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Abstract We have studied the dynamics of a cylindrical column of anisotropic, charged
fluid which is experiencing dissipation in the form of heat flow, free-streaming radiation,
and shearing viscosity, undergoing gravitational collapse. We calculate the Einstein-
Maxwell field equations and, using the Darmois junction conditions, match the interior
non-static cylindrically symmetric space-time with the exterior anisotropic, charged, cylin-
drically symmetric space-time. The behavior of the density, pressure and luminosity of the
collapsing matter has been analyzed. From the dynamical equations, the effect of charge
and dissipative quantities over the cylindrical collapse are studied. Finally, we have derived
the solutions for the collapsing matter which is valid during the later stages of collapse and
have discussed the significance from a physical standpoint.

Keywords Gravitational collapse · Cylindrical symmetry · Electromagnetic field ·
Dissipation · Junction conditions · Dynamical equations · Solutions

1 Introduction

Gravitational collapse with realistic astronomical matter distribution is an important prob-
lem in relativistic gravity and astrophysics [1–3]. Over the years, there has been an extensive
study of collapse of dust and fluids under gravity starting from the works of Chandrasekhar,
Zwicky, Oppenheimer and Snyder [4–9]. Vaidya [10–13] studied the external gravitational
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field of a stellar body giving out radiations. Misner and Sharp [14, 15] studied spherically
symmetric collapse. Others [16–25] studied different cases of spherically symmetric fluids
undergoing collapse.

Although classical considerations rule out the existence of physical objects with large
amounts of charge, yet there are mechanisms which give rise to huge amount of electric
charge in objects collapsing under the effect of self gravity. Rosseland [26] indicated that
in the stellar ensemble the atoms are strongly ionized and since the forces between the free
particles should follow the inverse square law, it should be of higher order of magnitude
than the residual forces acting between neutral atoms. For a star with 1.5 times solar mass
and mean molecular weight 2.8, the effect of electrical forces is substantial if the star is built
of heavy elements. Eddington [27] showed that a star has an internal electric field for which
the electric potential φ depends on the gravitational potential ψ , the mass mp and charge e

of a proton, and a scalar parameter α which in turn depends on the density ni of the ions,
atomic weight Ai of the ions, and the effective charge eZi .

Raychaudhuri and De [28] considered the Einstein-Maxwell equations for a charged dust
without imposing any special symmetry restrictions. If the magnetic field vanishes, the elec-
tric flux through any element of area bounded by particles of the dust is a constant of motion,
the vorticity and electric field being orthogonal. For irrotational motion in the absence of
magnetic fields, the electric field vector is orthogonal to the surfaces with constant values
of ε/ρ. They showed the impossibility of isotropic expansion and that for a charged dust
in irrotational motion in absence of magnetic fields, the expansion (or contraction) cannot
be shear-free. Further, the electric field and along with it the charge density would vanish if
the spatial expansion were shear-free and non-vanishing. Olson and Bailyn [29] considered
stars with central mass densities larger than those reasonable for a white dwarf and found
that the deviations from the Chandrasekhar model were large. They found that the charge-
to-mass ratio of the star was directly proportional to the average mass density. For large
central mass densities, the central charge density increased and eventually produced large
internal electric fields.

Bally and Harrison [30] showed that for a star of total charge Q and mass M , the charge-
to-mass ratio is given by Q/M = Gαmp/e and with α ∼ 1, Q/M of the order of 100
coulombs per solar mass. The positive charge within a star is not automatically screened by
a negatively charged atmosphere. The scale length L always exceeds the Debye length λD
in stellar atmospheres and the interstellar medium, and both are therefore positively charged
and have approximately the same ratio of charge and mass densities as stars. The Debye
length λD depends on the electron density ne in a gas of temperature T . Thus an entire
galaxy can be positively charged. Even elliptical galaxies have a size that is large compared
with the Debye length of their interstellar media. Oliveira and Santos [31] have studied
the junction conditions of a collapsing non-adiabatic charged body producing radiation and
have observed important physical consequence due to the presence of charge. It is possible
that very high electric fields may exist in strange stars with quark matter [32, 33] under
equilibrium configurations. However these do not apply to phases of intense dynamical
activity with time scales of the order of (or smaller than) the hydrostatic time scale, and for
which the quasistatic approximation is not reliable (e.g. the collapse of very massive stars
or the quick collapse phase preceding neutron star formation).

Gravitational collapse is known to be a highly dissipative phenomenon [34–37]. The
evolution of massive stars is characterized by dissipation due to the emission of photons
or neutrinos, or both. The diffusion approximation is based on the assumption that the
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energy flux of radiation, is proportional to the gradient of temperature. During the process
of emission, the radiative transport is closer to the diffusion approximation and not to the
free-streaming limit. But there are many other situations in which the mean free paths of
particles transporting the energy are so large that the free-streaming approximation is the
viable choice. Hence in a realistic model of collapse we need to consider radiative transport
with both diffusion and free streaming. The study of the collapse of a strongly elongated
axisymmetric body is important since such type of collapse could occur in a real astro-
physical situations. Moreover, according to numerical simulations [38, 39], it is a possible
candidate for the violation of the cosmic censorship conjecture [40], and it gives insight
into the hoop conjecture [41]. A realistic model of collapse should also include radial
heat flux.

