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Abstract Two new families of good nonbinary quantum codes are constructed in this paper.
The first one can be regarded as a generalization of [Theorem 3.2, X. Kai, S. Zhu and
Y. Tang, Phys. Rev. A 88, 012326 (2013)], in the sense that we drop the constraint q ≡
1 ( mod 4). The later one is a quantum maximal-distance-separable (MDS) code. Compared
the parameters of our quantum MDS codes with the parameters of quantum MDS codes
available in the literature, the quantum MDS codes exhibited here have bigger minimum
distance.

Keywords Quantum codes · Quantum MDS codes · Cyclotomic cosets · Constacyclic
codes

1 Introduction

Errors caused by noise in quantum informational processes are inevitable. Fortunately, it
was discovered that, under specific reasonable physical assumptions, quantum information
can be protected by encoding it into a quantum error-correcting code [1]. Constructing
quantum error-correcting codes is thus having important significance in theory and practice.

However, constructing quantum codes with good parameters is difficult, since it is not an
easy task to determine the dimension and minimum distance of a quantum code. The first
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important quantum code construction is given in [2–4]. Calderbank et al. in [5] discovered
that the construction of quantum codes can be diverted into finding classical self-orthogonal
codes over F2 or F4 with respect to certain inner product.

After the realization that nonbinary quantum codes can use fault-tolerant quantum
computation, the study of binary quantum codes was generalized to the nonbinary case.
Ashikhmin and Knill [6] gave several methods of constructing nonbinary quantum codes.
Ketkar et al. [7] obtained many classes of nonbinary quantum codes from classical lin-
ear codes. La Guardia [8] derived several families of nonbinary quantum codes from BCH
codes. By using negacyclic codes, Chen et al. [9] established two families of asymmetric
quantum codes.

Quantum maximum-distance-separable (MDS) codes are optimal in the sense that they
beat the quantum Singleton bound. In recent years, constructing quantum MDS codes has
become a hot research topic. Many classes of quantum MDS codes have been found by
employing different methods (see [10–19]). La Guardia in [16] constructed a new class
of quantum MDS codes through MDS cyclic codes. Recently, Kai et al. [11–13] con-
structed several classes of good nonbinary quantum codes from classical constacyclic codes,
including some new classes of quantum MDS codes.

Motivated by the above works, two new families of good nonbinary quantum codes are
constructed in this paper. The first one can be regarded as a generalization of [12, Theorem
3.2], in the sense that we drop the constraint q ≡ 1 (mod 4). The later one is a class of
quantum MDS codes. More specifically, we obtain two classes of q-ary quantum codes with
parameters: (i) [[n, n−4m�−2, ≥ 2�+2]]q , where q is an odd prime power, n = q2m +1

with m ≥ 2, and 1 ≤ � ≤ q2 − 1; (ii)
[[

q2−1
6 ,

q2−1
6 − 2d + 2, d

]]
q
, where q satisfies

6 | (q + 1) and 2 ≤ d ≤ 2q−1
3 .

Compared the parameters of our quantum MDS codes with the parameters of quantum
MDS codes available in the literature, the quantum MDS codes exhibited here have bigger
minimum distance.

2 Preliminaries

In this section, we recall some basic notations and facts about quantum codes and
constacyclic codes.

Throughout this paper, q denotes an odd prime power and Fq2 denotes the finite field

with q2 elements. We always assume that n is a positive integer relatively prime to q , i.e.,
gcd(n, q) = 1. Given integers a, b and z, a | b means that a divides b, and a ≡ b (mod z)

means z | (a − b). Let Fn
q2 be the Fq2 -vector space of n-tuples. A linear code of length n

over Fq2 is an Fq2 -subspace of Fn
q2 . A linear code of length n over Fq2 is called an [n, k, d]

code if its dimension is k and minimum Hamming distance is d .
Given two n-tuples x = (x0, x1, · · · , xn−1) ∈ F

n
q2 and y = (y0, y1, · · · , yn−1) ∈ F

n
q2 ,

the Hermitian inner product is defined as

(x, y)H = x0y
q

0 + x1y
q

1 + · · · + xn−1y
q

n−1.

