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Abstract In the present work we show that the existence of non-vanishing torsion field
may solve, at least, one of the problems FRW-cosmology, the particle horizons problem.
The field equations of general relativity (GR) are written in a space having non-vanishing
torsion, the absolute parallelism (AP) space. An AP-Structure, satisfying the cosmological
principle, is used to construct a world model. Energy density and pressure, purely induced
by torsion, are defined from the building blocks of the AP-geometry using GR. When these
quantities are used in the FRW-dynamical equations, we get a world model free from particle
horizons.

Keywords Cosmology · Geeral relativity · Inflation

1 Introduction

Standard cosmology is a branch of science that deals with the structure and evaluation of
the Universe as one system. Theoretically, it depends mainly on the theory of General Rel-
ativity (GR). Just after its birth in 1915, GR has succeeded in predicting important features
of our Universe (e.g. The expansion of the Universe, and afterwards the Cosmic Microwave
Background Radiation(CMBR), the abundance of light elements,...etc). Some of these pre-
dictions have been directly confirmed by observations afterwards [1–4]. However, standard
cosmology suffers from some problems as singularity, particle horizons, flatness, and the
accelerating expansions of the Universe [5, 6],...etc.
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Many authors have attempted to get rid of these problems by reinserting the cosmological
term in GR (cf. [7]), writing alternative theories depending on the curvature scalar R, f(R)
theories (cf. [8, 9]), or inventing some scenarios as inflation [10, 11], baryogenesis [12,
13]. All the above mentioned attempts have been done in the context theories written in
Riemannian geometry. Another class of attempts has been done by writing other theories,
alternative to GR, in the context of geometries with non-vanishing torsion (T). This class
is known in the literature as f(T) theories (cf. [14–18]), and also dealing with f(R) and f(T)
theories together in one theory called F(R,T) gravity[19].

The aim of the present article is to study the effect of torsion on the dynamics of the
Friedmann-Robertson-Walker(FRW)-Cosmology. For this aim, the article is arranged as fol-
lows. In Section 2, a brief overview of the main feature of a geometry with non-vanishing
torsion, the Absolute Parallelism (AP-)geometry together with some issues necessary for the
present application. In Section 3, we investigate the effect of presence of a non-vanishing
torsion on the FRW-dynamics. Discussion and some concluding remarks are given in
Section 4.

2 A Geometry with Non-Vanishing Torsion

In the present section we use a simple type of geometry with non-vanishing torsion, the
AP-geometry (cf.[20–22]). We are going to review briefly some of its properties and the
geometric entities necessary for the present work. Also, we review the most general AP-
structure, satisfying the cosmological principle, used usually for cosmological applications.
At the end of this section we write GR field equations in the context of AP-geometry. The
AP-geometry is used, frequently to solve physical problems in gravity theories (cf. [16, 32,
33]). It is worth of mention that calculations in the AP-geometry are easier compared to
other types of geometries with non-vanishing torsion.

2.1 Brief review of the AP-space

In 4-dimensions, the structure of an AP-Space is defined completely in terms of a tetrad
vector field λ

i

μ(the building blocks of any AP-structure), where i(= 0, 1, 2, 3) represents

the vector number and μ(= 0, 1, 2, 3) denotes the coordinate component of the vector. In
the present article we are going to use Latin (mesh) indices for the vector numbers and
Greek (world) indices for coordinate components. Einstein summation convention is carried
out over Greek indices in the usual manner, while for Latin indices, it is carried out over
repeated indices wherever their positions. It is assumed that the tetrad vectors are totaly

independent i.e. the determinant λ

(
def.= ‖ λ

i

μ‖
)

is non-vanishing. This implies that, for any

tetrad vector field there is a conjugate λ
i
ν such that:

λ
i

μ
λ
i
ν = δμν , (1)

λ
i

ν
λ
j
ν = δij . (2)

Using the tetrad vector field and its conjugate we can define the following second order
symmetric tensors,

gμν
def.= λ

i

μ
λ
i

ν, (3)
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gαβ
def.= λ

i
α λ

i
β . (4)

It is easy to show that,

gμαgαν = δμν , (5)

and

g
def.= ‖gμν‖ �= 0. (6)

The properties of gμν and its conjugate given by (3) - (6), show that this tensor can be used
as a metric defining a Riemannian structure, associated with the AP-structure.

The AP-condition,

λ
i

μ+|ν = 0, (7)

implies the existence of a linear connection,

�α
.μν

def.= λ
i

α
λ
i
μ,ν, (8)

which is the direct solution of (7). Here we use the stroke (|) and the (+) sign to characterize
tensor derivatives, using the connection (8), and the comma (,) is used for ordinary partial
differentiation.

