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Abstract A novel quantum gray-level image encryption and decryption algorithm based
on image correlation decomposition is proposed. The correlation among image pixels is
established by utilizing the superposition and measurement principle of quantum states.
And a whole quantum image is divided into a series of sub-images. These sub-images are
stored into a complete binary tree array constructed previously and then randomly per-
formed by one of the operations of quantum random-phase gate, quantum revolving gate and
Hadamard transform. The encrypted image can be obtained by superimposing the resulting
sub-images with the superposition principle of quantum states. For the encryption algo-
rithm, the keys are the parameters of random phase gate, rotation angle, binary sequence and
orthonormal basis states. The security and the computational complexity of the proposed
algorithm are analyzed. The proposed encryption algorithm can resist brute force attack
due to its very large key space and has lower computational complexity than its classical
counterparts.
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1 Introduction

Information security has become an important topic during the processing on information
storage and transmission. Images are one of the most important information representation
models and widely used in modern communications. Some random-phase operations and
transforms have been introduced to design encryption algorithms, such as random phase
encoding [1–3], Hadamard transform [4, 5], fractional Mellin transform [6] and ect. How-
ever, with the development of cryptanalysis and computer technology, ingenious methods
for breaking the existing image encryption algorithms are presented successively [7–10],
which threaten the existing traditional encryption systems.

Quantum computation has been applied in many fields of information sciences [11]. With
the development of quantum computation, classical image processing is naturally extended
to quantum scenario. Some methods for representing quantum images have been proposed
[12–25]. The quantum image can be represented by color. i.e., a quantum state detected
from monochromatic electromagnetic waves through special machines and position, and the
storing unit was named Qubit Lattice [12, 13]. By mapping pixels into the real ket of Hilbert
space, Latorre proposed a new method to complete image compression combined with pixel
states [14]. The image color and position can be encoded into one quantum state by a flex-
ible representation of quantum image (FRQI) [15], which keeps the classical properties of
color and position. Then color transformation [16, 17], simple geometric transformation
[18, 19], and image watermarking [20] were proposed based on FRQI. A 3D feature space
was proposed by Le PQ et al to represent visual complexity of images based on structure,
noise and diversity (SND) features extracted from the images [21]. Their method provided
a rich understanding of the complexity of visual image, and has important applications to
determine the capacity and the feasibility of image processing tasks. Ledesma S et al. pro-
posed an optical analogy of quantum entanglement by means of classical image [22], which
showed how to interpret some non-local features of the joint measurement by the bidi-
mensional encoding of two-qubit states. A novel enhanced quantum image representation
(NEQR) for digital images was invented, which uses the basis state of a qubit sequence to
store the gray-scale value of each pixel in the image for the first time [23]. A quantum image
representation for log-polar image (QUALPI) was proposed for the storage and processing
of images sampled in the log-polar coordinates, which achieves high efficiency of the new
quantum image registration algorithm [24]. Moreover, a method for quantum image pro-
cessing on image storage, retrieval, compression and segmentation in a quantum system was
proposed [25].

Consequently, some new quantum algorithms were developed as new theoretical tools
for the security of quantum images. Since dissipative quantum maps can be character-
ized by sensitive dependence on initial conditions, an image encryption scheme based on
quantum logistic map is proposed [26], which pointed out a clear direction for image
security with quantum maps. In 2013, Zhou RG et al. proposed the quantum gray-
scale image encryption and decryption algorithms based on quantum image geometric
transformations, and it unfortunately involves repeated quantum image storages [27]. A
robust watermark algorithm for quantum images was also proposed, where the water-
mark image is embedded into the Fourier coefficients of the quantum carrier image [28].
Akhshani A et al. proposed a new color image encryption scheme based on quantum
chaotic systems [29]. Yang YG et al. proposed a novel gray image encryption/decryption
scheme based on quantum Fourier transform and double random-phase encoding tech-
nique, which is enlightening for introducing more optical information processing tech-
niques into quantum scenario [30]. In 2014, a novel dynamic watermarking scheme for
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quantum images using Hadamard transform and FRQI was proposed [31]. The existing
quantum image security algorithms provide references for follow-up study in different
aspects.

