
Int J Theor Phys (2014) 53:2463–2484
DOI 10.1007/s10773-014-2046-4

Quantum Hilbert Image Scrambling

Nan Jiang ·Luo Wang ·Wen-Ya Wu

Received: 14 October 2013 / Accepted: 5 February 2014 / Published online: 30 April 2014
© Springer Science+Business Media New York 2014

Abstract Analogies between quantum image processing (QIP) and classical one indicate
that quantum image scrambling (QIS), as important as quantum Fourier transform (QFT),
quantum wavelet transform (QWT) and etc., should be proposed to promote QIP. Image
scrambling technology is commonly used to transform a meaningful image into a disordered
image by permutating the pixels into new positions. Although image scrambling on classi-
cal computers has been widely studied, we know much less about QIS. In this paper, the
Hilbert image scrambling algorithm, which is commonly used in classical image process-
ing, is carried out in quantum computer by giving the scrambling quantum circuits. First,
a modified recursive generation algorithm of Hilbert scanning matrix is given. Then based
on the flexible representation of quantum images, the Hilbert scrambling quantum circuits,
which are recursive and progressively layered, is proposed. Theoretical analysis indicates
that the network complexity scales squarely with the size of the circuit’s input n.

Keywords Hilbert image scrambling · Quantum circuit · Quantum computation ·
Quantum watermarking

1 Introduction

Quantum computers theoretically have the ability to perform computations much faster
than classical computers [1–4], which causes people’s interest to study quantum image
processing (QIP) [3, 5, 6].

At present, QIP has three main directions: (1) the representation of quantum images; (2)
the development of efficient quantum image transformations; (3) the quantum watermarking
algorithms.

N. Jiang (�) · L. Wang · W.-Y. Wu
College of Computer, Beijing University of Technology, Beijing 100124, China
e-mail: jiangnan@bjut.edu.cn

mailto:jiangnan@bjut.edu.cn

2464 Int J Theor Phys (2014) 53:2463–2484

The first task of QIP is to represent quantum images. Recently, a few representing meth-
ods have been proposed such as Qubit Lattice [7, 8], Real Ket [9], FRQI [10] and NEQR
[11]. The Hilbert quantum circuits proposed in this paper are based on FRQI.

It also has been proven that there are quantum processing transformations more efficient
than their classical versions: quantum Fourier transform [3], quantum wavelet transform
[12] and the quantum discrete cosine transform [13, 14]. In addition, there are some clas-
sical image processing operations that can not be applied on quantum images, for example
convolution and correlation [15], because all operations in quantum computation must be
invertible.

Watermarking is different from cryptography. It aims at guard against image abuse by
embedding invisible signal (watermark) carrying information about the copyright owner
into multimedia data (carrier, such as audio, video and image). The watermarked carriers are
still readable. Several quantum images watermarking methods have been proposed [16–18].

In this paper we address the second problem. The basic transformation we focused
on is image scrambling. We provide quantum circuits for computing the Hilbert image
scrambling.

Image scrambling, which transforms a meaningful image into a meaningless or dis-
ordered image, has been widely used in the area of digital image transmission, the
confidentiality storage, digital image watermarking etc... [19–23]. The popular image
scrambling algorithms include Hilbert transform, Arnold transform, Fibonacci transform,
Magic Square transform etc... [19, 20, 24–27]. Among them is the Hilbert scrambling algo-
rithm, which uses the Hilbert scanning matrix [28] formed by Hilbert Curve. This is the
most commonly used transformer and so we used quantum circuits to achieve the Hilbert
image scrambling.

Because it is at the very start of the research, only a few papers focus the realization of
image scrambling on quantum computers.

The first quantum image scrambling circuit is proposed in [29]. The circuits that achieve
geometric transformations including two-point swapping, flip, coordinate swapping, orthog-
onal rotations and their variants on N-sized quantum images are proposed based on the basic
quantum gates: NOT, CNOT and Toffoli gates. Nevertheless, it is only a “semi-scrambling”
method because it focuses on geometric transformations, which just provide a realization
method for scrambling.

In [16, 17], Zhang and et al. presented an image scrambling method and its quantum
circuit as one step in quantum image watermarking algorithms. The key to the scrambling
method is made up of two parts: two random permutations M and N , sized m and n, where
m and n are the sizes of the watermark image. Assume that M(i), N(j) are the ith and
j th numbers of M , N respectively, the pixel (M(i),N(j)) of the original watermark image
replaces the pixel at position (i, j) of the scrambled watermark image. The quantum circuit
can easily recognize this method. However, because M and N are given artificially, the
scrambling uniformity and the scrambling degree cannot be guaranteed.

Jiang and et al. proposed the Arnold and Fibonacci scrambling quantum circuits based on
FRQI [30]. The circuits take advantage of the plain adder and adder moduloN by modifying
its input and output in order to scramble the images. The Hilbert scrambling quantum circuit
is much more complex and cannot be simplified for use in the addition operation as well as
other simple operations.

In this paper we study the quantum realization of Hilbert image scrambling using Hilbert
Scanning Matrix.

Int J Theor Phys (2014) 53:2463–2484 2465

The rest of the paper is organized as follows. A brief background on the FRQI repre-
sentation, Hilbert image-scrambling and quantum gates used in this paper is presented in
Section 2. A new recursive generation algorithm for Hilbert Scanning Matrix is presented
in Section 3. A quantum circuit to realize the algorithm is presented in Section 4. This
is followed in Section 5 by the theoretical analysis of circuits complexity. Finally, a short
conclusion is given in Section 6.