It is clear that the linear connection (8) is non-symmetric. Consequently, it has a torsion
defined by,

�α
.μν

def.= �α
.μν − �α

.νμ. (9)

Now, since (8) is non-symmetric, so its dual �̃α
.μν

(
def.= �α

νμ

)
and its symmetric part

�α
(μν)

(
def.= 1

2

(
�α
μν + �α

νμ

))
are also linear connections. Imposing a metricity condition on

(4), we can define another symmetric linear connection, Christoffel symbol of the second
kind {αμν}, as usually defined. Now, we can define the 3rd order tensor,

γ α
.μν =

i
λα

i
λμ;ν (10)

where (;) is used to characterized covariant differentiation using Christoffel symbol. The
tensor defined by (10) is the contortion of the space. It is easy to derive the following
relations (cf.[20]),

�α
.μν = {αμν} + γ α

.μν. (11)

�α
.μν = γ α

.μν − γ α
.νμ, (12)

Cμ

def.= �α
.μα = γ α

.μα. (13)

The vector given by (13) is known as the basic vector of the space (cf. [23]). Using (9),
(10), (13), a set of second order tensors has been defined [23], which are, usually used for
physical applications (cf. [24–27]).

2.2 AP-Structure for Cosmological Applications

Robertson [28] has derived the most general building blocks of two AP-structures with
homogeneity and isotropy, i.e. satisfy the cosmological principle. The structures are usually
used for cosmological applications. Further investigation of the two structures [29] show
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that they have the types [30] FOGIII and FOGI, respectively. In the present work we use the
first one whose structure is given by the matrix (coordinate system used, x0 = t , x1 = x ,
x2 = y, x3 = z ),

λ
j

μ =

μ →
j (0,1,2,3)

↓

(0, 1, 2, 3)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0
i
(

1− 1
4 kr

2+ k
2 x

2
)

a

i

(
k
2 xy−k

1
2 z

)

a

i

(
k
2 xz+k

1
2 y

)

a

0
i

(
k
2 yx+k

1
2 z

)

a

i
(

1− 1
4 kr

2+ k
2 y

2
)

a

i

(
k
2 yz−k

1
2 x

)

a

0
i

(
k
2 zx−k

1
2 y

)

a

i

(
k
2 zy+k

1
2 x

)

a

i
(

1− 1
4 kr

2+ k
2 z

2
)

a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(14)

where a is a function of time only, i
def.= √−1, h

def.= 1
1+ 1

4 kr
2 , r = √

x2 + y2 + z2 and k(=
0,+1,−1) is the sectional curvature.

The covariant components of this tetrad are given in the matrix:

λ
j
μ =

μ →
j (0,1,2,3)

↓

(0, 1, 2, 3)

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 −i
(

1 − 1
4 kr

2 + k
2 x

2
)
ah2 −i

(
k
2 xy − k

1
2 z

)
ah2 −i

(
k
2 xz+ k

1
2 y

)
ah2

0 −i
(
k
2 yx + k

1
2 z

)
ah2 −i

(
1 − 1

4 kr
2 + k

2 y
2
)
ah2 −i

(
k
2 yz− k

1
2 x

)
ah2

0 −i
(
k
2 zx − k

1
2 y

)
ah2 −i

(
k
2 zy + k

1
2 x

)
ah2 −i

(
1 − 1

4 kr
2 + k

2 z
2
)
ah2

⎞
⎟⎟⎟⎟⎟⎠
.

(15)

where h
def.= 1

1+ 1
4 kr

2 .

Using definitions (3), (4) we get the following non-vanishing components of the metric
tensor of the Riemannian structure associated with the AP-structure(14),

g00 = 1, g11 = g22 = g33 = −h−2a−2,

g00 = 1, g11 = g22 = g33 = −h2a2.
(16)

In this article, we use relativistic system of units c = G = 1, where c is the speed of light
and G is Newton’s gravitational constant. The metric (16) implies that a(t) is the scale factor
of the FRW-cosmology. Now, using the building blocks (14)and definition (8) for the linear
connection, we can get the following non-vanishing components of the torsion tensor, using
definition (9)[26],

�1
.10 = �2

.20 = �3
.30 = −�1

.01 = −�2
.02 = −�3

.03 = ȧ

a
,

�1
.32 = �2

.13 = �3
.21 = −�1

.23 = −�2
.31 = −�3

.12 = 2
√
kh,

(17)

where the dot (.) represents differentiation w.r.t. time. Now the only non-vanishing
components of the basic vector Cμ, using (13), is:

C0 = −3
ȧ

a
, (18)

from which we can get a scalar T defined by,

T def.= √
gμνCμCν, (19)
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which, in the present case using (16),(18), gives,

T = 3
ȧ

a
. (20)

This is the value of the torsion scalar characterizing the AP structure (14).