The study of non-spherical gravitational collapse has gained in momentum following the
discovery of cylindrical and plane gravitational waves. Cylindrical gravitational waves were
first studied by Einstein and Rosen [42–44]. Thorne [45] proposed a definition of energy for
systems invariant under rotations about and translations along a symmetry axis. This is the
“cylindrical energy” or “C energy” which obeys the conservation law and is locally mea-
surable. The unique static universe of Melvin [46, 47] gives an absolute minimum of the C
energy contained inside any cylinder. The C energy is also used to demonstrate the resis-
tance of magnetic field lines to cylindrical gravitational collapse. Chiba [48] studied the
case of cylindrical dust collapse. Others [49–53] investigated various aspects of cylindrical
collapse of counter rotating dust and rotating cylindrical shells. Hayward studied gravita-
tional waves, black holes and cosmic strings in cylindrical symmetry [54]. Considering the
most general vacuum cylindrical spacetimes, Goncalves [55] presented a formal deriva-
tion of Thorne’s C-energy, based on a Hamiltonian reduction approach. For the cylindrical
collapse of counter-rotating dust, Goncalves and Jhingan [50] showed that generic regular
initial data could be specified for which there were no trapped surfaces in the spacetime,
and a line-like singularity was inevitably developed. Di Prisco et al. [25] studied nonadi-
abatic charged, dissipative, spherically symmetric gravitational collapse with shear. They
[56] also studied shear-free cylindrical gravitational collapse for an interior non-rotating
fluid with anisotropic pressures and exterior vacuum Einstein-Rosen spacetime. The case
of the collapse of a heat conducting charged anisotropic fluid cylinder have been studied by
Sharif and Abbas [57] and that of a charged fluid cylinder with shear viscosity by Sharif
and Fatima [58].

In this work, we have have examined the effect of charge, heat flow, radiation and
shear viscosity on the gravitational collapse of a cylindrical column of fluid, which is
locally anisotropic. Local anisotropy is relevant for the description of relativistic compact
objects and viscous effects are important in the formation of neutron stars. The result of
Raychaudhuri and De, that the shear cannot vanish in the evolution of irrotational charged
dust, underlies the importance of shear in the collapse of charged fluids. After describing
the gravitational source along with the corresponding physical parameters like the expan-
sion scalar, acceleration, shear tensor and the Einstein-Maxwell field equations in the next
section, we discuss the junction conditions for the exterior Vaidya metric in presence of
charge in the retarded time coordinate in Section 3. Subsequently the dynamical equations
and the solutions in presence of shear are derived in Section 4. The summary of this whole
exercise is presented in Section 5.
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2 The Interior Metric and the Field Equations

We consider a collapsing cylinder filled with an anisotropic, charged fluid and undergo-
ing dissipation in the form of heat flow, free-streaming radiation, and shearing viscosity,
bounded by a timelike cylindrical three-surface �, which divides the space-time into two
distinct 4-dimensional manifolds V + and V−.

2.1 The Interior Spacetime

For the interior V − space-time we take the general non-static cylindrically symmetric metric
in the comoving coordinates given by [58]

ds2− = −A2(t, r)dt2 + B2(t, r)dr2 + C2(t, r)(dθ2 + dz2) (1)

In order to represent cylindrical symmetry, the range of coordinates is required to be as
follows:

−∞ < t < +∞, 0 ≤ r < +∞,

0 ≤ θ ≤ 2π, −∞ < z < +∞,

with the coordinate labels, x0 = t, x1 = r, x2 = θ and x3 = z. The interior energy-
momentum tensor is given, according to relativistic hydrodynamics, as

Tαβ = (μ+P⊥)VαVβ +P⊥gαβ + (Pr −P⊥)χαχβ +Vαqβ +Vβqα + εlαlβ − 2ησαβ, (2)

where, μ → energy density, P⊥ → tangential pressure, Pr → radial pressure, qα → heat
flux, ε → the radiation density, V α → 4-velocity of the fluid, χα → unit 4-velocity in
the radial direction, lα → a null 4-vector and η → coefficient of shearing viscosity > 0
respectively.

The shear tensor σαβ , the 4-acceleration aα and the expansion � are defined as

σαβ = 1

2

(
(Vα;β + Vβ;α)+ (aαVβ + aβVα)

) − 1

3
�(gαβ + VαVβ), (3)

aα = Vα;βV β, (4)

and
� = V α

;α. (5)

Since we have assumed comoving coordinates for the interior metric, we have

V α = A−1δα0 , χα = B−1δα1 , lα = A−1δα0 + B−1δα1 , qα = B−1qδα1 , (6)

such that

V αVα = −1, χαχα = 1, χαVα = 0, qαVα = 0, lαVα = −1, lαlα = 0. (7)

In view of the (4), (5) and (6), we obtain the acceleration and the expansion scalar as
follows:

aα = A′

A
δ1
α, (8)

� = 1

A

(
Ḃ

B
+ 2

Ċ

C

)
. (9)

Using (3) to (6), we obtain the non-zero components of the shear tensor as

σ11 = 2√
3
B2σ, σ22 = σ33 = − 1√

3
C2σ. (10)
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The shear scalar σ defined by

σ 2 = 1

2
σijσ

ij (11)

is therefore obtained as

σ = 1√
3A

(
Ḃ

B
− Ċ

C

)
. (12)

As defined by Chiba [48], a cylindrically symmetric spacetime may be defined locally by
the existence of two commuting, spacelike, Killing vectors, such that the orthogonal space is
integrable. For such a spacetime, there exist coordinates (θ, z) such that the Killing vectors
are (ξθ , ξz) = (∂/∂θ, ∂/∂z). The existence of cylindrical symmetry about an axis implies
that the orbits of one of these vectors are closed but those of the other is open. Each of these
Killing vectors must be hypersurface orthogonal. The norms of these Killing vectors are
invariants [59], namely the circumferential radius