2 Preliminaries

2.1 The Flexible Representation for Quantum Images (FRQI)

In order to represent images on quantum computers, the flexible representation for quantum
images (FRQI) was proposed in [10, 29]. According to the FRQI, a quantum image can be
written as the form shown below.

|I (θ)〉 = 1

2n

22n−1∑

i=0

|ci〉 ⊗ |i〉

|ci〉 = cos θi |0〉 + sin θi |1〉, θi ∈
[

0,
2

π

]
, i = 0, 1, · · · , 22n − 1

where |0〉, |1〉 are 2 dimension computational basis quantum states, (θ0, θ1, · · · , θ22n−1) is
the vector of angles encoding colors, |i〉, for i = 0, 1, · · · , 22n − 1 dimension compu-
tational basis quantum states, and the Kronecker product denoted by ⊗ . There are two
parts in the FRQI of an image: |ci〉 and |i〉, which encode information about the colors and
their corresponding positions in the image, respectively. The size of the quantum image is
2n × 2n.

The location information encoded in the position qubit |i〉 includes two parts: the vertical
and horizontal coordinates.

|i〉 = |y〉|x〉 = |yn−1yn−2 · · · y0〉|xn−1xn−2 · · · x0〉
where |yi〉|xi〉 ∈ 0, 1, i = 0, 1, · · · , n− 1. For every i = 0, 1, · · · , n− 1, encodes the first
n-qubit yn−1yn−2 · · · y0 along the vertical location and the second n-qubit xn−1xn−2 · · · x0

along the horizontal axis. An example of a 2 × 2 FRQI image is shown in Fig. 1. Its FRQI
representation is shown below. In this example, n = 1.

|I 〉 = 1

2
[(cos θ0|0〉 + sin θ0|1〉)⊗ |00〉 + (cos θ1|0〉 + sin θ1|1〉)⊗ |01〉

+(cos θ2|0〉 + sin θ2|1〉)⊗ |10〉 + (cos θ3|0〉 + sin θ3|1〉)⊗ |11〉]

2.2 Hilbert Image Scrambling

In 1890, Italian mathematician G. Peano presented a family of curves which pass through
all points in a space [31]. Since this publication, many researchers have worked on this
problem. Among them, Hilbert [32] found one of the simplest curves in two-dimensional
(2-D) space, which is now called the Hilbert curve [33]. Along the Hilbert curve, an image
can be scrambled very effectively.

2466 Int J Theor Phys (2014) 53:2463–2484

Fig. 1 A simple image and its
FRQI state

2.2.1 Hilbert Scanning Matrix and Hilbert Curve

An 2n×2n original image can be considered as a matrix. We call this matrix the Start matrix
(or the Original matrix) Sn and use 1 to 22n to code all the pixels.

Sn =

⎛
⎜⎜⎜⎝

1 2 3 · · · 2n

2n + 1 2n + 2 2n + 3 · · · 2n+1

...
...

...
...

...

22n−1 + 1 22n−1 + 2 22n−1 + 3 · · · 22n

⎞
⎟⎟⎟⎠

For example, S0 = (1), S1 =
(

1 2
3 4

)
, S2 =

⎛

⎜⎜⎝

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

⎞

⎟⎟⎠.

The Hilbert scanning matrix Hn is a permutation of Sn. For example, H0 = (
1

)
, H1 =

(
1 2
4 3

)
, H2 =

⎛

⎜⎜⎝

1 2 15 16
4 3 14 13
5 8 9 12
6 7 10 11

⎞

⎟⎟⎠, and so on. The position (i, j) of the Hilbert scanning matrix

Hn accommodates the pixel Hn(i, j) of the Start matrix Sn.
Along Hn, the Hilbert curve (see Fig. 2) and scramble images can be obtained (see

Fig. 3).

Fig. 2 Hilbert curve

Int J Theor Phys (2014) 53:2463–2484 2467

Fig. 3 The results of Hilbert image scrambling. The image size is 128 × 128, i.e., n = 7

2.2.2 Generation of Hilbert Scanning Matrix

According to 2.2.1, the Hilbert scanning matrix is important to the Hilbert image scram-
bling. Reference [28] gives a recursive generation algorithm for generating the Hilbert
scanning matrix. The algorithm uses several matrix operations. We first introduce them.

If A is a matrix, AT is the transpose of A, Aud is the up-down reversal of A, Alr is the
left-right reversal of A, App is the central rotation of A. That is to say, if

A =

⎛

⎜⎜⎜⎝

a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m
...

...
...

...

am,1 am,2 · · · am,m

⎞

⎟⎟⎟⎠ ,

then,

AT =

⎛

⎜⎜⎜⎝

a1,1 a2,1 · · · am,1
a1,2 a2,2 · · · am,2
...

...
...

...

a1,m a2,m · · · am,m

⎞

⎟⎟⎟⎠ , Alr =

⎛

⎜⎜⎜⎝

a1,m · · · a1,2 a1,1
a2,m · · · a2,2 a2,1
...

...
...

...

am,m · · · am,2 am,1

⎞

⎟⎟⎟⎠ ,

Aud =

⎛

⎜⎜⎜⎝

am,1 am,2 · · · am,m

...
...