For a linear code C of length n over Fq2 , the Hermitian dual code of C is defined as

C⊥H =
{

x ∈ F
n
q2 |

n−1∑
i=0

xiy
q
i = 0, for all y ∈ C

}
.



94 Int J Theor Phys (2015) 54:92–99

If C⊥H ⊆ C, then C is called a (Hermitian) dual-containing code.

2.1 Quantum Codes

A q-ary quantum code Q of length n and size K is a K-dimensional subspace of the qn-
dimensional Hilbert space (Cq)⊗n. Let k = logq(K). We use [[n, k, d]]q to denote a q-ary
quantum code of length n with size qk and minimum distance d .

The parameters of an [[n, k, d]]q quantum code must satisfy the quantum Singleton
bound (see [7] and [20]). (Quantum Singleton Bound): Let Q be a q-ary [[n, k, d]] quantum
code. Then 2d ≤ n − k + 2.

A quantum code achieving this quantum Singleton bound is called a quantum maximum-
distance-separable (MDS) code. Ketkar et al. in [7] pointed out that, for any odd prime
power q , if the classical MDS conjecture holds, then the length of nontrivial quantum
MDS codes can not exceed q2 + 1. Constructing quantum MDS codes has become one
of the central topics for quantum codes in recent years. The following is one of the most
frequently-used construction methods. (Hermitian Construction): If C is a q2-ary [n, k, d]-
linear code such that C⊥H ⊆ C, then there exists a q-ary quantum code with parameters
[[n, 2k − n,≥ d]]q . The Hermitian construction suggests that we can obtain q-ary quantum
codes as long as we can construct classical dual-containing linear codes over Fq2 . Consta-
cyclic codes form an important class of linear code due to their good algebraic structures.
In this paper, we will use the Hermitian construction to obtain quantum codes through
constacyclic codes.

2.2 Constacyclic Codes

We adopt the notation in [13]. Let F∗
q2 denote the multiplicative group of nonzero elements

of Fq2 . For β ∈ F
∗
q2 we denote by ord(β) the order of β in the group F

∗
q2 ; then ord(β) is a

divisor of q2 − 1, and β is called a primitive ord(β)th root of unity.
For λ ∈ F

∗
q2 , a linear code C of length n over Fq2 is said to be λ-constacyclic if C is an

ideal of Fq2 [X]/〈Xn − λ〉. We then know that C is generated uniquely by a monic divisor
g(X) of Xn − λ; in this case, g(X) is called the generator polynomial of C and we write
C = 〈g(X)〉.

Let λ ∈ F
∗
q2 be a primitive rth root of unity. Then there exists a primitive rnth root

of unity (in some extension field of Fq2 ), say η, such that ηn = λ. The roots of Xn −
λ are precisely the elements η1+ri for 0 ≤ i ≤ n − 1. Set θr,n = {1 + ri | 0 ≤ i ≤
n − 1}. The defining set of a constacyclic code C = 〈g(X)〉 of length n is the set Z =
{j ∈ θr,n | ηj is a root of g(X)}. It is easy to see that the defining set Z is a union of some
q2-cyclotomic cosets modulo rn and dimF

q2 (C) = n − |Z| (see [13]).
The following results play important roles in constructing quantum codes from consta-

cyclic codes. The BCH bound for Constacyclic Codes: Let C be a λ-constacyclic code of
length n over Fq2 , where λ is a primitive rth root of unity. Let η be a primitive rnth root
of unity in an extension field of Fq2 such that ηn = λ. Assume the generator polynomial

of C has roots that include the set
{
η1+ri | i1 ≤ i ≤ i1 + d − 1

}
. Then the minimum dis-

tance of C is at least d ([13, Theorem 2.1]). Let r be a positive divisor of q + 1 and let
λ ∈ F

∗
q2 be of order r . Assume that C is a λ-constacyclic code of length n over Fq2 with

defining set Z. Then C is a dual-containing code if and only if Z
⋂

Z−q = ∅, where
Z−q = {−qz(mod rn) | z ∈ Z} ([13, Lemma 2.2]).
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3 Quantum Constacyclic Codes

In this section, we construct two families of q-ary quantum codes with good parameters
through the Hermitian construction. Following [13], we call them quantum constacyclic
codes.

