
Int J Theor Phys (2014) 53:3191–3200
DOI 10.1007/s10773-014-2116-7

Quantum Private Comparison Based on Phase Encoding
of Single Photons

Yan-Bing Li ·Ying-Jie Ma ·Sheng-Wei Xu ·
Wei Huang ·Yan-shuo Zhang

Received: 23 January 2014 / Accepted: 21 March 2014 / Published online: 23 April 2014
© Springer Science+Business Media New York 2014

Abstract In this paper, we propose a scheme for quantum private comparison using phase
encoding. The analysis indicates that the scheme is secure, and can prevent some familiar
attacks. With the use of error-correcting code (ECC), it achieves a limited fault tolerant
quantum private comparison. The scheme is easy to be realized in current experiments.

Keywords Quantum private comparison · Phase encoding · Single photon ·
Error-correcting code

1 Introduction

Quantum cryptography allows higher security than classical cryptography as it is based on
the laws of physics instead of some difficult mathematical problems. There are some quan-
tum cryptography protocols been proposed, such as quantum key distribution (QKD) [1–6],
quantum secret sharing (QSS) [7–12], quantum secure direct communication (QSDC)
[13–17], quantum teleportation (QT) [18–21], and so on. Secure multiparty computation
(SMPC) is an important and fundamental cryptographic protocol [22–29]. Unfortunately,
it was shown by Mayers [24] and Lo-Chau [25] that deterministic two-party-setting
computation was impossible, even with quantum means.

Y.-B. Li (�)
State Key Laboratory of Networking and Switching Technology, Beijing University
of Posts and Telecommunications, Beijing, 100876, China
e-mail: liyanbing1981@gmail.com

Y.-B. Li · Y.-J. Ma · S.-W. Xu · W. Huang · Y.-s. Zhang
Beijing Electronic Science and Technology Institute, Beijing, 100070, China

Y.-B. Li
Department of Electrical Engineering and Computer Science, Northwestern University,
Evanston, IL 60208, USA

mailto:liyanbing1981@gmail.com


3192 Int J Theor Phys (2014) 53:3191–3200

Quantum private comparison (QPC) is a interesting topic in quantum secure multiparty
computation. It allows two distrustful parties, Alice and Bob, to determine whether their
secret inputs are equal or not without disclosing their own secret information. In 2009, QPC
was proposed by Yang et al. [30, 31] first. After these, some QPC schemes based on differ-
ent states are proposed [32–41]. Since secure two-party-setting computation is impossible,
a third party (TP) is needed in QPC to help Alice and Bob compare their private informa-
tion. In some schemes, TP is required as at least a semi-honest participant. Recently, it was
found that TP is not needed to be a semi-honest participant [40]. Hence, the QPC schemes
presented previously have the following principles.

1. The QPC task is implemented with the help of a TP. TP will not be corrupted by others.
He cannot learn any information about the players’ respective private inputs by means
of various active and passive attacks.

2. No matter whether TP will know the positions of different bit value in the com-
pared information or not, he/she will not be able to know the actual bit value of the
information.

3. All outsiders and the two players should only know the result of the comparison (i.e.,
identical or different), but not the positions of the different information.

In this paper, we will propose a new QPC scheme based on phase encoding of single pho-
tons, and prove that it is secure in the above principles. This scheme is easy to be realized in
current experiments as only some simple devices are used. It also can prevent some familiar
attacks in practical setting.

The rest of this paper is constructed as follows. Section 2 proposes the QPC scheme based
on phase encoding of single photons. In Section 3, we analyze the protocol’s correctness,
security and the capability of fault-tolerate. Finally, a short conclusion is given in Section 4.

2 QPC Based on Phase Encoding of Single Photons

In this section, we give a QPC scheme based on phase encoding of single photons. Here
are two participants, Alice and Bob, and a third party, Charlie who helps Alice and Bob
to compare, but wants to know their private inputs by means of various active and passive
attacks. Following the conclusions that a SMPC protocol should be insecure when less than
a half of participants are honest [26], we suppose that TP should not be colluded by other
dishonest parties.