...
...

a2,1 a2,2 · · · a2,m
a1,1 a1,2 · · · a1,m

⎞

⎟⎟⎟⎠ , App =

⎛

⎜⎜⎜⎝

am,m · · · am,2 am,1
...

...
...

...

a2,m · · · a2,2 a2,1
a1,m · · · a1,2 a1,1

⎞

⎟⎟⎟⎠ .

The recursive generation algorithm is cited with corrections from [28].

Hn+1 =

⎧
⎪⎪⎨

⎪⎪⎩

(
Hn 4nEn +HT

n

(4n+1 + 1)En −H ud
n (3 × 4n + 1)En − (H lr

n)
T

)
, n is even.

(
Hn (4n+1 + 1)En −H lr

n

4nEn +HT
n (3 × 4n + 1)En − (HT

n)
lr

)
, n is odd.

(1)

where, n is a positive integer, the initial matrix is H1 =
(

1 2
4 3

)
and En =

⎛

⎜⎜⎜⎝

1 1 · · · 1
1 1 · · · 1
...
...

...
...

1 1 · · · 1

⎞

⎟⎟⎟⎠.

2468 Int J Theor Phys (2014) 53:2463–2484

Fig. 4 Notations for quantum
gates

2.3 Quantum Gates used

In this paper, we need a number of basic quantum gates [3, 4] which are all unitary.

• NOT gate. This is a single qubit gate, which inverts the content of the qubit that it
operates upon.

• Controlled-NOT or C-NOT gate. It is a two-qubit gate and the content of the target
qubit is inverted if and only if the control qubit is 1.

• Swap gate. It is a two-qubit gate swapping two qubits.
• Toffoli gate. This is a controlled-CNOT gate, thus, making it a three-qubit gate com-

prising two controls and a single target qubit. The target qubit is inverted only if both
control qubits are 1.

• CSWAP gate (Fredkin gate). CSWAP gate is a 3-bit gate that performs a controlled
swap, comprising a control and two target qubits. The two target qubits are swapped
only if control qubit is 1.

• 01-NOT gate. This is a 01-controlled-CNOT gate, thus, making it a three-qubit gate
comprising two controls and a single target qubit. The target qubit is inverted only if a
control qubit is 1 and the other control qubit is 0.

The notation for these quantum gates are shown in Fig. 4.

Int J Theor Phys (2014) 53:2463–2484 2469

3 The Modified Recursive Generation Algorithm for Hilbert Scanning Matrix

Equation (1), which gives the generation algorithm of Hilbert scanning Matrix, needs to be
modified because we find out that it is difficult to give the quantum circuits according to it
directly.

3.1 Properties of Matrix Transformations

The modifications are based on the theorem and the lemmas proposed in this section.

Theorem 1 Assume that A,B,C,D are four m×m matrixes, then

1. (A+ B)pp = App + Bpp;

2. (A+ B)lr = Alr + B lr;

3. (A+ B)ud = Aud + Bud;

4.

(
A B

C D

)lr

=
(
B lr Alr

Dlr C lr

)
;

5.

(
A B

C D

)ud

=
(
Cud Dud

Aud Bud

)
;

6.

(
A B

C D

)pp

=
(
Dpp Cpp

Bpp App

)
;

7.
(
AT

)ud = (
Alr

)T
;

8. Aud = [(AT)lr]T;

9. (Aud)pp = (App)ud = Alr, (Alr)pp = (App)lr = Aud

where, m is a positive integer.

Proof Omitted.

Lemma 1 If n is an even number and n > 0,

Hn +H lr
n = (4n + 1)En.

Proof Use mathematical induction.

(1) When n = 2, H2 =

⎛

⎜⎜⎝

1 2 15 16
4 3 14 13
5 8 9 12
6 7 10 11

⎞

⎟⎟⎠, obviously H2 +H lr
2 = (42 + 1)E2.

(2) Assume that when n = k, Hk + H lr
k = (4k + 1)Ek , where k is an even number.

According to (1), we have

Hk+1 =
(

Hk 4kEk +HT
k

(4k+1 + 1)Ek −H ud
k (3 × 4k + 1)Ek − (H lr

k)
T

)

2470 Int J Theor Phys (2014) 53:2463–2484

Hk+2 =
(

Hk+1 (4k+2 + 1)Ek+1 −H lr
k+1

4k+1Ek+1 +HT
k+1 (3 × 4k + 1)Ek+1 −

(
HT

k+1

)lr

)