ζ =
√
ξθ · ξ �θ =

√
ξ(2)aξ

a
(2),

and the specific length

� =
√
ξz · ξ �z =

√
ξ(3)aξ

a
(3)

with ξ(2) = ∂θ , ξ(3) = ∂z, under the sign convention that spatial metrics are positive defi-
nite, the dot representing contraction and the flat � represents the covariant dual with respect
to the space-time metric. The gravitational energy per specific length in a cylindrically sym-
metric system (also known as C-energy) as defined by Thorne [45] and modified by him to
render it finite in space-time, is given by

E = 1

8
(1 − l−2∇a r̃∇a r̃), (13)

for which

r̃ = ζ l,

where the areal radius is r̃ and E is the gravitational energy per unit specific length of the
cylinder.

Analogous to the Misner and Sharp energy for spherical symmetry [60, 61], the specific
energy of the cylinder due to the electromagnetic field is therefore given by

E′ = l

8
+ C

2

(
Ċ2

A2
− C ′2

B2

)

+ s2

2C
. (14)

2.2 Electromagnetic Energy Tensor and Maxwell’s Equations

The electromagnetic energy-momentum tensor for the charged fluid is given by

T
(em)
αβ = 1

4π

(
Fγ
α Fβγ − 1

4
FγδFγ δgαβ

)
. (15)

and the corresponding Maxwell’s equations are

Fαβ = ψβ,α − ψα,β, (16)

Fαβ ;β = 4πJα, (17)

where Fαβ is the electromagnetic field tensor, ψα is the corresponding four potential and Jα
is the four current density vector. Since the charge is comoving with the fluid, the charge
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per unit length of the cylinder is at rest with respect to the fluid and there is no magnetic
field, so that the four current density is proportional to the four velocity i.e. we have

ψα = ψδ0
α = ψ(t, r)(1,0, 0, 0), J α = ρV α, (18)

where ψ(t, r) is an arbitrary function and ρ(t, r) is the charge density. So the only non-zero
component of the electromagnetic field tensor is

F01 = −F10 = −∂ψ

∂r
. (19)

Thus from the Maxwell’s equations we obtain

ψ ′′ −
(
A′

A
+ B ′

B
− 2

C ′

C

)
ψ ′ = 4πρAB2, (20)

ψ̇ ′ −
(
Ȧ

A
+ Ḃ

B
− 2

Ċ

C

)
ψ ′ = 0, (21)

where the first equation is for α = 0 and the second is for α = 1. Here the dot and the
prime represent the partial derivatives with respect to t and r respectively. Integrating (20)
we obtain

ψ ′ = 2sAB

C2
, (22)

where

s(r) = 2π
∫ r

0
ρBC2dr (23)

is the total charge distributed per unit length of the cylinder. Equation (22) is in conformity
with the law of conservation of charge and satisfies (21).

2.3 The Field Equations

We now find the field equations for this distribution of fluid. The Einstein field equations
for the interior metric can be written as

G−
αβ = 8π

(
T −
αβ + T

(em)−
αβ

)
(24)

where G−
αβ is the Einstein tensor for the interior metric. There are five non-zero components

of (24) for the metric (1) with energy-momentum tensor (2), which are

G−
00 = 8π

(
T −

00 + T
(em)−
00

)

i.e.

8π(μ+ ε)A2 + 4s2A2

C4
= Ċ

C

(
2
Ḃ

B
+ Ċ

C

)
+

(
A

B

)2 (
−2

C ′′

C
+ C ′

C

(
2
B ′

B
− C ′

C

))
. (25)

Similarly,

G−
01 = 8π

(
T −

01 + T
(em)−
01

)
,

which yields

8π(q + ε)AB = 2

(
Ċ ′
C

− ḂC ′

BC
− ĊA′

CA

)

. (26)



2338 Int J Theor Phys (2014) 53:2332–2348

The remaining equations are

G−
11 = 8π(T −

11 + T
(em)−
11 )

= 8π

(
Pr + ε − 4√

3
ησ

)
B2 − 4s2B2

C4
= 8π(Preff + ε)B2 − 4s2B2

C4

= −
(
B

A

)2
(

2
C̈

C
+

(
Ċ

C

)2

− 2
ȦĊ

AC

)

+
(
C ′

C

)2

+ 2
A′C ′

AC
, (27)

where the effective radial pressure is defined as

Preff = Pr − 4√
3
ησ

and

G−
22 = 8π

(
T −

22 + T
(em)−
22

)
= 8π

(
P⊥ + 2√

3
ησ

)
C2 + 4s2

C2
= 8πP⊥eff

C2 + 4s2

C2

= −
(
C

A

)2 (
B̈

B
+ C̈

C
− Ȧ

A

(
Ḃ

B
+ Ċ

C

)
+ ḂĊ

BC

)

+
(
C

B

)2 (
A′′

A
+ C ′′

C
− A′

A

(
B ′

B
− C ′

C

)
− B ′C ′

BC

)
, (28)

with the effective tangential pressure as

P⊥eff
= P⊥ + 2√

3
ησ.