Here, Alice and Bob have two private information MA and MB , respectively. The binary
representations of MA and MB in F2N are

(
mA

1 , m
A
2 , . . . ,m

A
N

)
,
(
mB

1 , m
B
2 , . . . ,m

B
N

)
, where

mA
i ,m

B
i ∈ {0, 1}; MA = ∑N

i=1 m
A
i · 2i ,MB = ∑N

i=1 m
B
i · 2i .

In this scheme, the single photon should be used with the technique block transmission,
namely using an ordered particle sequence, which first proposed in Ref. [13]. They divide
the N bits private information into some blocks including t bits, and fill the last block by
some bits 0, then compare them one by one. When a pair of blocks are not identify, they
know MA �= MB and stop the protocol. They accept MA = MB only when all of these
blocks are identify. The specific steps of the scheme are described as follows. And the
schematic of the scheme is shown in Fig. 1.

1. Charlie prepares photons sequence S = (s1, s1, · · · , sn′) which is composed by
n′ single photons and passes each of them through 50 : 50 beam splitter
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Fig. 1 The schematic of QPC based on phase encoding of single photon (color online)

BS1. The j th photon is split to two pulse waves saj and sbj . Then the state
is

|φ0〉 = 1√
2
(|0〉a|1〉b + i|1〉a|0〉b), (1)

where |0〉 denotes the vacuum state, the subscripts a and b represent the paths towards
Alice’s and Bob’s sites, respectively.

2. To the j th photon, Charlie randomly choose a phase θCj from the two basis sets of

{0, π} and {π/2, 3π/2}. Phase values 0 and π/2 represent k∗Cj = 0 and the other two

represent k∗Cj = 1. Now Charlie has bits sequences K∗C = (
k∗C1 , k∗C1 , · · · , k∗C

n′
)
.

He uses modulator introduce relative phase shift θCj to the pulse wave saj or sbj . The
system state develops to

|φ1〉 = 1√
2

(
|0〉a|1〉b + ie

iθCj |1〉a|0〉b
)
, or (2a)

|φ1〉 = 1√
2

(
e
iθCj |0〉a |1〉b + i|1〉a |0〉b

)
. (2b)

Then he sends the two pulse waves sequences SA = (
sA1 , s

A
1 , · · · , sAn′

)
, SB =(

sB1 , sB1 , · · · , sB
n′

)
to Alice and Bob, respectively.

3. Alice and Bob insert a filter in front of her devices to filter out the photon signal with
an illegitimate wavelength. They select l orders for detecting multi-photons as follows.
They split each of these waves with a beam splitter followed by measuring the two
signals with detectors. In an ideal scenario, only one detector would click for a same
order. If the multi-photon rate is unreasonably high, they abort the protocol.

4. To the ith pulse wave, Alice and Bob randomly choose θAj and θBj from the two

basis sets of {0, π} and {π/2, 3π/2}. Phase values 0 and π/2 represent k∗Aj or

k∗Bj = 1 and the other two represent k∗Aj or k∗Bj = 0. They use phase modulators
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to introduce relative phase shifts θAj and θBj to the pulse waves saj and sbj , respec-

tively. Now Alice and Bob have two bits sequences K∗A = (
k∗A1 , k∗A1 , · · · , k∗A

n′
)

and
K∗B = (

k∗B1 , k∗B1 , · · · , k∗B
n′

)
, respectively. The system state develops to

|φ2〉 = 1√
2

(
e
iθBj |0〉a|1〉b + ie

i(θAj +θCj )|1〉a |0〉b
)

= e
i
(
θCj +θAj

)

√
2

(
e
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)
, or (3a)

|φ2〉 = 1√
2

(
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)
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where the overall factor e
i
(
θCj +θAj

)

and e
iθAj could be omit. We denote the pulse waves

after Alice and Bob’s phase shifts as s∗Aj and s∗Bj .

Then they send the two pulse waves sequences S∗A = (
s∗A1 , s∗A1 , · · · , s∗A

n′
)
, S∗B =(

s∗B1 , s∗B1 , · · · , s∗B
n′

)
back to Charlie.