Then, introducing Hk+1 into Hk+2 and according to Theorem 1, we have

Hk+2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

Hk 4kEk +HT
k (15 × 4k + 1)Ek −

(
HT

k

)lr
(16 × 4k + 1)Ek −H lr

k

(4k+1 + 1)Ek −H ud
k (3 × 4k + 1)Ek −

(
H lr

k

)T
13 × 4kEk −

[(
H lr

k

)T
]lr

12 × 4kEk +
(
H ud

k

)lr

4k+1Ek −HT
k (8 × 4k + 1)Ek −

(
H ud

k

)T
8 × 4kEk +

[(
H ud

k

)T
]lr

(12 × 4k + 1)Ek −
(
HT

k

)lr

(11 × 4k + 1)Ek −Hk 9 × 4kEk +H lr
k (7 × 4k + 1)Ek −Hk 5 × 4kEk +H lr

k

⎞

⎟⎟⎟⎟⎟⎟⎠

H lr
k+2 =

⎛

⎜⎜⎜⎜⎜⎝

(16 × 4k + 1)Ek −Hk (15 × 4k + 1)Ek −HT
k 4kEk + (HT

k)
lr HT

k

12 × 4kEk +H ud
k 13 × 4kEk − (H lr

k)
T (3 × 4k + 1)Ek − [(H lr

k)
T]lr (4k+1 + 1)Ek − (H ud

k)lr

(12 × 4k + 1)Ek −HT
k 8 × 4kEk + (H ud

k)T (8 × 4k + 1)Ek − [(H ud
k)T]lr 4k+1Ek − (HT

k)
lr

5 × 4kEk +Hk (7 × 4k + 1)Ek −H lr
k 9 × 4kEk +Hk (11 × 4k + 1)Ek −H lr

k

⎞

⎟⎟⎟⎟⎟⎠

Obviously Hk+2 +H lr
k+2 = (4k+2 + 1)Ek+2.

(3) Based on the above two points, Lemma 1 holds.

Lemma 2 If n is an odd number and n > 0,

Hn +H ud
n = (4n + 1)En.

Proof Use mathematical induction.

(1) When n = 1, H1 =
(

1 2
4 3

)
, obviously H1 +H ud

1 = (41 + 1)E1.

(2) Assume that when n = k, Hk + H ud
k = (4k + 1)Ek, where k is an odd number.

According to (1),

Hk+1 =
(

Hk (4k+1 + 1)Ek +H lr
k

4kEk −HT
k (3 × 4k + 1)Ek −

(
HT

k

)lr

)

Hk+2 =
(

Hk+1 4k+1Ek+1 +HT
k+1

(4k+2 + 1)Ek+1 −H ud
k+1 (3 × 4k+1 + 1)Ek+1 −

(
H lr

k+1

)T

)

Then, introducing Hk+1 into Hk+2 and according to Theorem 1,

Hk+2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

Hk (4k+1 + 1)Ek +H lr
k 4k+1Ek +H T

k 5 × 4kEk + Hk

4kEk + H T
k (3 × 4k + 1)Ek −

(
H T

k

)lr
(8 × 4k + 1)Ek −

(
H lr

k

)T
(7 × 4k + 1)Ek −

[(
H T

k

)lr
]T

(15 × 4k + 1)Ek −
(
H T

k

)ud
13 × 4kEk +

[(
H T

k

)lr
]ud

8 × 4kEk +H T
k 9 × 4kEk + Hk

(16 × 4k + 1)Ek −H ud
k 12 × 4kEk +

(
H lr

k

)ud
(12 × 4k + 1)Ek −

(
H lr

k

)T
(11 × 4k + 1)Ek −

[(
H T

k

)lr
]T

⎞

⎟⎟⎟⎟⎟⎟⎠

H ud
k+2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(16 × 4k + 1)Ek −Hk 12 × 4kEk +H lr
k (12 × 4k + 1)Ek −

[(
H lr

k

)T
]ud

(11 × 4k + 1)Ek −
([(

HT
k

)lr
]T

)ud

(15 × 4k + 1)Ek −HT
k 13 × 4kEk +

(
HT

k

)lr
8 × 4kEk +

(
HT

k

)ud
9 × 4kEk +H ud

k

4kEk +
(
HT

k

)ud
(3 × 4k + 1)Ek −

[(
HT

k

)lr
]ud

8 × 4kEk +HT
k (7 × 4k + 1)Ek −

([(
HT

k

)lr
]T

)ud

H ud
k (4k+1 + 1)Ek +

(
H lr

k

)ud
4k+1Ek +

(
HT

k

)ud
5 × 4kEk +H ud

k

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Int J Theor Phys (2014) 53:2463–2484 2471

Then,

Hk+2+H ud
k+2 = (4k+2+1)Ek+2+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 HT
k −

[(
H lr

k

)T
]ud

Hk −
([(

HT
k

)lr
]T

)ud

0 0
(
HT

k

)ud − (
H lr

k

)T
H ud

k −
[(
HT

k

)lr
]T

0 0 HT
k −

[(
H lr

k

)T
]ud

Hk −
([(

HT
k

)lr
]T

)ud

0 0
(
HT

k

)ud − (
H lr

k

)T
H ud

k −
[(
HT

k

)lr
]T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

According to Theorem 1,

(
HT

k

)ud =
(
H lr

k

)T ⇔
(
HT

k

)ud −
(
H lr

k

)T = 0 ⇔ HT
k −

[(
H lr

k

)T
]ud

= 0

and

H ud
k =

[(
HT

k

)lr
]T

⇔ H ud
k −

[(
HT

k

)lr
]T

= 0 ⇔ Hk −
{[(

HT
k

)lr
]T

}ud

= 0

Hence, Hk+2 +H ud
k+2 = (4k+2 + 1)Ek+2.

(3) Based on the above two points, Lemma 2 holds.

3.2 The Modified Recursive Algorithm for Generating Hilbert Scanning Matrix

In order to realize the Hilbert image scrambling in quantum computer, the recursive
generation algorithm was modified for the Hilbert scanning matrix, i.e., (1).

Theorem 2

Hn+1 =

⎧
⎪⎪⎨

⎪⎪⎩

(
Hn (Hn + 4nEn)

T

(Hn + 3 × 4nEn)
pp (Hn + 2 × 4nEn)

T

)
, n is even.