In this paper, the image correlation decomposition is applied in the field of quantum
image encryption. At the same time, quantum random-phase gate, quantum revolving gate
and Hadamard transform are used to encode color information of quantum images. A
detailed theoretical security analysis is given.

The rest of this paper is organized as follows. In Section 2, quantum gray-scale
image representation, quantum image correlation decomposition, quantum revolving gate,
Hadamard transform and quantum image superposition are introduced. The proposed quan-
tum image encryption and decryption algorithm is given in Section 3. Section 4 is devoted
to the theoretical security analysis and the computational complexity analysis. A brief
conclusion is drawn in Section 5.

2 Quantum Image Representation and Transformation

2.1 Quantum Gray-Scale Image Representation

Classical image is represented by a matrix with the same size of the image, i.e. the number of
pixels. In classical gray image, the pixel value of each point represents the gray-scale value
and the position information. For a quantum image, the gray value and the position informa-
tion of each pixel are stored into the corresponding quantum states, respectively. Therefore,
the quantum image is a quantum system composed of quantum states. Figure 1 depicts the
workflow of preparing a new quantum image model from the classical image representation.
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Suppose M is a classical image of size 2n × 2n, |M〉 is the storage of the whole quantum
states for a gray-scale image, the quantum image representation can be expressed as:

|M〉 = 1
2n

2n−1∑

y=0

2n−1∑

x=0
|g(y, x)〉|yx〉

|g(y, x)〉 = cos θi |0 〉 + sin θi |1〉, θi ∈ [
0, π

2 ], i = yx = 0, 1, ..., 22n − 1

(1)

where θ=
(
θ0, θ1, · · · , θ22n−1

)
is the vector of angles encoding colors, |g(y, x)〉

encodes the color information of quantum image, |i〉 = |yx〉 = |y〉 |x〉 =
|yn−1yn−2 · · · y0〉 |xn−1xn−2 · · · x0〉 encodes the corresponding positions of the quantum
images, |yn−1yn−2 · · · y0〉 encodes the first n-qubit along the vertical location information
while |xn−1xn−2 · · · x0〉 encodes the second n-qubit along the horizontal location informa-
tion, n is the number of quantum bits required for encoding. As a consequence, the unfolded
representation for the 2 × 2 gray-scale image in Fig. 2 can be written as:

|M〉 = 1
2 [(cos θ0 |0〉 + sin θ0 |1〉) |00〉 + (cos θ1 |0〉 + sin θ1 |1〉) |01〉

+ (cos θ2 |0〉 + sin θ2 |1〉) |10〉 + (cos θ3 |0〉 + sin θ3 |1〉) |11〉] (2)

2.2 Quantum Image Correlation Decomposition

According to the representation of quantum image in (1), we suppose that the locations of
k pixels are in the states |y〉 |x + 1〉 , |y〉 |x + 2〉 , · · · , |y〉 |x + k〉 , respectively. Thus, the
gray values of k pixels are represented by |g(y, x + 1)〉 , |g(y, x + 2)〉 , · · · , |g(y, x + k)〉,
which can be simply rewritten as:

∣
∣gy,x+1

〉
,
∣
∣gy,x+2

〉
, · · · ,

∣
∣gy,x+k

〉
, respectively. The k-

qubit system composed of k pixels of quantum image can be represented as:

Fig. 2 Gray-scale image of 2 × 2
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∣
∣gy,x+1gy,x+2···gy,x+k

〉 = ∣
∣gy,x+1

〉 ⊗ ∣
∣gy,x+2

〉 ⊗··· ⊗∣
∣gy,x+k

〉

= cos θy,x+1 cos θy,x+2··· cos θy,x+k−1cosθy,x+k |00···00〉
+ cos θy,x+1 cos θy,x+2··· cos θy,x+k−1sinθy,x+k |00···01〉
+ cos θy,x+1 cos θy,x+2···sinθy,x+k−1 cos θy,x+k |00···01〉
...

