-flip channel, we have p(+x) = p(−x) = 0.5,
λ+ = λ′+ = 0.5 + 0.1875 · tanh x, λ− = λ′− = 0.5 − 0.1875 · tanh x.

On the left side of Fig. 2 we find that the supper quantum discord which not through
the bit-flip noise channel is larger than the supper quantum discord which through the bit-
flip noise channel. We can get more detail properties from the right side of Fig. 2. The five
curves from top to bottom are obtained by choosing the controlling parameters as the weak
measurement parameter x = 0, 0.5, 1, 2, and 1000. It can be seen that at p = 0 or p = 1,
the super quantum discord is invariant under local bit-flip channel.

Fig. 2 Super quantum discord (dotted line) and super quantum discord (solid line) under local bit-flip
channel of (20)
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Fig. 3 Quantum discord (red plane) and super quantum discord (blue surface)

From a practical point of view, we sent signals through the bit-flip channel which leaves
the qubit untouched with probability p, and flips the qubits with probability 1 − p. So
through bit-flip channel the state |0〉 was taken to |1〉 for p = 0. On the contrary, for p = 1
the state keeps invariant. In this view, the state ρx was not taken |0〉 to |1〉, the super quantum
discord also did not change when p = 0 or p = 1.

In view of the above argument, we then conclude that the super quantum discord will
decay after through noisy channels. It means that we will lose information after the signal
through noisy, hence have to control the noise probability. Furthermore, the affection of
local bit-flip channel for the super quantum discord is symmetric and attains the minimum
at p = 0.5, so the noise probability plays a symmetric role in this noisy channel. It will
disappear when the noise probability attaints half of one.

When considering quantum correlations captured by the super quantum discord, it is
usually known that the weak measurement captures more information than POVM mea-
surement. However, there are some counterintuitive phenomena in our example when we
compare the super quantum discord after noisy channel with discord after noisy channel.

On the Fig. 3 we can see that the red plane through the blue curve, some blue surface
above red plane and others under red plane. That means after local bit-flip channel, super
quantum discord is smaller than the normal quantum discord, and this difference is most
obvious when the noise probability p near 0.5. Although the super quantum discord is
smaller than the quantum discord only in the region of 0.01 to 0.02, it shows in this exam-
ple, the weak measurement does not capture more information than POVM measurement.
Thus, super quantum discord is a different resource than quantum discord.

4 Conclusions and discussions

Super quantum discord is a fundamental resource in quantum information. We have studied
it for X-type states which including the Werner states and Bell diagonal states. Explicit
formulae of super quantum discord for X-type states have been derived. The evolution of
these states under local bit-flip channel has been investigated and reveal more different
properties between super quantum discord and quantum discord. The relations between
the super quantum discord and discord, evolution of super quantum discord and the week
measurement strength have been analyzed.
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