3 Exterior Metric and the Junction Conditions

Exterior to the hypersurface � in the 4D manifold V +, we consider Vaidya’s metric [13] in
presence of charge in the retarded time coordinate as considered by Chao-Guang [62], but
with a signature flip. The introduction of the retarded time coordinate removes the singu-
larities of the original line element. Let M(u) and Q(u) be the mass and charge of the fluid
respectively inside the hypersurface �, where u is the retarded time coordinate. Then the
exterior field in this cylindrically symmetric spacetime can be defined as

ds2+ = −
(
−2M(u)

R
+ Q2(u)

R2
�

)

du2 − 2dRdu+ R2(dθ2 + dz2). (29)

The intrinsic metric for the hypersurface � which enables a description in comoving
coordinates of the interior spacetime, is given by [15]

(ds2)� = −dτ2 + R2
�(τ)(dθ

2 + dz2), (30)

where ()� means the value of () on � and ξ i ≡ (τ, θ, z) represents the coordinates on �, i.e.

(ds2)� = gij dξ
idξ j .
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To match the interior and the exterior space-time, we follow the prescription of Darmois
and Israel [63–65] which demands:

• The first fundamental form must be continuous over the hypersurface � i.e., the
continuity of the metrics as V± approaches �:

(ds2)� = (ds2−)� = (ds2+)�. (31)

• The continuity of the second fundamental form. This gives the continuity of the
extrinsic curvature Kij at the hypersurface �:

[Kij ] = K+
ij −K−

ij = 0. (32)

According to Eisenhart [66], the extrinsic curvature of � is given by

K±
ij = −n±σ

(
∂2χσ±
∂ξ i∂ξ j

+ �σ
μν

∂χ
μ
±∂χν±

∂ξ i∂ξ j

)

, (σ,μ, ν = 0, 1, 2, 3). (33)

where n±σ are the outward unit normal vectors to the hypersurface �, χ±μ are the
coordinates of V ±.

On the r = constant hypersurface, we have dr = 0. Using this condition in (1) and
comparing with (30) keeping in mind the junction condition (31), we get,

dt

dτ
= A(t, r�)

−1,

(34)

R�(τ) = C(t, r�).

We may also write the exterior metric (29) as,

(ds2+)� = −
[(

−2M(u)

R�

+ Q2(u)

R2
�

)

+ 2dR�

du

]

du2

+ R2
�(dθ

2 + dz2). (35)

Now, using the junction condition (31) and matching with the metric on the hypersurface
�, we get

du

dτ
=

[
−2M(u)

R�

+ Q2(u)

R2
�

+ 2dR�

du

]−1/2

. (36)

To apply the junction conditions, we require that � has the same parametrisation whether
it is considered as embedded in V + or in V −. In the coordinates of the interior spacetime
V−, the bounding surface � will have the equation

f (t, r) = r − r� = 0, (37)

where r� is a constant.
Since the vector ∂f/∂χα− is orthogonal to �, so the unit normal vector to � in the χα−

coordinate system is,
n−α = [0, B(t, r�), 0, 0]. (38)

In the coordinate system of V +, the equation for the surface � may be written as,

f (u,R) = R − R�(u) = 0. (39)

The vector ∂f/∂χα+, orthogonal to the hypersurface � is therefore given by,

∂f

∂χα+
=

(
−dR�

du
, 1, 0, 0

)
. (40)
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So the unit normal to � in the V+ coordinate system is,

n+α =
(
−2M(u)

R�

+ Q2(u)

R2
�

+ 2dR�

du

)−1/2 (
−dR�

du
, 1, 0, 0

)
. (41)

The extrinsic curvature for the hpersurface � in the V + coordinates as calculated by
using (33) is given by

K−
00 = −

(
A′

AB

)

�

, (42)

K−
22 = K−

33 =
(
CC ′

B

)

�

, (43)

K+
00 =

[
d2u

dτ2

(
du

dτ

)−1

−
(
M

R2
− Q2

R3

)(
du

dτ

)]

�

. (44)

K+
22 = K+

33 =
[

R
dR

dτ
+

(
Q2

R
− 2M

)
du

dτ

]

�

. (45)

On account of the continuity of the second fundamental form given by (32), we obtain
the following relations on matching (42) to (44) and (43) to (45)

[
d2u

dτ2

(
du

dτ

)−1

−
(
M

R2
− Q2

R3

)(
du

dτ

)]

�

= −
(

A′

AB

)

�

, (46)

[

R
dR

dτ
+

(
Q2

R
− 2M

)
du

dτ

]

�

=
(
CC ′

B

)

�

. (47)

4 Results

We now use the relations obtained above and simplify them to find useful results. From (36)
we have by rearranging,

(
du

dτ

)(
Q2

R�

− 2M

)

= R�

(
du

dτ

)−1

− 2R�

(
dR�

dτ

)
. (48)

Putting this value in (47) and using (34), we have
(
du

dτ

)−1

=
(
Ċ

A
+ C ′

B

)
. (49)

Again using (34) and squaring (49) we obtain the total energy entrapped inside the
surface � as follows:

M = C

2

((
Ċ

A

)2

−
(
C ′

B

)2
)

+ Q2

2C
. (50)

Taking the interior and exterior charge to be the same on the hypersurface � (i.e. Q = s)
and using (50) and (14), we obtain

E′ = l

8
+M, (51)
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which indicates that the difference between the two masses is equal to l/8, as obtained in
[57] and [58], which is a consequence of the least unsatisfactory definition of C-energy due
to Thorne [45].