(
Hn (Hn + 3 × 4nEn)

pp

(Hn + 4nEn)
T (Hn + 2 × 4nEn)

T

)
, n is odd.

(2)

where, n is a positive integer, the initial matrix is H1 =
(

1 2
4 3

)
and En =

⎛

⎜⎜⎜⎝

1 1 · · · 1
1 1 · · · 1
...
...

...
...

1 1 · · · 1

⎞

⎟⎟⎟⎠.

2472 Int J Theor Phys (2014) 53:2463–2484

Proof What needs to do is to prove that (1) and (2) are equivalent. Note that, (1) or (2) and
no matter n is even or odd, Hn+1 is divided into 4 parts; the 4 parts in (2) are equal to the 4
parts in (1) needs to be proven.

(1) When n is an even number, the following 4 issues needs to be proven:

(i) Hn = Hn

(ii) 4nEn +HT
n = (Hn + 4nEn)

T

(iii) (4n+1 + 1)En −H ud
n = (Hn + 3 × 4nEn)

pp

(iv) (3 × 4n + 1)En −
(
H lr

n

)T = (Hn + 2 × 4nEn)
T

For (i) and (ii)
They are obviously correct.

For (iii)
According to Lemma 1 and Theorem 1,

Hn +H lr
n = (4n + 1)En

⇒
(
Hn +H lr

n

)pp = H
pp
n +H ud

n = [
(4n + 1)En

]pp = (4n + 1)En

⇒ (4n + 1)En −H ud
n = H

pp
n

⇒ (4n + 1)En −H ud
n + 3 × 4nEn = H

pp
n + 3 × 4nEn

⇒ (4n+1 + 1)En −H ud
n = (

Hn + 3 × 4nEn

)pp

For (iv)
According to Lemma 1 and Theorem 1,

Hn +H lr
n = (4n + 1)En

⇒
(
Hn +H lr

n

)T = HT
n +

(
H lr

n

)T = [
(4n + 1)En

]T = (4n + 1)En

⇒ (4n + 1)En −
(
H lr

n

)T = HT
n

⇒ (4n + 1)En −
(
H lr

n

)T + 2 × 4nEn = HT
n + 2 × 4nEn

⇒ (3 × 4n + 1)En −
(
H lr

n

)T = (
Hn + 2 × 4nEn

)T

Hence, when n is an even number,

Hn+1 =
(

Hn (Hn + 4nEn)
T

(Hn + 3 × 4nEn)
pp (Hn + 2 × 4nEn)

T

)

Int J Theor Phys (2014) 53:2463–2484 2473

(2) When n is an odd number, the following 4 issues needs to be proven:

(i) Hn = Hn

(ii) (4n+1 + 1)En −H lr
n = (Hn + 3 × 4nEn)

pp

(iii) 4nEn +HT
n = (Hn + 4nEn)

T

(iv) (3 × 4n + 1)En −
(
HT

n

)lr = (Hn + 2 × 4nEn)
T

For (i) and (iii)
They are obviously correct.

For (ii)
According to Lemma 2 and Theorem 1,

Hn +H ud
n = (4n + 1)En

⇒
(
Hn +H ud

n

)pp = H
pp
n +H lr

n = [
(4n + 1)En

]pp = (4n + 1)En

⇒ (4n + 1)En −H lr
n = H

pp
n

⇒ (4n + 1)En −H lr
n + 3 × 4nEn = H

pp
n + 3 × 4nEn

⇒ (4n+1 + 1)En −H lr
n = (

Hn + 3 × 4nEn

)pp

For (iv)
According to Lemma 2 and Theorem 1,

Hn +H ud
n = (4n + 1)En

⇒
(
Hn +H ud

n

)T = HT
n +

(
HT

n

)lr = [
(4n + 1)En

]T = (4n + 1)En

⇒ (4n + 1)En −
(
HT

n

)lr = HT
n

⇒ (4n + 1)En −
(
HT

n

)lr + 2 × 4nEn = HT
n + 2 × 4nEn

⇒ (3 × 4n + 1)En −
(
HT

n

)lr = (
Hn + 2 × 4nEn

)T

Hence, when n is an odd number,

Hn+1 =
(

Hn (Hn + 3 × 4nEn)
pp

(Hn + 4nEn)
T (Hn + 2 × 4nEn)

T

)

According to the above two points, Theorem 2 is proved.

In the following, the quantum Hilbert image scrambling is based on Theorem 2 (or (2)).

4 Quantum Circuits for Hilbert Image Scrambling

In this section, a quantum circuit will be given in order to scramble a quantum image. Its
input is the 2n×2n original quantum image and its output is the Hilbert scrambled quantum
image. The images are represented using FRQI.

2474 Int J Theor Phys (2014) 53:2463–2484

4.1 The Circuit Flow

According to (2), as n increases, the recursive generation algorithm can be divided into three
basic operations: initialization, odd and even. Being aware of the fact that even and odd are
carried out alternately. The process can be described in Fig. 5.

Accordingly, the quantum circuit can be composed of three basic circuits. We also call
them Initialization, Even and Odd.

However, the equation and the circuits have two key differences.

1. The result of (2) is the Hilbert scanning matrix Hn. It needs an extra step – put the
pixel (�(Hn(i, j)−1)/2n�, (Hn(i, j)−1)mod2n) of the original image into the position
(i, j) in the scrambled image – to scramble images. But in circuits, the output is the
scrambled image directly.