+ sin θy,x+1 sin θy,x+2··· sin θy,x+k−1 sin θy,x+k |11···11〉
=

2k−1∑

i=0
wi |i〉 =

N−1∑

i=0
wi |i〉

(3)

where state vector |bk−1···b1b0〉 is denoted by |i〉, i represents binary number bk−1 · · · b1b0
corresponding to decimal number. wi is the probability amplitude of |i〉 which satisfies

the normalization condition
N−1∑

i=0
w2

i = 1.
∣
∣gy,x+1gy,x+2···gy,x+k

〉
is called quantum image

correlation decomposition. The above quantum system is an N-dimensional Hilbert space,
and the probability amplitude of any one-dimensional state vector can be constructed by a
sub-image of corresponding superposition state. According to (3), the probability amplitude
wi represents the cosine value of the angle θyx with the sub-image and the quantum image
|M〉 is divided into N sub-images. Obviously, the original image can be restored by the
color information of these sub-images.

2.3 Quantum Revolving Gate and Hadamard Transform

Quantum revolving gate is defined as

R (θ) =
[

cos θ − sin θ

sin θ cos θ

]

(4)

Suppose |φ〉 =
[

cos θ0

sin θ0

]

, then R (θ) |φ〉 =
[

cos (θ0 + θ)

sin (θ0 + θ)

]

.

The single qubit Hadamard transformation H is a unitary transformation.

H = 1√
2

[
1 1
1 −1

]

(5)

H |0〉 = |0〉 + |1〉√
2

, H |1〉 = |0〉 − |1〉√
2

(6)

Hadamard transformation applied on n qubits can be expressed as

H⊗n |0〉 = 1√
2n

2n−1∑

i=0

|i〉 (7)

2.4 Superposition of Quantum Images

In quantum mechanics, the quantum state of microcosmic particles is described by using
the wave function, which can be fully described by a unit vector in Hilbert space. If |ψ1〉
and |ψ2〉 are two vectors in a Hilbert space, then

|ψ〉 = c1 |ψ1〉 + c2 |ψ2〉 (8)
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|ψ〉 is also a Hilbert space vector, where c1, c2 are two complex numbers which satisfy the
condition |c1|2 + |c2|2 = 1. Assume that images MA and MB are stored in states |MA〉 and
|MB〉, respectively. According to the principle of quantum states superposition, if |MA〉 and
|MA〉 are two vectors in a Hilbert space, the definition of quantum image superposition is:

|Mc〉 = α |MA〉 + β |MB〉 (9)

where |Mc〉 is a superposition image, α and β are the image superposing coefficients which
should satisfy the normalization condition |α|2 + |β|2 = 1.

3 Quantum Image Encryption and Decryption Algorithm

3.1 Encryption Algorithm

As the encrypting object is a quantum gray-scale image, the corresponding plain-text and
cipher-text will also be quantum images. Assume that plaintext quantum image is

|M〉= 1

2n

2n−1∑

y=0

2n−1∑

x=0

|g(y, x) 〉| yx〉 , where |g(y, x)〉 = cos θi〉|0〉 + sin θi |1〉 ,θi ∈
[
0,

π

2

]
,

i = yx = 0, 1, . . . , 22n − 1. The proposed image encryption algorithm consists of the
following steps:

Step 1. |M〉 is divided into a series of characteristic sub-images |M0〉 , |M1〉 , · · · |MN−1〉
by utilizing quantum image correlation decomposition.

Step 2. The array of a complete binary tree is constructed by an integer sequence
0, 1, · · · , N − 1, as shown in Fig. 3. After the array of the complete binary tree
is performed preorder traversal, the sub-images are stored into the array of the
complete binary tree. |Mi〉 corresponds to the ith node of the complete binary tree.