Using the expressions (8), (9) and (12) we can reconstruct (26) as follows:

4π(q + ε) = 1

B

(
1

3
(�−√

3σ)′ − √
3σ

C ′

C

)
. (52)

Differentiating (49) with respect to τ and substituting in (46), we obtain the following
expression with the help of (49) and (34),

C

A2

(
C̈

C
− ĊȦ

CA

)
+ C

AB

(
Ċ ′

C
− ḂC ′

BC

)
− 1

AB

(
ĊA′

A
+ C ′A′

B

)
= 1

C2

(
Q2

C
−M

)

. (53)

Using (50), (26) and (27) in (53) and rearranging terms, we arrive at the result

q =
(
Pr − 4√

3
ησ

)
− 3s2

8πC4
, (54)

on account of the fact that Q = s on the hypersurface �. This equation gives the relation
between the heat flux, radial pressure, shear viscosity and the charge per unit length of the
cylinder, over the hypersurface �. The result shows that for an uncharged radiating fluid
without any shear viscosity, the radial pressure equals the heat flux all over the boundary of
the collapsing cylinder. Equations (52) and (54) are generalizations over the results obtained
earlier in [57] and [58].

The total luminosity of the collapsing matter visible to an observer at rest at infinity is
[67]

L∞ = −
(
dM

du

)

�

= −
(
dM

dt

dt

dτ

(
du

dτ

)−1
)

�

. (55)

Differentiating (50) with respect to t and using (34), (49), (26) and (27), we obtain

L∞ = 4πC2

(
Ċ

A

((
Pr + ε − 4√

3
ησ

)
− 3s2

8πC4

)

+ C ′

B
(q + ε)

)(
Ċ

A
+ C ′

B

)
, (56)

which, in view of (54) leads us to the expression

L∞ = 4π

[

C2(q + ε)

(
Ċ

A
+ C ′

B

)2]

�

. (57)

Thus the total luminosity of the collapsing matter as visible to a distant observer, depends
on the energy flux associated with the collapse. For an observer on the boundary �, the
luminosity is [68, 69]

L� = −
[(

du

dτ

)2
dM

du

]

�

. (58)

The boundary redshift of the radiation emitted by the collapsing matter can be written as

Z� =
√

L�

L∞
− 1 = du

dτ
− 1 =

(
Ċ

A
+ C ′

B

)−1

− 1 (59)
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Therefore the luminosity measured by an observer at rest at infinity is reduced by the
redshift in comparison to the luminosity observed on the surface of collapsing body. When

(
Ċ

A
+ C ′

B

)
= 0

the boundary redshift attains unlimited value (i.e., Z� → ∞ ).

4.1 Dynamical Equations for the Collapse

The dynamical equations for non-adiabatic charged anisotropic fluid with shear viscos-
ity undergoing cylindrical collapse can be obtained from the Bianchi identities (T αβ +
T (em)αβ);β = 0 for energy-momentum conservation. Using (2), (6), (7) and (15), we have

(
T αβ + T (em)αβ

)

;β Vα = − 1

A
(μ̇+ ε̇)− Ḃ

AB

(
μ+ Pr + 2ε − 4√

3
ησ

)

− 2Ċ

AC

(
μ+ P⊥ + ε + 2√

3
ησ

)

− 2(q + ε)

B

(
A′

A
+ C ′

C

)
− 1

B
(q ′ + ε′) = 0

(60)

and
(
T αβ + T (em)αβ

)

;β χa = 1

B

(
Pr + ε − 4√

3
ησ

)′
+ A′

AB

(
μ+ Pr + 2ε − 4√

3
ησ

)

+ 2C ′

BC

(
Pr − P⊥ + ε − 2

√
3ησ

)

+ 1

A
(q̇ + ε̇)+ 2(q + ε)

A

(
Ḃ

B
+ Ċ

C

)
− ss ′

πBC4
= 0.

(61)

To discuss the dynamics of the collapsing system, it is customary to introduce the proper
time derivative

DT = 1

A

∂

∂t
, (62)

and the proper radial derivative DR constructed from the circumference radius of a cylinder
inside �

DR = 1

R′
∂

∂r
, (63)

where
R = C. (64)

The fluid velocity for the corresponding collapse is given by

U = DT (R) = Ċ

A
, (65)

which must be negative to ensure collapse to occur. Defining new variable ε = C ′
B

(note that
ε and ε are different quantities) and using (14), we have

ε =
[

U2 + s2

C2
− 2M

C

]1/2

. (66)
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Consequently, (52) can be re-written as follows:

4π(q + ε) = ε

[
1

3
DR(�−√

3σ)−√
3
σ

R

]
. (67)

The time rate of variation of the total energy inside the collapsing cylinder is given by

DTE
′ = −4πR2

[(
Pr + ε − 4√

3
ησ − 1

32πR2

)
U + ε(q + ε)

]
+ 3s2U

2R2
. (68)

In the case of collapse, since (U < 0), the coefficient of U inside the square brackets,
will increase the C-energy of the cylinder if Pr + ε − 4√

3
ησ > 1

32πR2 , i.e. the effective

radial pressure is greater than a certain value. The work done by the effective radial pressure
leads to the increase of C-energy. The second term in the square brackets, due to the overall
negative sign, describes the outflow of energy in the form of heat flux and radiation during
the collapse. Since the collapsing cylinder contains the same species of the charges, the

last term will decrease the energy of the system as 3s2

2R2 plays the role of Coulomb force of
repulsion and U < 0.