3.1 Quantum Codes of Length q2m + 1

Using the Hermitian construction, we will obtain q-ary quantum codes of length q2m + 1
from constacyclic codes over Fq2 , where m ≥ 2 is a positive integer. The main result of
this subsection extends [12, Theorem 3.2] in the sense that we do not assume that q ≡
1 (mod 4).

Let n = q2m + 1, where m ≥ 2. Suppose r = q + 1 and s = n
2 . Let λ ∈ Fq2 be a

primitive rth root of unity. We consider λ-constacyclic codes of length n over Fq2 . Now,
θr,n = {1 + (q + 1)i | 0 ≤ i ≤ n − 1}. We claim that s = n

2 ∈ θr,n. To see this, note that

n

2
− 1 = q2m − 1

2
= q2 − 1

2

(
q2m−2 + q2m−4 + · · · + q2 + 1

)
.

Thus,
n

2
= 1 + (q + 1)

q − 1

2
(q2m−2 + q2m−4 + · · · + q2 + 1).

Lemma 3.1 Let n = q2m + 1, where m ≥ 2. Let r = q + 1 and s = n
2 . Then Cs = {s},

where Cs denotes the q2-cyclotomic coset modulo rn containing s.

Proof It suffices to prove that sq2 ≡ s (mod rn). Since rn = (q + 1)
(
q2m + 1

)
divides

q2m+1
2 (q2 − 1), it follows that sq2 = q2m+1

2 · q2 = q2m+1
2 (q2 − 1 + 1) ≡ q2m+1

2 (mod rn).
We are done.

It is readily seen that s >
q4−1

2 > (q + 1)
(
q2 − 1

)
> 0. The following result shows that

|Cs−(q+1)i | = 2m for any integer i with 1 ≤ i ≤ q2 − 1.

Lemma 3.2 Let n = q2m +1, where m ≥ 2. Let r = q +1 and s = n
2 . Then for any integer

i with 1 ≤ i ≤ q2 − 1, the q2-cyclotomic coset Cs−(q+1)i modulo rn has cardinality 2m.

Proof Note that rn = (q+1)
(
q2m + 1

)
. We first show that ordrn

(
q2

) = 2m. Clearly, rn >

q2m − 1, which implies that ordrn(q
2) > m. On the other hand,

(
q2

)2m ≡ 1 (mod rn).
Thus, ordrn(q) is a divisor of 2m. Therefore, ordrn(q2) = 2m and |Cs−(q+1)i | is a divisor
of 2m, for any 1 ≤ i ≤ q2 − 1.

To prove |Cs−(q+1)i | = 2m, it suffices to show that |Cs−(q+1)i | > m, i.e., (s − (q +
1)i)q2m 
≡ (s − (q + 1)i)q2j (mod rn) for any 0 ≤ j ≤ m − 1. Suppose otherwise that
two integers i0, j0 such that 1 ≤ i0 ≤ q2 − 1 and 0 ≤ j0 ≤ m − 1 can be found such that
(s − (q + 1)i0)q

2m ≡ (s − (q + 1)i0)q
2j0 (mod rn). We then have s − (q + 1)i0q

2m ≡
s − (q + 1)i0q

2j0 (mod rn), which gives (q2j0 + 1)i0 ≡ 0 (mod n). Since n = q2m + 1 >

q2m−q2m−2+q2−1 = (q2m−2 +1)(q2−1) ≥ (q2j0 +1)i0, we obtain a contradiction.

Lemma 3.3 Let n = q2m +1, where m ≥ 2. Let r = q +1 and s = n
2 . Then for any integer

i with 1 ≤ i ≤ q2 − 1, the q2-cyclotomic cosets Cs−(q+1)i modulo rn are distinct.
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Proof Suppose that two integers i, j with 1 ≤ i 
= j ≤ q2 − 1 can be found such that
Cs−(q+1)i = Cs−(q+1)j . Then s − (q + 1)j ≡ (s − (q + 1)i)q2t (mod rn) for some integer
t with 0 ≤ t ≤ 2m − 1. It follows that

j ≡ iq2t (mod n). (3.1)

Clearly, t 
= 0. If 1 ≤ t ≤ m− 1, then iq2t ≤ (q2 − 1)q2m−2 < q2m + 1 = n. Therefore,
j = iq2t by (3.1). This is a contradiction, since iq2t ≥ q2 > q2 − 1 ≥ j .