2. In (2), the size of the Hilbert scanning matrix Hn increases gradually: from 2 × 2 to
4×4, to 8×8, to 16×16 and so on. But in circuits, the sizes of the input image and the
output image are all 2n × 2n. We can not and should not change the size of the image
in the circuits.

The method to solve the first problem is to operate the image directly instead of the
Hilbert scanning matrix. The countermeasure to the second problem is to partition the image
into blocks and operate each block according to (2). Note that the partition operation needs
to be operated many times:

The 1st time it partition the image into 2n−1 × 2n−1 blocks sized 2 × 2;

Fig. 5 The recursive generation
algorithm flowchart

Int J Theor Phys (2014) 53:2463–2484 2475

Fig. 6 PARTITION(k)

The 2nd time it partition the image into 2n−2 × 2n−2 blocks sized 4 × 4;
The 3rd time it partition the image into 2n−3 × 2n−3 blocks sized 8 × 8;
· · · ;
The nth time it partition the image into 1 block sized 2n × 2n.

They correspond to the gradually increasing size of the Hilbert scanning matrix Hn.
Hence, the three basic circuits Initialization, Even and Odd are also compositive. We call

the three parts composing the three basic circuits as the three circuit modules.

4.2 The Three Circuit Modules

In this section, k is an integer and 0 ≤ k ≤ n− 1.

4.2.1 Module PARTITION(k)

The PARTITION(k) module can divide the 2n×2n input image into 2n−k−1×2n−k−1 blocks
sized 2k+1 × 2k+1.

The PARTITION(k) quantum circuit is

(1) Swap xk+1 and xk+2, xk+2 and xk+3, · · · , xn−2 and xn−1.
(2) Swap xn−1 and yk .

As shown in Fig. 6. Because we need not to change the pixels’ color, the inputs of the
circuit only include the location information |i〉 = |y〉|x〉 as shown in Section 2.1 (the same
as following circuits).

2476 Int J Theor Phys (2014) 53:2463–2484

Fig. 7 Two examples for PARTITION(k)

For example, assume n = 3, the input of PARTITION(k) is S3, the function of quantum
circuit PARTITION(0) and PARTITION(1) is shown in Fig. 7.

4.2.2 Module O(k)

Assume A, B, C, D are matrixes sized 2k−1 × 2k−1, the function of O(k) is that transform(
A B

C D

)
into

(
A Dpp

BT CT

)
which is similar to the form in (2) when n is odd number.

The O(k) (k is odd) quantum circuit is

(1) Swap xk and yk . Add a C-NOT Gate, and set xk as as control qubit, yk as target qubit.
(2) Add CSWAP Gates whose control qubit is yk to swap x0 and y0, x1 and y1, · · · , and

xk−1 and yk−1.
(3) Add 01-NOT Gates whose 0-control qubit is yk and 1-control qubit is xk to reverse

xk−1, xk−2, · · · , x0, yk−1, yk−2, · · · , y0.

Int J Theor Phys (2014) 53:2463–2484 2477

Fig. 8 O(k)

As shown in Fig. 8.
The result of every step is shown in Fig. 9.

4.2.3 Module E(k)

The function of E(k) is that transform

(
A B

C D

)
into

(
A BT

Dpp CT

)
which is similar to the

form in (2) when n is even number.
The E(k) (k is even) quantum circuit is

(1) Add a C-NOT Gate, and set yk as as control qubit, xk as target qubit.
(2) Add CSWAP Gates whose control qubit is xk to swap x0 and y0, x1 and y1, · · · , and

xk−1 and yk−1.
(3) Add 01-NOT Gates whose 0-control qubit is xk and 1-control qubit is yk to reverse

xk−1, xk−2, · · · , x0, yk−1, yk−2, · · · , y0.

As shown in Fig. 10.
The result of every step is shown in Fig. 11.
The unitarity of the three circuit modules roots in the unitarity of basic quantum gates

showed in Section 2.3.

4.3 The Three Basic Circuits

The three basic circuits Initialization, Odd and Even are composed of the three circuit
modules.

Fig. 9 The function of O(k)

2478 Int J Theor Phys (2014) 53:2463–2484

Fig. 10 E(k)

4.3.1 Initialization

The Initialization quantum circuit shown in Fig. 12 is used to generate the initial matrix

H1 =
(

1 2
4 3

)
as mentioned in Theorem 2. PARTITION(0) divides the 2n× 2n input image

into 2n−1 × 2n−1 blocks sized 2 × 2. Then, for each block

(
denoted as

(
a b

c d

))
, when

y0 = 1, x0 is reversed and c and d swaped. The initialized block

(
a b

d c

)
is corresponding

to the initial matrix H1 =
(

1 2
4 3

)
in Theorem 2.

4.3.2 Odd(k)

The Odd(k) (k is an odd number and 1 ≤ k ≤ n − 1) quantum circuit is shown in Fig. 13.
Note that when k = n, the PARTITION module disappears and Odd(k) becomes O(k).

The PARTITION(k) module divide the input image into blocks and the O(k) module

change every block into the form of

(
A Dpp

BT CT

)
respectively.

4.3.3 Even(k)

The Even(k) (k is an even number and 2 ≤ k ≤ n− 1) quantum circuit is shown in Fig. 14.
Note that when k = n, the PARTITION module disappears and Even(k) becomes E(k).