The variation of energy between the adjacent coaxial cylinders inside the fluid is given
by the expression

DRE
′ = 4πR2

(
μ+ ε + U

ε
(q + ε)

)
+ l

8
+ s

R
DRs + 3s2

2R2
. (69)

The first term on the right hand side gives the contribution of the energy density of the
element of fluid inside a cylindrical shell, along with heat flux and radiation. Since U < 0,
the factor U

ε
(q+ε) decreases the energy of the system during the collapse of the cylinder. In

the remaining terms, the constant l/8 comes from the definition of C-energy and the other
term is the electromagnetic contribution. The C-energy of the cylinder at a given instant of
time is then obtained by integrating (69) from the axis to the periphery of the cylinder. The
acceleration of the collapsing matter inside the hypersurface � is obtained using (14), (27),
(65) and (66)

DT U = − 1

R2

(
E′ − l

8

)
− 4πR

(
Pr + ε − 4√

3
ησ

)
+ εA′

AB
+ 5s2

2R3
. (70)

Substituting for A′
A

from (70) into (61), we obtain the equivalent of Newton’s second law of
motion for the collapsing matter in the form

(
μ+ Pr + 2ε − 4√

3
ησ

)
DT U

= −
(
μ+ Pr + 2ε − 4√

3
ησ

) [
1

R2

(
E′ − l

8

)
+ 4π

(
Pr + ε − 4√

3
ησ

)
R − 5s2

2R3

]

− ε

[
DT (q + ε)+ 4(q + ε)U

R
+ 2(q + ε)

1

A

(
Ḃ

B
− Ċ

C

)]

− ε2
[
DR

(
Pr + ε − 4√

3
ησ

)
+ 2

(
Pr − P⊥ + ε − 2

√
3ησ

) 1

R
− s

πR4
DRs

]
,

(71)
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which can be simplified as follows:

(
μ+ Preff + 2ε

)
DT U = − (

μ+ Preff + 2ε
)
[

1

R2

(
E′ − l

8

)
+ 4π(Preff + ε)R − 5s2

2R3

]

− ε

[
DT (q + ε)+ 4(q + ε)U

R
+ 2(q + ε)

A

(
Ḃ

B
− Ċ

C

)]

− ε2
[
DR(Preff + ε)+ 2

(
Preff − P⊥eff

+ ε
) 1

R
− s

πR4
DRs

]
.

Here we assume that in general 1
A

(
Ḃ
B
− Ċ

C

)
�= 0. The left hand side of (71) represents force.

The factor
(
μ+ Pr + 2ε − 4√

3
ησ

)
represents the inertial mass density, which gives the

effect of dissipation but there is no contribution of the electric charge, nor of heat flux. The
remaining term on the left hand side is acceleration. Thus, we can say that the dynamical
system will evolve radially outward or inward according as DTU < 0 or DTU > 0. The
terms with a negative contribution in (71), favors the collapse while the other contribution
prevents the collapse. If both of these terms cancel each other, then a condition of hydrostatic
equilibrium will be encountered.

The first term on the right hand side represents the gravitational force. The factor within
the first square brackets shows the effects of specific length, effective radial pressure and
the electric charge on the term (μ+ Pr + 2ε − 4√

3
ησ) representing the active gravitational

mass. The second term represents the contribution due to radiation and heat flux, which will
leave the system (if there is an overall negative sign) through the outward radially directed
streamlines. Thus it is in the same direction of pressure and would prevent the collapse. The
third term has three main contributions: the first is the effective pressure gradient which is
always negative, thereby preventing the collapse. The second is the local anisotropy of the
fluid which will be negative for Preff < P⊥eff

, in which case it will decrease the rate of col-
lapse. The third is the electromagnetic field term. The third term contributes negatively [25]
if s

R
> DRs. Under these conditions, the term in the third square brackets, with negative

sign, contributes positively by reducing the attractive nature of the force appearing on the
left hand side of this equation and hence this term will prevent the gravitational collapse.

4.2 Solution of the Field Equations

In their work, Di Prisco et al. [56] have derived the solutions for the shearfree and isotropic
case of cylindrical collapse. Sharif and Abbas [70] have found analytical solutions for
charged perfect fluid cylindrical gravitational collapse. Keeping in mind the result obtained
by Raychaudhuri and De [28] in the case of the evolution of irrotational charged dust, we
derive the solutions in presence of shear for the evolution of charged fluids. The solution
valid for the entire duration of collapse in presence of dissipation, should be of the following
form:

A(t, r) = A0(r)f1(t),

B(t, r) = B0(r)f2(t), (72)

C(t, r) = C0(r)f3(t),

where A0(r), B0(r) and C0(r) are solutions of a static fluid having μ0 as the energy density
and pr0 and p⊥0 as the radial and tangential pressure. Rescaling the coordinate time leads



Int J Theor Phys (2014) 53:2332–2348 2345

to A(t, r) = A0(r). Then taking a cue from [22] for the spherically symmetric case with
shear, we propose solutions of the field (25) to (28) in the form

A(t, r) = A0(r),

B(t, r) = B0(r), (73)

C(t, r) = A0(r)f (t).