5. The two pulse waves are combined at the second beam splitters BS2. The system state
develops to

|φ3〉= 1√
2

((
e
i
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)

− 1
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(4a)
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2
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(4b)

which means the detector D1 will click with probability 1
2

(
1 − cos

(
θBj − θAj −

θCj

))
or 1

2

(
1 − cos

(
θCj + θBj − θAj

))
, the detector D2 will click with probability

1
2

(
1 + cos

(
θBj − θAj − θCj

))
or 1

2

(
1 + cos

(
θCj + θBj − θAj

))
.

6. Alice, Bob and Charlie take turns to check whether the other two participants are hon-
est or not. First, Alice selects a detecting photon and announces its order, let Bob
announce his bit k∗Bj , Charlie announce his bit k∗Cj and which detector clicked. Sec-
ond, Bob selects a detecting photon and announces its order, let Alice announce his bit
k∗Aj , Charlie announce his bit k∗Cj and which detector clicked. Third, Charlie selects

a detecting photon and announces its order, let Alice and Bob announce their bit k∗Aj
and k∗Bj . Then they come into another round of detecting process, till l′ photons has
been detected. They check dishonest participants with the following two restrains: In
the two cases of (i) detector D1 clicked and k∗Ci = 1 and (ii) detector D2 clicked and
k∗Cj = 0, it should be k∗Aj = kBj with certainly; In the other two cases of (iii) detec-

tor D1 clicked and k∗Ci = 0 and (iv) detector D2 clicked and k∗Ci = 1, it should be
k∗Aj = k∗Bj with probability 1/3 and k∗Aj �= k∗Bj with probability 2/3. If all the checks
passed, they go to the next step.
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7. To the remaining m − l − l′ orders, Charlie announces which orders are in the cases
(iii) and (iv). In a half of these orders, Alice announces her bit k∗Aj following by Bob

announces his bit k∗Bj . In the other half of these orders, Bob announces his bit k∗Bj
following by Alice announces her bit k∗Aj . Same to the check process in step 5, it

should be k∗Aj = k∗Bj with probability 1/3 and k∗Aj �= k∗Bj with probability 2/3. If all
the checks passed, they go to the next step.

8. We suppose the amount of the remaining orders is n. By eliminating the announced
bits, Alice, Bob and Charlie still keep secret bit sequences KA = (

kA1 , k
A
2 , . . . , k

A
n

)
,

KB = (
kB1 , k

B
2 , . . . , k

B
n

)
and KC = (

kC1 , k
C
2 , . . . , k

C
n

)
orderly in bit sequences K∗A,

K∗B and K∗C , respectively.
9. Alice, Bob and Charlie select a [n, t] error-correcting code [42] which could use n bits

codeword to encode t bits word by using generator matrix G(xt) and could correct t ′
codeword error bits using the error-correcting function D(yn).

10. Alice chooses a bits word RA = (
rA1 , rA2 , . . . , rAt

)
and calculates the corresponding

bits codeword WA = (
wA

1 , w
A
2 , . . . , w

A
n

)
, i.e.,

WA = RA ·G, and RA = WA ·D. (5)

Then she obtains bit string PA = (
pA

1 , p
A
2 , . . . , p

A
t

)
by calculating pA

j = rAj ⊕ mA
j ,

bit string QA = (
qA1 , q

A
2 , . . . , q

A
n

)
by calculating qAj = wA

j ⊕ kAj . After these, she

announces PA and QA to Charlie.
11. Bob chooses a t bits word RB = (

rB1 , rB2 , . . . , rBt
)

and calculates the corresponding
bits codeword WB = (

wB
1 , w

B
2 , . . . , w

B
n

)
, i.e.,

WB = RB ·G, and RB = WB ·D. (6)

Then he obtains bit string PB = (
pB

1 , p
B
2 , . . . , p

B
t

)
by calculating pB

j = rBj ⊕ mB
j ,

bit string QB = (
qB1 , qB2 , . . . , qBn

)
by calculating qBj = wB

j ⊕ kBj . After these, he

announces PB and QB to Charlie.
12. Charlie obtains bit string WC = (

wC
1 , w

C
2 , . . . , w

C
n

)
by calculating wC

j = qAj ⊕
qBj ⊕ kCj . Then he uses the check matrix H of the [n, t] error-correcting code
to check whether the number of error bits exceeds the threshold t ′. If it does,
Charlie aborts the protocol and restarts from Step 1. Otherwise, he obtains t bits string
RC by decoding WC with error-correcting function D(WC) = WC · D. He obtains

R′C =
(
r ′C1 , r ′

C
2 , . . . , r

′C
t

)
by calculating r ′Cj = pA

j ⊕ pB
j . If one or more bits are

different between RC and R′C , Charlie announces X �= Y . Otherwise, he announces
X = Y .