If m ≤ t ≤ 2m−1, then we write t = m+h, where 0 ≤ h ≤ m−1. Thus, q2t = q2m·q2h.
Since q2m ≡ −1 (mod n), one gets j ≡ −iq2h (mod n) by (3.1) again. This leads to
j = n − iq2h. From j + iq2h ≤ (q2 − 1) + (q2 − 1)q2m−2 < n, we get the desired
contradiction.

Lemma 3.4 Letn = q2m+1,where m ≥ 2. Let r = q+1 and s = n
2 . If C is a λ-constacyclic

code of length n over Fq2 with defining set Z = Cs−(q+1)l

⋃
Cs−(q+1)(l−1)

⋃ · · ·⋃ Cs ,

where 0 ≤ l ≤ q2 − 1, then C contains its Hermitian dual code.

Proof Suppose otherwise that C does not contains its Hermitian dual code. We then know
that Z

⋂
Z−q 
= ∅. Hence, there exist two integers i, j with 0 ≤ i, j ≤ q2 − 1 and an

integer h with 0 ≤ h ≤ 2m − 1 such that

−q(s − (q + 1)j) ≡ (s − (q + 1)i)q2h (mod rn),

After simplification, we obtain
n

2
≡ qj + iq2h (mod n). (3.2)

If h = 0, then n
2 > q(q2 − 1) + q2 − 1 ≥ qj + i, contradicting n

2 = qj + i. We obtain a
contradiction.

If 1 ≤ h ≤ m−1, then qj + iq2h ≤ q(q2−1)+(q2−1)q2m−2 = q2m +q3 −q2m−2 −q .
At this point, two cases may occur: If m ≥ 3, then q2m + q3 − q2m−2 − q < n; it follows
from (3.2) that n

2 = qj +iq2h, or equivalently, q2m+1 = 2qj+2q2h; this is a contradiction,
since we would obtain q | 1. If m = 2, then h = 1. As we did previously, it is impossible
that qj + iq2 ≤ q4. Thus, we assume that qj + iq2 > q4. Note that qj + iq2 < 2q4, which

implies that q4+1
2 = qj + iq2 − (q4 + 1). Then 3q4 + 3 = 2qj + 2iq2. This is impossible,

because 2qj + 2iq2 ≤ 2q(q2 − 1) + 2q2(q2 − 1) < 3q4.
If m ≤ h ≤ 2m − 1, then we write h = m + t , where 0 ≤ t ≤ m − 1. From (3.2) and the

fact q2m ≡ −1 (mod n), we have n
2 + iq2t ≡ qj (mod n). Since n

2 > qj , we can assume
that n

2 + iq2t > n. It is readily seen that n
2 + iq2t < 2n. We then have n

2 + iq2t − n = qj .
Thus, iq2t = n

2 + qj , which implies that t > 0. Expanding this equation, we get 2iq2t =
q2m + 1 + 2qj . This is a contradiction, since we would obtain q | 1.

Theorem 3.5 Let n = q2m + 1, where m ≥ 2. For 1 ≤ � ≤ q2 − 1, there exists a quantum
code with parameters [[n, n − 4m� − 2,≥ 2� + 2]]q .

Proof Let r = q + 1 and s = n
2 . Assume that λ ∈ Fq2 is a primitive rth root

of unity. Let C be a λ-constacyclic code of length n over Fq2 with defining set Z =
Cs−(q+1)�

⋃
Cs−(q+1)(�−1)

⋃ · · ·⋃ Cs , where 0 ≤ � ≤ q2 − 1. It follows from Lemma
3.4 that C contains it Hermitian dual code. Observe that (s − (q + 1)j)q2m ≡ s + (q +
1)j (mod rn) for any integer j , which implies s + (q + 1)j ∈ Cs−(q+1)j . Hence, the
defining set Z contains 2� + 1 integers s − (q + 1)�, s − (q + 1)(� − 1), · · · , s, s +
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(q + 1), · · · , s + (q + 1)�. By the BCH bound for constacyclic codes, the minimum dis-
tance of C is at least 2l + 2. It follows from Lemma 3.1-Lemma 3.3 that C has parameters
[n, n − 2ml − 1,≥ 2l + 2]. By the Hermitian construction, we obtain a quantum code with
parameters [[n, n − 4m� − 2,≥ 2� + 2]]q .