The expression (12) for the shear scalar becomes

σ = − 1√
3A0

ḟ

f
. (74)

The field (25) to (28) are reduced to

8π(μ+ ε) = 8πμ0 + ḟ 2

A2
0f

2
− 4s2

A4
0f

4
, (75)

8π(q + ε) = 0, (76)

8π(Pr + ε) = 8πPr0 − 1

A2
0

(
2f̈

f
+

(
ḟ

f

)2)

− 32πηḟ

3A0f
+ 4s2

A4
0f

4
, (77)

8πP⊥ = 8πP⊥0 − f̈

A2
0f

+ 16πηḟ

3A0f
− 4s2

A4
0f

4
(78)

where

8πμ0 = 1

B2
0

[
2A′

0B
′
0

A0B0
−

(
2A′′

0

A0
+ A′2

0

A2
0

)]

, (79)

8πPr0 = 3A′2
0

B2
0A0

2
(80)

and

8πP⊥0 = 1

B2
0

(
2A′′

0

A0
− 2A′

0B
′
0

A0B0
+ A′2

0

A2
0

)

. (81)

Equations (75) to (78) represent the static anisotropic fluid configuration in the limit f (t) →
1. Substituting (74), (76) and (77) into (54) and assuming that Pr0(r�) = 0, we obtain the
following differential equation:

2f f̈ + ḟ 2 − a

f 2
= 0, (82)

where a depends on the charge enclosed inside the cylinder and the static fluid conditions,
i.e.

a = s2

A2
0

. (83)

Equation (82) can be solved using maple program assuming that the system represents the
static configuration at t → −∞, when ḟ (t) → 0 and f (t) → 1. In view of earlier works
[28, 30], we assume the charge enclosed inside the cylinder to be positive for the collapse
in presence of shear. We find that the solutions represent the configuration of the collapsing
matter when the luminosity of the collapsing matter as visible to a distant observer, vanishes
and therefore represents the later stages of the collapse. Sample plots are shown in the
following figures (Fig. 1). Analysing (82), we find that ḟ (t) becomes infinite as t → 0,
which is in agreement with the trend visible in the sample plots.
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Fig. 1 Diagram showing the plot of f (t) vs t for the charged case with a as squares of integers i.e a = 1(red),
a = 4(black) and a = 9(blue) for different ranges of time

5 Summary

Here we have formulated the general relativistic field equations for the case of dissipative
cylindrical collapse in presence of heat flow, free-streaming radiation, and shear viscosity
and have obtained a few results. We have derived the relation between the expansion �,
the shear σ and the energy flowing out of the cylinder in the form of heat flux q and free-
streaming radiation. By employing the Darmois-Israel junction condition for the smooth
matching of interior and exterior spacetimes at the boundary�, we have verified the relation
between the specific energy of the cylinder due to the electromagnetic field and the mass
of the collapsing matter. The total luminosity of the collapsing matter as visible to a distant
observer, depends on the energy flux associated with the collapse. This energy flux over the
hypersurface � bounding the cylinder, is dependent on the effective radial pressure and the
charge per unit length of the cylinder. The dynamical equations for the collapse is derived
from the Bianchi identities with the help of Misner-Sharp formalism for this non-adiabatic,
anisotropic and dissipative fluid and the equation for the effective Newton’s second law of
motion is constructed. Finally, we have derived the solution to the field equations for the
given matter distribution at later stages of collapse. Under this condition the energy flux out
of the boundary of the collapsing matter vanishes and the luminosity for distant observer
also vanishes. The collapse is bounded by the event horizon.

As future work we are considering the solutions which represent the viscous collaps-
ing matter from the onset of collapse to the final state of singularity and the status of the
corresponding energy conditions.

Acknowledgments SG gratefully acknowledges IUCAA, India for an associateship. We thank Dr. Subenoy
Chakraborty for some helpful discussions.

References

1. Joshi, P.S., Malafarina, D.: Int. J. Mod. Phys. D 20, 2641 (2011)
2. Singh, T.P.: J. Astrophys. Astr. 20, 221 (1999)
3. Milne, E.A.: Mon. Not. R. Astr. Soc 91, 4 (1930)
4. Chandrasekhar, S.: Mon. Not. R. Astr. Soc. 91, 456 (1931)
5. Chandrasekhar, S.: ibid 95, 207 (1935)
6. Chandrasekhar, S.: Astrophys. J. 74, 81 (1931)
7. Chandrasekhar, S.: Observatory 57, 373 (1934)



Int J Theor Phys (2014) 53:2332–2348 2347

8. Zwicky, F.: Astrophys. J. 88, 522 (1938)
9. Openheimer, J.R., Snyder, H.: Phys. Rev. 56, 455 (1939)

10. Vaidya, P.C.: Curr. Sci. 12, 183 (1943)
11. Vaidya, P.C.: Proc. Indian Acad. Sci. A 33, 264 (1951)
12. Vaidya, P.C.: Phys. Rev. 83, 10 (1951)
13. Vaidya, P.C.: Nature 171, 260 (1953)
14. Misner, C.W., Sharp, D.: Phys. Rev. B 136, 571 (1964)
15. Misner, C.W.: Phys. Rev. B 137, 1360 (1965)
16. Lindquist, R.W., Schwartz, R.A., Misner, C.W.: Phys. Rev. B 137, 1364 (1965)
17. Lake, K., Hellaby, C.: Phys. Rev. D 24, 3019 (1981)
18. Santos, N.O.: Mon. Not. R. Astr. Soc. 216, 403 (1985)
19. Herrera, L., Santos, N.O.: Phys. Rep. 286, 53 (1997)
20. Herrera, L., Di Prisco, A., Hernandez-Pastora, J.L., Santos, N.O.: Phys. Lett. A 237, 113 (1998)
21. Herrera, L., Le Denmat, G., Santos, N.O.: Phys. Rev. D 79, 087505 (2009)
22. Chan, R.: Mon. Not. R. Astron. Soc. 316, 588 (2000)
23. Bonnor, W.B., de Oliveira, A.KG., Santos, N.O.: Phys. Rep 181(5), 269 (1989)
24. Banerjee, A., Dutta Choudhury, S.B., Bhui, B.K.: Phys. Rev. D 40, 670 (1989)
25. Di Prisco, A., Herrera, L., Le Denmat, G., MacCallum, M.A.H., Santos, N.O.: Phys. Rev. D 76, 064017