Fig. 11 The function of E(k)

Int J Theor Phys (2014) 53:2463–2484 2479

Fig. 12 The Initialization quantum circuit

The PARTITION(k) module divide the input image into blocks and the E(k) module

change every block into the form of

(
A BT

Dpp CT

)
respectively.

4.4 The Integrated Hilbert Image Scrambling Quantum Circuit

According to (2) and Fig. 5, the integrated Hilbert image scrambling quantum circuit is
shown in Fig. 15. The meaning of the final basic circuit Even(n− 1)/Odd(n− 1) is that if
n− 1 is an even number, the final basic circuit is Even(n− 1); otherwise, it is Odd(n− 1).

Fig. 13 The Odd(k) quantum
circuit

2480 Int J Theor Phys (2014) 53:2463–2484

Fig. 14 The Even(k) quantum
circuit

4.5 The Inverse Circuit

Because the quantum gates are unitary and no information is lost, the integrated Hilbert
image scrambling quantum circuit is unitary. If we reverse the action of it (i.e., if we apply
each gate of the circuit in the reversed order) with the scrambled image as input, the output
will produce the rebuild image.

4.6 A Simple Example

Assume that n = 3, the Hilbert image-scrambling circuit is shown in Fig. 16.

Fig. 15 The integrated Hilbert image scrambling quantum circuit

Int J Theor Phys (2014) 53:2463–2484 2481

Fig. 16 The quantum circuits for the simple example

The image has 23 × 23 = 64 pixels. If the pixel values of the original image are
“1, 2, 3, · · · , 63, 64”, the image processing procedure can be shown in Fig. 17. PARTI-

TION(0) blocks the image into 2× 2 subimages which is

(
i i + 1

i + 2 i + 3

)
. The C-NOT gate

swaps the last two pixel of every subimage. PARTITION(1) blocks the image into 4 × 4
subimages. O(1) and E(2) complete the scrambling.

If we input the scrambled image from the right of the circuit shown in Fig. 16, the original
image will be got from the left.

5 Circuit Complexity

The network complexity depends very much on what is considered to be an elementary gate.
In this section, we choose the Control-NOT to be our basic unit, then the Swap gate can
be simulated by 3 Control-NOT gates, the Toffoli gate can be simulated by 6 Control-NOT
gates, the CSWAP gate can be simulated by 18 Control-NOT gates, and the 01-NOT gate
can be simulated by 8 Control-NOT gates [1].

According to Figs. 6, 8, and 10, the numbers of elementary gates in PARTITION(k) is
3 × (n − k − 1) = 3n− 3k − 3, O(k) is 3 + 1 + 18 × k + 8 × 2k = 34k + 4, and E(k) is
1 + 18 × k + 8 × 2k = 34k + 1 respectively.

Consequently, according to Figs. 12–14, the complexity of Initialization is (3n − 3) +
1 = 3n − 2, Odd(k) is (3n − 3k − 3) + (34k + 4) = 3n + 31k + 1, and Even(k) is
(3n− 3k − 3)+ (34k + 1) = 3n+ 31k − 2.

2482 Int J Theor Phys (2014) 53:2463–2484

Fig. 17 The image processing procedure for the simple example

Int J Theor Phys (2014) 53:2463–2484 2483

Therefore, according to Fig. 15, the whole circuit complexity is (3n−2)+∑
k is odd(3n+

31k + 1)+ ∑
k is even(3n+ 31k − 2) ≈ 18n2 + 18n− 2. It scales squarely with the size of

the circuit’s input n.

6 Conclusion

A Hilbert image scrambling strategy for quantum images is proposed in this paper. The
scheme was based on the modified recursive generation algorithm for Hilbert scanning
matrix in order to transform images into Hilbert scrambled version by quantum circuits. The
circuits can be divided into three basic circuits: Initialization, Odd and Even. The realization
of them in quantum computers can promote QIP. The complexity of the networks is square.

Acknowledgments This work is supported by the Beijing Municipal Education Commission Science and
Technology Development Plan under Grants No. KM201310005021, KZ201210005007, the Fundamental
Research Funds for the Central Universities under Grants No. 2012JBM041, and the Graduate Technology
Fund of BJUT under Grants No. YKJ-2013-10282.

References

1. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev.
A 54(1), 147–153 (1996)

2. Feynman, R.: Quantum mechanical computers. Found. Phys. 16(6), 507–531 (1986)
3. Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University

Press, Cambridge (2000)
4. Williams, C.: Explorations in quantum computing. In: Texts in Computer Science (2011)
5. Caraiman, S., Manta, V.: Image processing using quantum computing. In: International Conference on

16th System Theory, Control and Computing (ICSTCC), pp. 1–6 (2012)
6. Beach, G., Lomont, C., Cohen, C.: Quantum image processing (QuIP). In: 32nd Applied Imagery Pattern

Recognition Workshop, pp. 39–44 (2003)
7. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum system. J. Quantum. Inf.

Process. 9(1), 1–11 (2010)
8. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics.