Example 3.6 In Table 1, we list some quantum codes with parameters obtained from
Theorem 3.5 for q = 3, 5, 7, 9 and 11.

3.2 New Quantum MDS Codes of Length q2−1
6

Let q be an odd prime power such that 6 | (q + 1). Let n = q2−1
6 and r = 6. It is readily

seen that every q2-cyclotomic coset modulo rn contains exactly one element. Let λ ∈ Fq2

be a primitive rth root of unity.
Let C be a λ-constacyclic code of length n over Fq2 with defining set

Z =
{

1 + 6i
(

mod q2 − 1
) ∣∣∣ q + 1

3
≤ i ≤ q − 2

}
. (3.3)

It is easy to see that 0 < q − 2 < n, which gives that |Z| = 2q−4
3 and that C is an MDS λ-

constacyclic code with parameters
[

q2−1
6 ,

q2−1
6 − 2q−4

3 ,
2q−1

3

]
. The following result shows

that C satisfies Z
⋂

Z−q = ∅.

Lemma 3.7 If C is a λ-constacyclic code of length n over Fq2 with defining set Z defined
in (3.3), then C is a dual-containing code.

Proof If q = 5 then Z = {13, 19} and Z−q = {1, 7}, which shows that Z
⋂

Z−q = ∅. If
q = 11 then Z = {25, 31, 37, 43, 49, 55} and Z−q = {7, 19, 61, 73, 85, 115}. It is readily
seen that Z

⋂
Z−q = ∅. We can assume, therefore, that q ≥ 17.

Suppose otherwise that Z
⋂

Z−q 
= ∅. Then, we can find two integers i, j with q+1
3 ≤

i, j ≤ q − 2 such that

− q
(
1 + 6i

) ≡ 1 + 6j (mod q2 − 1). (3.4)

We will obtain a contradiction by considering the following cases:
(1)

q+1
3 ≤ i ≤ 2(q+1)

3 − 1. Let i = q+1
6 � + k, where �, k are nonnegative integers with

k ≤ q+1
6 − 1. From q+1

3 ≤ i ≤ 2q−1
3 , � must be equal to 2 or 3. It is easy to see that

−q(1 + 6i) = −q − q2� − q� − 6qk. It follows from (3.4) that

− q − � − q� − 6qk ≡ 1 + 6j (mod q2 − 1). (3.5)

Table 1 Quantum constacyclic codes

q m n [[n, k, d]]q �

3 2 82 [[82, 82 − 8� − 2,≥ 2� + 2]]3 1 ≤ � ≤ 8

5 2 626 [[626, 626 − 8� − 2,≥ 2� + 2]]5 1 ≤ � ≤ 24

7 2 2402 [[2402, 2402 − 8� − 2,≥ 2� + 2]]7 1 ≤ � ≤ 48

9 2 6562 [[6562, 6562 − 8� − 2,≥ 2� + 2]]9 1 ≤ � ≤ 80

11 2 14642 [[14642, 14642 − 8� − 2,≥ 2� + 2]]11 1 ≤ � ≤ 120
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If 0 ≤ k ≤ q+1
6 −2, we want to prove that q2−1−q−�−q�−6qk > 1+6j . To see this, it

suffices to show that 1+6j+1+q+�+q�+6qk < q2. Indeed, 1+6j+1+q+�+q�+6qk ≤
1+6(q−2)+1+q+3+3q+6q

(
q+1

6 − 2
)

= q2 −q −7 < q2. Clearly, 1+6j < q2 −1,

and so q2 − 1 − q − � − q� − 6qk = 1 + 6j by (3.5). This is impossible.
If k = q+1

6 − 1, then −q − � − q�− 6qk = −q − � − q�− q2 − q + 6q . If follows from
(3.5) that

4q − � − q� − 1 ≡ 1 + 6j (mod q2 − 1).