Step 3. To encode color information of quantum image, quantum random phase gate,
quantum revolving gate and Hadamard transform are randomly performed on
these sub-images. For the ith node of the complete binary tree, if i mod 3 = 0,

Fig. 3 Array of complete
binary tree 0

1 2

43 65

87
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perform random phase gate Uk on |Mi〉. Random phase gate is used to construct
a 2n + 1 qubits-based unitary transform Ck .

Ck =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I ⊗
2n−1∑

y=0

2n−1∑

x = 0
yx �= k

|yx〉 〈yx|

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+ Uk ⊗ |k〉 〈k| (10)

Uk =
[

1 0
0 ej2πϕk

]

(11)

where ϕk is a real number and distributed uniformly between 0 and 1. The controlled
phase matrix Ck is a unitary matrix since CkC

†
k =I⊗2n+1. Applying a 2n + 1 qubits unitary

transform C on quantum image |Mi〉, one obtains :

C (|Mi〉) =
2n−1∏

y=0

2n−1∏

x=0
Cyx |Mi〉

= 1
2n

2n−1∑

y=0

2n−1∑

x=0

(
cos θyx |0〉 + ej2πϕk sin θyx |1〉) |yx〉

= |fi〉

(12)

If i mod 3 = 1, perform quantum revolving gate on |Mi〉. Quantum revolving gate
R

(
φj

)
is used to construct a unitary transform Rj .

Rj =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I ⊗
2n−1∑

y=0

2n−1∑

x = 0
yx �= j

|yx〉 〈yx|

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+ R
(
φj

) ⊗ |j 〉 〈j | (13)

R
(
φj

) =
[

cos φj − sin φj

sin φj cos φj

]

(14)

where φj indicates the rotation angle, and φj is uniformly distributed from 0 to 2π . The
controlled rotation matrix Rj is a unitary matrix since RjR

†
j = I⊗2n+1. Applying a 2n + 1

qubits unitary transform R on quantum image |Mi〉, one obtains:

R (|Mi〉) =
2n−1∏

y=0

2n−1∏

x=0
Ryx |Mi〉

= 1
2n

2n−1∑

y=0

2n−1∑

x=0
R(φyx) |g(x, y)〉|yx〉

= 1
2n

2n−1∑

y=0

2n−1∑

y=0
(cos(θyx + φyx) |0〉 + sin(θyx + φyx) |1〉) |yx〉

= |fi〉

(15)
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If i mod 3 = 2, perform Hadamard transform operation on |Mi〉. Unitary transform
T is controlled by a binary key K1, where K1 = k1k2 · · · k2n+1, k1 = 1, ki ∈ {0, 1},
i = 2, 3, · · · , 2n + 1.

T |Mi〉 = 1
2n

2n−1∑

y=0

2n−1∑

x=0
T (cos θyx |0〉 + sin θyx |1〉) |yx〉

= 1
2n

2n−1∑

y=0

2n−1∑

x=0

∣
∣dyx

〉 |yx〉
= |fi〉

(16)

where T = H
2n+1⊗
i=2

Hki , Hki =
{

H, ki = 1
I, ki = 0

, i = 2, 3, · · · , 2n + 1, H is a Hadamard

matrix and I is a 2-D identity matrix. The new images |f0〉 , |f1〉 , · · · , |fN−1〉 are obtained
by implementing different transform operations in each node according to the residue of i

divided by 3.

Step 4. To achieve the final quantum cipher-text image |f 〉, one encrypts all of quantum
images |fi〉 into the superposition.

|f 〉 = η0 |f0〉 + η1 |f1〉 + · · · + ηN−1 |fN−1〉 (17)

where η = (η0, η1, · · · , ηN−1) and η2
0 + η2

1 + · · · + η2
N−1 = 1.

Step 5. To obtain the orthonormal basis states |Qi〉, one applies Schmidt decomposition
to cipher-text image |f 〉.

|f 〉 =
N−1∑

i=0

βi |Qi〉 (18)

where βi is a non-negative real number satisfying
N−1∑

i=0
β2

i = 1.