In: Proceedings of the SPIE Conference on Quantum Information and Computation, pp. 137–147 (2003)
9. Latorre, J.I.: Image Compression and Entanglement. (2005). arXiv:quantph/0510031

10. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation,
image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

11. Zhang, Y., Lu, K., Gao, Y.-H., Wang, M.: NEQR: a novel enhanced quantum representation of digital
images. Quantum Inf. Process. 12(12), 2833–2860 (2013)

12. Fijany, A., Williams, C.: Quantum Wavelet Transform: Fast Algorithm and Complete Circuits (1998).
arXiv:quant-ph/9809004

13. Klappenecker, A., Roetteler, M.: Discrete cosine transforms on quantum computers. In: IEEER8-
EURASIP Symposium on Image and Signal Processing and Analysis (ISPA01), pp. 464–468. Pula
(2001)

14. Tseng, C., Hwang, T.: Quantum circuit design of 8 × 8 discrete cosine transforms using its fast
computation flow graph. In: IEEE International Symposium on Circuits and Systems, pp. 828–831
(2005)

15. Lomont, C.: Quantum Convolution and Quantum Correlation Algorithms are Physically Impossible
(2003). arXiv:quant-ph/0309070

16. Zhang, W.-W., Gao, F., Liu, B., et al.: A watermark strategy for quantum images based on quantum
Fourier transform. Quantum Inf. Process. 12(4), 793–803 (2013)

17. Weiwei, Z., Fei, G., Bing, L., et al.: A quantum watermark protocol. Int. J. Theor. Phys. 52, 504–513
(2013)

18. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based
on restricted geometric transformations. Inf. Sci. 186, 126–149 (2012)

http://arXiv.org/abs/quantph/0510031
http://arXiv.org/abs/quant-ph/9809004
http://arXiv.org/abs/quant-ph/0309070

2484 Int J Theor Phys (2014) 53:2463–2484

19. Hu, M.-Y., Tian, X.-L., Xia, S.-W., et al.: Image scrambling based on 3-D Hilbert curve. In: 3rd
International Congress on Image and Signal Processing, vol. 1, pp. 147–149 (2010)

20. Guo, J.-M., Yang, Y., Wang, N.: Chaos-based gray image watermarking algorithm. In: International
Conference on Uncertainty Reasoning and Knowledge Engineering, vol.1, pp. 158–160 (2011)

21. Lien, B.K.: Robust data hiding by Hilbert curve decomposition. In: IEEE Intelligent Information Hiding
and Multimedia Signal Processing, pp. 937–940 (2009)

22. Sun Y.-Y., Kong R.-Q., Wang X.-Y.: An image encryption algorithm utilizing Mandelbrot set. In:
International Workshop on Chaos-Fractal Theory and Its Applications, pp. 170–173 (2010)

23. Moreno, J., Otazu, X.: Image compression algorithm based on Hilbert scanning of embedded quadtrees:
an introduction of the hi-set coder. In: IEEE International Conference on Multimedia and Expo, pp. 1–6
(2011)

24. Lin, X.-H., Cai, L.-D.: Scrambling research of digital image based on Hilbert curve. Chinese J.
Stereology Image Anal. 9(4), 224–227 (2004)

25. Shang, Z., Ren, H., Zhang, J.: A block location scrambling algorithm of digital image based on Arnold
transformation. In: 9th International Conference for Young Computer Scientists, pp. 2942–2947 (2008)

26. Zou, W.-G., Huang, J.-Y., Zhou C.-Y.: Digital image scrambling technology based on two dimension
Fibonacci transformation and its periodicity. In: 3rd International Symposium on Information Science
and Engineering, pp. 415–418 (2010)

27. Wen M.-G., Huang S.-C., Han C.-C.: An information hiding scheme using magic squares. In: IEEE Inter-
national Conference on Broadband, Wireless Computing, Communication and Applications, pp. 556–
560 (2010)

28. Wang, S., Xu, X.-S.: A new algorithm of Hilbert scanning matrix and its MATLAB program. J. Image
Graph. 11(1), 119–122 (2006)

29. Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Fast geometric transformation on quantum images.
IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)

30. Jiang, N., Wu, W.-Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling.
Quantum Inf. Process. accepted.

31. Peano, G.: Sur une courbe, qui remplit toute une aire plane. Math. Ann. 36(1), 157–160 (1890)
32. Hilbert, D.: Ueber die stetige Abbildung einer Linie auf ein Flächenstück. Math. Ann. 38(3), 459–460

(1891)
33. Kamata, S., Eason, R.O., Bandou, Y.: A new algorithm for N -dimensional Hilbert scanning. IEEE Trans.

Image Process. 8(7), 964–973 (1999)

	Quantum Hilbert Image Scrambling
	Abstract
	Introduction
	Preliminaries
	The Flexible Representation for Quantum Images (FRQI)
	Hilbert Image Scrambling
	Hilbert Scanning Matrix and Hilbert Curve
	Generation of Hilbert Scanning Matrix

	Quantum Gates used

	The Modified Recursive Generation Algorithm for Hilbert Scanning Matrix
	Properties of Matrix Transformations
	The Modified Recursive Algorithm for Generating Hilbert Scanning Matrix

	Quantum Circuits for Hilbert Image Scrambling
	The Circuit Flow
	The Three Circuit Modules
	Module PARTITION(k)
	Module O(k)
	Module E(k)

	The Three Basic Circuits
	Initialization
	Odd(k)
	Even(k)

	The Integrated Hilbert Image Scrambling Quantum Circuit
	The Inverse Circuit
	A Simple Example

	Circuit Complexity
	Conclusion
	Acknowledgments
	References