Recall that � ∈ {2, 3}, and so 0 < 4q − � − q� − 1 < q2 − 1. By (3.5) again, we have
4q−�−q�−1 = 1+6j . However, 1+6j+�+q�+1 ≥ 1+6· q+1

3 +2+2q+1 = 4q+6 > 4q ,
which is a contradiction.

(2)
2q+2

3 ≤ i ≤ 5q−7
6 . Recall that q ≥ 17, and so 5q−7

6 >
2q+2

3 . Simple computations
show that −5q2 + 6q ≤ −q(1 + 6i) ≤ −4q2 − 5q , which gives 6q − 5 ≤ 5(q2 − 1) −
q(1 + 6i) ≤ q2 − 5q − 5. From (3.4), one gets 5(q2 − 1) − q(1 + 6i) = 1 + 6j . However,
1 + 6j ≤ 1 + 6(q − 2) < 6q − 5, which gives a contradiction.

(3)
5q−1

6 ≤ i ≤ q − 2. As we did previously, −6q2 + 11q ≤ −q(1 + 6i) ≤ −5q2, and
hence 11q−6 ≤ 6(q2−1)−q(1+6i) ≤ q2−6. We then have 6(q2−1)−q(1+6i) = 1+6j .
But 1 + 6j ≤ 6q − 11 < 11q − 6. This is a contradiction.

Theorem 3.8 Let q be an odd prime power with 6 | (q +1). Then there exist quantum MDS

codes with parameters
[[

q2−1
6 ,

q2−1
6 − 2d + 2, d

]]
q
, where 2 ≤ d ≤ 2q−1

3 .

Proof Let n = q2−1
6 and r = 6. Let λ ∈ Fq2 be a primitive sixth root of unity. Recall that

every q2-cyclotomic coset modulo rn contains precisely one element. We assume that Cδ is
a λ-constacyclic code of length n over Fq2 with defining set

Zδ =
{

1 + 6

(
i + q + 1

3

) (
mod q2 − 1

) ∣∣∣ 0 ≤ i ≤ δ − 1
}
.

where δ is a positive integer with 1 ≤ δ ≤ 2q−4
3 . It follows from Lemma 3.7 and Zδ ⊆ Z

that Cδ is a dual-containing code with parameters [n, n − d + 1, d]q2 , where d is a positive

integer with 2 ≤ d ≤ 2q−1
3 . Using the Hermitian construction and the quantum Singleton

bound, we can obtain a quantum MDS code with parameters
[[

q2−1
6 ,

q2−1
6 − 2d + 2, d

]]
q
.

Example 3.9 In Table 2, we list some quantum MDS codes with parameters obtained from
Theorem 3.8 for q = 11, 17, 23 and 29.

Table 2 Quantum MDS codes

q [[n, k, d]]q d

11 [[20, 20 − 2d + 2, d]]11 2 ≤ d ≤ 7

17 [[48, 48 − 2d + 2, d]]17 2 ≤ d ≤ 11

23 [[88, 88 − 2d + 2, d]]23 2 ≤ d ≤ 15

29 [[140, 140 − 2d + 2, d]]29 2 ≤ d ≤ 19
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4 Code Comparisons

In this section, we compare the parameters of quantum codes available in the literature with
the quantum constacyclic codes given in Section 3. We mention that [21, Table 1] collects
the known quantum MDS codes in the literature.

• Comparing the quantum constacyclic code given in Theorem 3.5 with the one given in
[12] (Construction II), we see that our construction of quantum codes in Section 3 is new
when we take q ≡ −1 (mod 4).

• The quantum MDS codes given in Section 3 have length q2−1
6 and minimum distance

d ≤ 2q−1
3 , where q satisfies 6 | (q + 1) (for example, we can take q = 23, so n = 88 and

d = 15). We calculate the code lengths from Class 1 to Class 20 as listed in [21, Table 1] to
see which classes can achieve the length 88. After easy computations, we see that only the
length of Classes 3, 8 and 12 can achieve 88 when q = 23. In Class 3, 88 = 4 × 23 − 4

and d ≤ 11; in Class 8, d ≤ 3; in Class 12, 88 = 232−1
6 with 6 | (23 + 1) and d ≤ 12. We

then know that n = 88 and d ≤ 15 is a new quantum MDS code, and so the quantum MDS
codes given in Section 3 contain new codes that are not covered in the literature.
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