The quantum image encryption procedure is shown in Fig.4. The encryption algorithm is
composed of quantum image correlation decomposition, three transforms and superposition
operation.

3.2 Decryption Algorithm

In the encryption algorithm, random phase gate Uk , quantum revolving gate R
(
φj

)
and

binary sequence K1 are used to control quantum random-phase operation, quantum revolv-
ing operation and Hadamard transform, respectively. The keys involve the parameter ϕk

of random phase gate, rotation angle φj , binary sequence K1 = k1k2 · · · k2n+1, and
orthonormal basis states K2 = {|Qi〉, i = 0, 1 · · · ,N − 1}. The decryption process is as
follows.

plaintext quantum

image M

correlation

decomposition

iMsub-imagesN N sub-images if

transform

operation

f
ciphertext

image

superposition

operation

Fig. 4 Flow chart of quantum image encryption algorithm
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Step 1. The cipher-text image |f 〉 is obtained by making measurements on the received
quantum images |fi〉. Applying K2 = {|Qi〉 , i = 0, 1, · · · ,N − 1} as the project
operators to perform the projective measurements, i.e.,

P =
N−1∑

i=0

Pi |Qi〉 〈Qi | (19)

pi = ti

t − ti
(20)

where t represents the total number of the measurements, ti is the number of the
measurements coincided with the results of |fi〉.
Step 2. According to the array of the complete binary tree, different inverse transforms

are executed to get the sub-images |M0〉 , |M1〉 , · · · , |MN−1〉. For the node i of
the complete binary tree, if i mod 3 = 0, the decryption operation is performed
on |fi〉 with the key ϕk .

C−1 (|fi〉) =
2n−1∏

y=0

2n−1∏

x=0
C

†
yx (|fi〉)

=
2n−1∏

y=0

2n−1∏

x=0
C

†
yx

(

1
2n

2n−1∑

y=0

2n−1∑

x=0
(cos θyx |0〉 + ej2πϕyx sin θyx |1〉) |yx〉

)

= |Mi〉

(21)

where C
†
yx is the Hermitian conjugate of Cyx . If i mod 3 = 1, perform the decryption

operation on |fi〉 with the key φj .

R−1 (|fi〉) =
2n−1∏

y=0

2n−1∏

x=0
R

†
yx(|fi〉)

=
2n−1∏

y=0

2n−1∏

x=0
R

†
yx

1
2n

2n−1∑

y=0

2n−1∑

x=0
R(φyx) |g(x, y)〉 |yx〉

= 1
2n

2n−1∑

y=0

2n−1∑

x=0
|g(y, x)〉 |yx〉

= |Mi〉

(22)

If i mod 3 = 2, execute the decryption operation on |fi〉 with the key K1, where T −1 is
the inverse operator of T .

T −1 |fi〉 = 1
2n

2n−1∑

y=0

2n−1∑

x=0
T −1

∣
∣dyx

〉 |yx〉

= 1
2n

2n−1∑

y=0

2n−1∑

x=0
T −1{T (cos θyx |0〉 + sin θyx |1〉)} |yx〉

= 1
2n

2n−1∑

y=0

2n−1∑

x=0
(cos θyx |0〉 + sin θyx |1〉) |yx〉

= |Mi〉

(23)

Step 3. According to the nature of quantum image correlation decomposition, the color
information of the original image is rebuilt by these sub-images.
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4 Algorithm Analyses

Since a practical and useful quantum computer is unavailable, there is lack of quantum
hardware to simulate the quantum image encryption algorithm. Thus the proposed algorithm
is limited to the theoretical analyses on key space, security and computational complexity.