(2007)
26. Rosseland, S.: Mon. Not. R. Astron. Soc. 84, 720 (1924)
27. Eddington, A.S.: Internal Constitution of the Stars. Cambridge University Press, Cambridge (1926)
28. Raychaudhuri, A.K., De, U.K.: J. Phys. A 3, 263 (1970)
29. Olson, E., Bailyn, M.: Phys. Rev. D 13, 2204 (1976)
30. Bally, J., Harrison, E.R.: Astrophys. J. 220, 743 (1978)
31. De Oliveira, A.K.G., Santtos, N.O.: Astrophys. Astrophys. J. 312, 640 (1987)
32. Usov, V.: Phys. Rev. D 70, 067301 (2004)
33. Mak, M., Harko, T.: Int. J. Mod. Phys. D 13, 149 (2004)
34. Glass, E.N.: Phys. Lett. 86A, 351 (1981)
35. Herrera, L., Di Prisco, A., Martin, J., Ospino, J., Santos, N.O., Troconis, O.: Phys. Rev. D 69, 084026

(2004)
36. Mitra, A.: Phys. Rev. D 74, 024010 (2006)
37. Sharma, R., Tikekar, R.: Gen. Relativ. Gravit. 44, 2503 (2012)
38. Shapiro, S.L., Teukolsky, S.A.: Phys. Rev. Lett. 66, 994 (1991)
39. Shapiro, S.L., Teukolsky, S.A.: Phys. Rev. D 45, 2006 (1992)
40. Penrose, R.: Rivista del Nuovo Cimento. Numero Speziale I, 257 (1969)
41. Thorne, K.S.: In Magic without Magic : John Archibald Wheeler. In: Klauder (ed.) Freeman, San

Francisco
42. Rosen, N.: Jubillee of relativity theory. In: Mercier, A., Kervaire, M. (eds.) Birkhauser Verlag, Basel

(1956)
43. Einstein, A., Rosen, N.: J. Franklin Inst 223, 43 (1937)
44. Rosen, N.: Bull. Res. Coun. Israel 3, 528 (1953)
45. Thorne, K.S.: Phys. Rev. B 138, 251 (1965)
46. Melvin, M.A.: Phys. Rev. B 139, 225 (1965)
47. Melvin, M.A.: Phys. Lett. 8, 65 (1964)
48. Chiba, T.: Prog. Theor. Phys. 95, 321 (1996)
49. Nolan, B.C.: Phys. Rev. D 65, 104006 (2002)
50. Goncalves, S.M.C.V., Jhingan, S.: Int. J. Mod. Phys. D 11, 1469 (2002)
51. Pereira, P.R.C.T., Wang, A.: Phys. Rev. D 62, 124001 (2000)
52. Pereira, P.R.C.T., Wang, A.: Erratum-ibid. D 67, 129902 (2003)
53. Pereira, P.R.C.T., Wang, A.: Gen. Relativ. Gravit. 32, 2189 (2000)
54. Hayward, S.A.: Class. Quantum Grav. 17, 1749 (2000)
55. Goncalves, S.M.C.V.: Class. Quantum Grav. 20, 37 (2003)
56. Di Prisco, A., Herrera, L., MacCallum, M.A.H., Santos, N.O.: Phys. Rev. D 80, 064031 (2009)
57. Sharif, M., Abbas, G.: Astrophys. Space Sci. 335, 515 (2011)
58. Sharif, M., Fatima, S.: Gen. Relativ. Gravit. 43, 127 (2011)
59. Here we follow the definition given by Hayward. See, Hayward, S. A.: Class. Quantum Grav. 17, 1749

(2000)
60. Poisson, E.: An Advanced Course in General Relativity. Lecture Notes, Deparment of Physics,

University of Guelph (2002)
61. Poisson, E.: A Relativist’s Toolkit. Cambridge University Press (2004)



2348 Int J Theor Phys (2014) 53:2332–2348

62. Chao-Guang, H. Acta. Phys. Sin. (overseas edition) 4, 617 (1995)
63. Darmois, G.: Memorial des Sciences Mathematiques. Gautheir-Villars, Paris (1927). Fasc. 25
64. Darmois, G., Israel, W. Nuovo Cimento B 44, 1 (1966)
65. Darmois, G., Israel, W. ibid 48, 463 (1966)
66. Eisenhart, L.P.: Riemannian geometry. Princeton University Press (1949)
67. De Oliveira, A.K.G., Santtos, N.O., Kolassis, C.A. Mon. Not. R. Astron. Soc. 216, 1001 (1985)
68. Ghosh, S.G., Deshkar, D.W. Int. J. Mod. Phys. D 12, 317 (2003)
69. Nath, S., Debnath, U., Chakraborty, S. Astrophys. Space Sci. 313, 431 (2008)
70. Sharif, M., Abbas, G.: J. Phys. Soc. Japan 80, 104002 (2011)


	Dissipative Cylindrical Collapse of Charged Anisotropic Fluid
	Abstract
	Introduction
	The Interior Metric and the Field Equations
	The Interior Spacetime
	Electromagnetic Energy Tensor and Maxwell's Equations
	The Field Equations

	Exterior Metric and the Junction Conditions
	Results
	Dynamical Equations for the Collapse
	Solution of the Field Equations

	Summary
	Acknowledgments
	References