3 Analysis

3.1 Correctness

For simpleness, we first prove that the protocol is correct in ideal scenario. Then we prove
that the effect of limited noise will be removed by ECC in practical scenario.
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3.1.1 Correctness in Ideal Scenario

Since there are l + l′ + 3(m−l−l′)
4 = 3m+l+l′

4 single photons used as detecting states which
are not used in final comparison, we only consider the other n decoding single photons. In
the protocol, up to step 8, it should be that

KC = KA⊕̃KB, (7)

where ⊕̃ denotes that one bit string bitwise XOR another bit string.1 Obliviously, Charlie,
Alice and Bob share some randomly bits from which one can know the other two parties’
bitwise XOR value.

At step 12, it should be that

WC = QA⊕̃QB⊕̃KC

= (WA⊕̃KA)⊕̃(WB ⊕KB)⊕̃KC

= WA⊕̃WB. (8)

Based on (5) and (6), we know that

RA⊕̃RB = (WA⊕̃WB) ·D
= WC ·D.

(9)

Since RC = WC ·G, it should be that RC = RA⊕̃RB .
After these, we consider the other bits string R′C which Charlie obtains at step 12 too.

We know that

R′C = PA⊕̃PB

= (RA⊕̃MA)⊕̃(RB⊕̃MB). (10)

When MA = MB , it should be that

R′C = RA⊕̃RB. (11)

Otherwise, when MA �= MB , it should be that

R′C �= RA⊕̃RB. (12)

In other words, Charlie knows whether MA = MB or not by comparing RC and R′C .
Therefore, the presented protocol is correct in an ideal scenario. We analyze it in practical

scenario as follows.

3.1.2 Correctness in Practical Scenario

In practical scenario, noise might appear in all of quantum preparation setups, quantum
channel and measurement equipments. Here we only consider their effect on the encoding
states (i.e., the noise appear in the courses of obtaining KC ) as the detecting photons will
be discarded and not effect the correctness of comparison.

1In an ideal scenario, Charlie can obtain the comparison result with KC if Alice and Bob use their private
information MA and MB to replace KA and KB respectively. However, in the presented protocol, some
bits in K∗A and K∗B (which KA and KB come form) are used randomly to detect cheats which happen in
non-ideal scenario. So Alice and Bob do not know which bits in K∗A and K∗B will become KA and KB

ultimately. Consequently, they cannot use their private information to replace KA and KB .
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We denote the noise appear in the courses of obtaining KC as O = (o1, o2, . . . , on),
where oi = 0 or 1 representing error is existent or not in ki . So Charlie obtains bit string
K ′C as

K ′C = KC⊕̃O

= (RA⊕̃RB) ·G. (13)

Then (8) is replaced with
W ′C = WA⊕̃WB⊕̃O. (14)

When the error rate does not exceed a rational threshold, i.e., the number of 1 in bit string
O does not exceed t ′, we have

RA⊕̃RB = (WA⊕̃WB⊕̃O) ·D
= WC ·D. (15)

replacing (9). Subsequently, noise will not effect (10)–(12). Namely, the present protocol is
correct in practical scenario when noise has not exceed the used ECC’s ability.

3.2 Security

In QPC, every participant has more resources than outsider. With these resources, a dishon-
est participant has more strategies to cheat besides the strategies which outsider can perform.
So the term “participant attack” [43–48] has attracted much attention in the cryptanalysis
of quantum cryptography and should be paid more attention to. From the conclusions of
QSMPC, we know that it should be insecure when less than a half of participants are hon-
est [26]. Since QPC is a instance of QSMPC, it can only guarantee the secure when there
is only one dishonest participant. So we will only analyze the attacks performed by Alice,
Bob, and Charlie respectively, but not two colluded participants.