4.1 Key Space

The key space of a good image encryption algorithm should be large enough to make brute-
force attack infeasible. It is recommended in Ref.[32] that the ideal key space should be
larger than 2100 while considering the current computation speed of a general computer. In
the proposed algorithm, random phase gate Uk , quantum revolving gate R

(
φj

)
and binary

sequence K1 are used to control quantum random-phase operation, quantum revolving oper-
ation and Hadamard transform, respectively. The keys are composed of the parameter ϕk

of random phase gate, rotation angle φj , binary sequence K1, and orthonormal basis states
K2. Here, ϕk is a real number and distributed uniformly between 0 and 1, φj is uniformly
distributed from 0 to 2π , ki ∈ {0, 1}, i = 2, 3, · · · , 2n + 1. ϕk , φj imply a very large key
space, and the key space of K1 is 22n. The total key space is a very huge number, thus the
proposed algorithm can resist brute-force attack.

4.2 Security

The encrypted image is stored and transmitted in the form of quantum states. Since the
quantum no-cloning theorem and quantum uncertainty principle, the process of exactly
replicating any unknown quantum state can not be realized in quantum mechanics. If the
attacker wants to obtain the information about the quantum state, he has to measure it,
which will make the quantum state collapse randomly into an eigenstate of the measurement
operators irreversibly. Therefore, the legitimate users can detect whether the quantum infor-
mation has suffered from attacks or not. So the proposed quantum encryption algorithm has
provable security and will immune from the interception with unlimited computing power
of eavesdroppers due to the principles of quantum mechanics. Zhou RG et al.’s scheme
realized quantum image encryption by utilizing quantum image geometric transformations.
Unfortunately, it involves repeated quantum image storage and the adversary can get plain-
text image as long as he decrypts a quantum image from the full-binary-tree array. However,
the proposed encryption algorithm successfully solved these drawbacks. In the proposed
algorithm, the whole quantum image is divided into a series of sub-images, and these sub-
images are encrypted by utilizing quantum random-phase gate, quantum revolving gate and
Hadamard transform. The receiver has to decrypt all quantum images from the array of the
complete binary tree to obtain the sub-images, and then recover the plaintext image under
quantum information theory. The proposed quantum image encryption algorithm increased
the decryption difficulty. Moreover, the quantum state measurements are the most essential
decryption operations. Therefore, the proposed algorithm can greatly improve the security
of image encryption and decryption.

4.3 Computational Complexity

Assume that M is a 2n × 2n original image. There are 22n pixels in the original image.
For quantum image encryption algorithm, due to the properties of quantum parallel com-
putation, the use of quantum transforms speeds up the image encryption and decryption.
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The computational complexity of the proposed encryption algorithm depends on quan-
tum random-phase operation, quantum revolving operation and Hadamard transform. The
complexity of quantum random-phase operation for a quantum image is O (n). Since
the computational complexity is the same as quantum random-phase operation, revolv-
ing operation and Hadamard transform, and the encryption algorithm needs to perform
encryption operation on N sub-images at the same time. So the total computational com-
plexity is O (Nn). By analyzing the corresponding classical image encryption algorithm,
random-phase operation is performed on the image by using 22n multiplication operations,
so the computational complexity is O

(
22n

)
. The computational complexity is the same

as random-phase operation, revolving operation and Hadamard transform. Thus, the total
computational complexity is O

(
N22n

)
. Therefore, the computational complexity of the

proposed encryption algorithm is lower than its classical counterparts.

5 Conclusion

We utilized the superposition and measurement principle of quantum states to establish
the correlation among image pixels and proposed a novel quantum image encryption and
decryption algorithm based on image correlation decomposition. The encryption algorithm
is realized by combining quantum image correlation decomposition, three transforms with
superposition operation. Quantum random-phase operation, quantum revolving operation
and Hadamard transform are used to encode color information of these sub-images, which
increases the decryption difficulty. The encrypted image can be obtained by superimpos-
ing the resulting sub-images. A detailed theoretical security and computational complexity
analysis of the encryption algorithm is given. The proposed encryption algorithm can
resist brute-force attack due to its very large key space. Moreover, the proposed algo-
rithm has lower computational complexity than its classical counterparts. It implements
quantum image encryption by combining quantum information theory with classical image
encryption technology, which introduces a new theoretical tool for image encryption.
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