2.3 GR in The AP-Space

Many authors have attempted to solve problems of GR by constructing new theories. In
most cases this procedure does not focus on the weaknesses in GR that cause the problems.
In the present work we are going to deal with GR , written in the AP-geometry. This will
enable us to focus on the weaknesses of the theory and find a solution, if any.

The field equation of GR can be written as:

Rμν − 1

2
gμν(R − 2�) = −kTμν (21)

where Rμν is Ricci tensor, R is Ricci scalar, � is the cosmological constant and Tμν is the
material-energy tensor defined from outside the geometric structure in a usual phenomeno-
logical manner. Ricci tensor and scalar can be evaluated, in the context of the AP-geometry,
by sing the definition,

Rμν

def.= { α
μα},ν − { α

μν},α + { ε
μα}{ α

εν} − { ε
μν}{ α

εα} (22)

where {} is Christoffel symbol of the 2nd kind constructed as stated above, by imposing
a metricity condition on (4). By using (22) we can write the L.H.S. of the field equations
of GR (21), in the context of AP-geometry. The R.H.S. of equations (21) are written from
outside the objects of Riemannian geometry, as mentioned. In the next section, we are going
to show how torsion affects the R.H.S. of the field equations of GR (21)in the case of
FRW-cosmology.

3 Effect of Torsion on The Dynamics of FRW-Model

In the present Section we investigate the effect of torsion on the cosmological solutions of
Einstein field equation (21). For this purpose we use the AP-structure (14) to evaluate Ricci
tensor (21) and Ricci scalar. The following set of differential equations corresponding to
(21), with Tμν is the material-energy tensor of a perfect fluid (as usually done in standard
cosmology cf.[31] ),

3

(
ȧ

a

)2

= 8πρ0 −
3k

a2
+�, (23)

3

(
ä

a

)
= −4π(ρ0 + 3P0)+�, (24)

together with the conservation equation,

ρ̇ + 3
ȧ

a
(ρ0 + P0) = 0, (25)

where ρ0 and P0 are the proper density and the proper pressure of a perfect fluid,
respectively. Equation (23) and (24) are the same FRW-dynamical equations of standard
cosmology. Since we investigate the torsion sole effect on the dynamics, we take � = 0
since, as it is well known, � can be used as an alternative to solve some of such problems.
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Also, we take k = 0 in order to facilitate comparison with standard cosmology. In this case
(23),(24) will reduce to, (

ȧ

a

)2

= 8

3
πρ0 , (26)

(
ä

a

)
= −4

3
π(ρ0 + 3P0), (27)

which are the dynamical equations, of FRW standard cosmology, written in the context of
the AP-geometry (a geometry with non-vanishing torsion). It is obvious that all solution of
(26) and (27) have some problems e.g. singularity, particle horizons, ...etc.

Now, to study the effect of the torsion field (19) on the solutions of FRW-dynamical
equations (26), (27), we insert this field into the R.H.S. of (21) using the following scheme.
The AP-structure (14) implies a relation between the scalar torsion field T and the scale
factor as given by (20),

T = 3
ȧ

a
, (28)

Also it can be related to Hubble’s parameter H as

T = 3H. (29)

From (28) we get,

Ṫ = 3Ḣ = 3

[
ä

a
−

(
ȧ

a

)2
]
. (30)

From which we get,
ä

a
= 1

9
T 2 + 1

3
Ṫ . (31)

Note that relations (28)–(31) are theory independent. So, to get the effect of the scalar
torsion T on the solution of FRW dynamical equations (26), (27), let us assume that the
dominant energetic contents of the universe, at its very early stages, are purely induced by
the torsion field T , then the FRW-dynamical equations (26) and (27) may be written in the
form: (

ȧ

a

)2

= 8

3
πρ

T
, (32)

(
ä

a

)
= −4

3
π(ρ

T
+ 3P

T
). (33)

where ρ
T

, P
T

are the energy density and pressure induced by the torsion field T , respec-
tively. Now, the values of these quantities, in terms of the field T , can be obtained by
comparting (28) and (31) with the dynamical equations (32) and (33) respectively, we obtain

ρ
T

= 1

24π
T 2, (34)

P
T

= − 1

4π

(
1

6
T 2 + 1

3
Ṫ

)
. (35)

In order to get an equation of state for a perfect fluid induced by the torsion field T , (35)
may be written, using (34), in the form:

P
T

= −ρ
T
(1 + ε), (36)

where

ε
def.= 2Ṫ

T 2
. (37)
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Equation (36) has the form of an equation of state of a fluid. The fluid in the present case is
induced by the torsion field T . To facilitate comparison with FRW-standard cosmology, let
us write the equation of state of FRW- standard cosmology in the form

P0 = ωρ0. (38)

Comparison of (38) with (36) gives

ω(t) = −(1 + ε). (39)

Now, we discuss the following possibility: In the case of ε = 0: This implies P
T

= −ρ
T

(from (36)). Substituting this relation into FRW-dynamical equations (32) and (33) we
obtain

ä

a
− ȧ2

a2
= 0,

which has the solution
a = eαt , (40)

where α is constant. This solution has no particle horizons and will be discussed in the next
section.