3.2.1 Alice’s (Bob’s) Attacks

In the proposed protocol, Alice’s position are equal to Bob’s completely. So we could only
analyze the case that a dishonest Alice cheats Bob’s private information. Before the step
11, what Bob announced is about the detecting states which are not useful to extract Bob’s
private information. And in the step 12, Charlie only announces the comparison result. So
Alice must pay attention on the messages PB and QB Bob announced at step 11. If Alice
knows KB which is corresponding to Bob’s operations performed on the encoding states
at step 3, she can extract Bob’s private information from PB and QB as PB = RB⊕̃MB ,
QB = WB⊕̃KB and (6).

Since the encoding states travel between Charlie and Alice, Charlie and Bob respectively
in the protocol, the Trojan horse attacks [49, 50] should be considered. With Trojan horse
attacks, Alice might use invisible photon eavesdropping or delay-photon eavesdropping to
cheat. Since a filter could filter out the photon signal with an illegitimate wavelength, invis-
ible photon eavesdropping is prevented. With the use of multi-photon detection, enough
number of delay-photon eavesdropping is prevented. If a few of bits in KB are extracted by
Alice, she only can recover a few bits of WB . When the number of correct bits in WB is
less than t , RB cannot be recovered with the error-correcting function correctly. Then the
delay-photon eavesdropping is invalid.

Besides Trojan horse attacks, some other attacks [44–48] also could be used to cheat
information from traveling states, such as intercept-resend attack, measurement-resend
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attack, and entanglement-measure attack [30, 31]. In these attacks, Alice first performs some
operations on SB before step 3, such as entangles photons, replaces photon, then performs
some measurements before it comes back to Charlie. However, these attacks will be detected
by Charlie’s detection based on Alice and Bob’s announcements at step 6. In fact, the states
used in this protocol is the four states which are similar as the four BB84 states. When

θ =
{

0, π
2 ,

π
4 ,

3π
4

}
, the states 1√

2

(|0〉|1〉 + ieiθ |1〉|0〉) are corresponding to BB84 states

{|0〉, |1〉, |+〉, |−〉} respectively. Without the knowledge of the detecting photons’ positions,
Charlie and Bob’s phase shifts, Alice might measure detecting states in incorrect bases.
Then she will be detected for that the detecting states have been disturbed.

Therefore, the proposed protocol can resist all well known attacks performed by Alice
and Bob.

3.2.2 Charlie’s Attacks

Now we consider the case that a dishonest Charlie cheats Alice and Bob’s private informa-
tion. For extracting Alice and Bob’s private information, Charlie needs only cheat one of
KA and KB as he know the value of KC = KA⊕̃KB . So we only analyze the case that
Charlie cheat Alice’s private information.

Similarly to the analysis in the above subsection, the two Trojan horse attacks will
be prevented by Alice and Bob’s filter of illegitimate wavelength and the multi-photons
detection.

In the other attacks, if Charlie cheats KA, he first performs some operations on SA at
step 2, such as entangles photons, replaces photon, then performs some measurements on
S∗A as it was sent back to him. However, all of these attacks will be detected by the check
process in which he is required to announce kCj and the clicked detector first. Without the

knowledge of the positions of detecting states, kAj and kBj before cheating, Charlie cannot
make sure the detecting states’ bases. Then his any dishonest measurements or operations
will disturb the detecting states. Subsequently, he will be detected.

Therefore, the proposed protocol can resist all well known attacks performed by Charlie.

3.3 The Capability of Limited Fault-Tolerate

In the presented scheme, ECC are used to prevent the limited noise which appears in non-
ideal scenario, including quantum preparation setups, quantum channel and measurement
equipments.

However, ECC’s capability of error-correcting is limited, so the protocol is appropriate
for the scenario where the noise is limited. In the protocol, the error rate of noise must
be less than t ′/n, otherwise, the scheme should be restarted. Then the participants should
use another error-correcting code which has higher error-correcting capability to utilize the
scheme.

4 Conclusion

In this paper, we propose a quantum private comparison scheme based on phase encoding.
The analysis indicates that the scheme is secure which can prevent some familiar attacks.
And this scheme is easy to be realized in current experiments as only some simple devices
are used.
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