4 Discussion and Concluding Remarks

In the present work we used the AP-geometry to write the field equation of GR. In general,
as stated in the text, the structure of an AP-space in 4-dimensions, is defined completely
by 16-independent building blocks (a tetrad). So, one needs 16-conditions (equations) to
fix these function. GR field equations (21) represent 10 of such conditions. Then we need
6 more conditions to fix the functions. Fortunately, in the AP-structure with homogeneity
and isotropy (14), all skew 2nd order tensors, vanish identically. And since the 6-conditions
needed are expected to be given by a tensor equation including some combinations of the
skew tensors [23], then we can say that the required six conditions are satisfied identically
for the AP-structure(14).

It is to be noted that Riemannian geometry has no sufficient structure to accommodate
any physical entities but the gravitational field and its background space-time. So, on one
hand, it is preferable to use a more wider geometry than the Riemannian one, in order to
represent more physical quantities, e.g. matter and energy , and to write a pure geometric
theory for gravity. On the other hand, a more wider geometry would have torsion in addition
to curvature (cf.[20–22]) as the two important geometric object characterizing the geometry.
In this case, what would be the impact of torsion on the solutions and predictions of any
suggested field theory, including GR, written in the context of this geometry?

The present work, gives an answer to the above question. Some of the problems of stan-
dard cosmology are solved. The solution (40) has no singularity and no particle horizon
problems. The scheme leading to this achievement can be summarized as follows. The field
equations of GR (21) are written in the AP-geometry and applied to an AP-structure having
homogeneity and isotropy (14). The resulting differential equations (23),(24) are the FRW-
dynamical equations, characterizing standard cosmology. Till this step, nothing is changed
concerning standard cosmology, its problems still exist. But when torsion is inserted into
the R.H.S. of the field equation of GR (see, (32)and (33)) as discussed above, a resulting
solution has neither particle horizons nor singularity.

GR in free space is a geometric theory for the gravitational interaction. It gained most of
its success from applications of its field equations (in free space) together with the geodesic
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Table 1 Comparison between conventional inflation and the present work

Conventional inflation [10, 11] Present work

Conservation Noether theorem Bianchi identity

Energy Density ρφ = φ̇2

2 + V (φ) ρ
T

= 1
24π T

2

Pressure Pφ = φ̇2

2 − V (φ) P
T

= − 1
4π

(
1
6T

2 + 1
3 Ṫ

)

Equation of State Parameter wφ = 1
2 φ̇

2−V (φ)
1
2 φ̇

2+V (φ)
ω

T
= −(1 + ε)

Exponential expansion condition φ̇2 << V (φ) ε = 0

equations. Such successful applications are carried out in the cases of spherical symmetry
(The Schwarzschild solution) and axial symmetry (Kerr solution). In this sense, GR, con-
structed in Riemannian geometry, can be considered as a pure geometric theory for gravity,
since all entities used in the theory are constructed from the building blocks of the geome-
try (the metric tensor). In contrast, many problems appeared when using the field equation
within a material distribution (21), for applications. The main difference between GR in
free space and within a material distribution is the presence of the tensor Tμν , which has
no representative in Riemannian Geometry. In this sense, GR within a material distribution,
cannot be considered as a pure geometric theory for gravity.

In the present work, we show that if energy density and pressure are purely induced
by torsion (as defined by (34) and (35)), then some of the problems of FRW-cosmology
are removed. Two entities are used to get the model (40), the GR field equations and the
AP-structure (14). It is to be considered that the solution (40) cannot be obtained ether
from GR field equations alone (26), (27) or from the AP-structure (14) alone. The result
(40) is obtained from a common factor, presented in both entities, the scale factor a. The
compassion between the derivatives of the scale factor in both entities gives the solution
(40), which is free from particle horizon. This may imply an avenue to get rid of problems
of GR, by writing its material-energy contents using pure geometric objects. In other words,
this may be achieved by converting GR to a pure geometric or constructing a pure geometric
theory for gravity.

In the literature, it is well known that the most famous solution of the particle horizons
problem is the scheme called inflation [10, 11]. This scheme implies the existence of a
scalar field, from outside Riemannian geometry. The present treatment throws some light
on the nature of this field. The torsion field, used in the present work, may represent a good
candidate for solving such problems. It is a part of the geometry used, the AP-geometry.
Table 1 gives a brief comparison between the main features of conventional inflation and
the present work.

From Table 1, we can note that in both cases, the field should vary very slowly in order to
get exponential expansion (model free from particle horizons). In our treatment the source
of the field is the torsion scalar, which is a pure geometric quantity.
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