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Abstract In the present article, using the Lie group of transformations technique all the in-
variant solutions of Einstein’s field equations for non-conformally flat perfect fluid spheres
of embedding class one have been derived by considering a 5-flat space. The same problem
for conformally flat case was tackled by Thakadiyil and Jasim (Int. J. Theor. Phys. 52:3960,
2013) using the same technique but with the lesser number of symmetries and hence could
obtain only lesser number of solutions as compared to the number of solutions in this pa-
per. All the solutions thus obtained have been subjected to reality conditions. As far as the
authors are aware some of the solutions are new.

Keywords Spherical symmetric · Perfect fluid spheres · Embedding class one · General
relativity

1 Introduction

In the nature by and large all the living or non-living objects are seen to possess symme-
try of one or the other kind e.g. axial symmetry, plane symmetry and spherical symmetry.
The later is the most attractive and also of great importance. Most of the stellar objects (i.e.
sun, moon, planets and stars) are spherically symmetric. The Einstein’s field equations are
also subjected to this symmetry to describe the behaviour of such objects. The perfect fluid
distribution is normally taken as source of various stellar structures. The corresponding Ein-
stein equations reduce to two quasi-linear partial differential equations in three unknown
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dependent variables of two independent variables for co-moving system or one partial dif-
ferential equation in two dependent variables depending upon two independent variables
for non-comoving system. Therefore one additional condition is sought to obtain a specific
model which can be (a) equation of state p = f (ρ), (b) one of the dependent variable or a
relation between the two dependent variables is prescribed to facilitate the solution, (c) some
geometrical conditions are imposed on the metric describing the concerned Einstein space-
time, and (d) some kinematical restrictions such as acceleration-free, shear-free fluids. The
researchers have been using all such facilities time to time. For its detailed account one may
refer to [26].

In the present article, the geometrical condition which makes the space-time metric of
embedding class one is imposed and consequently the Einstein field equations reduced to a
single highly non-linear partial differential equation. The relevance of embedding class can
be described as follows:

The idea that our space–time can be considered as a four–dimensional space embedded
in a higher-dimensional flat space is an old and recursive one [6]. Recently, due to a pro-
posal by Randall and Sundrum [19] and discussions by Anchordoqui and Bergliaffa [1],
this idea has again attracted much attention. It is well known that the manifold Vn can al-
ways be embedded in Pseudo-Euclidean space Em of m dimensions, where m = n(n+1)

2 . The
minimum extra dimension p of the pseudo-Euclidean space to be embedded Vn in Em, is
called the class of the manifold Vn and must be less than or equal to the number (m− n) i.e.
n(n−1)

2 . In case of relativistic space time V4, the embedding class p turns out to be 6. As we
have known that the class of spherical, hyperbolic and plane symmetric space-time is 2 and
3 respectively. The famous Friedman-Robertson-Lemaitre space-time, Robertson [21] is of
class 1, while the Schwarzschild’s exterior and interior solutions are of class 2 and class 1
respectively. Moreover the famous Kerr metric is of class 5 [16].

The postulates of general relativity do not provide any physical meaning to higher di-
mensional embedding space. However, it provides new characterizations of gravitational
fields, which hopefully, can be connected to physics. Some researchers have linked the
group of motions of flat embedding space to the internal symmetries of elementary parti-
cle physics [20]. Some have utilized the higher dimensions to study the singularity of the
space-time. Recently, Pavsic and Tapia [18] have published an article entitled “Resource
letter on geometrical results for Embeddings and Brane”, where many references regarding
the applications of embedding to general relativity, extrinsic gravity, strings and membranes
and new brane world are mentioned. Also Andrejs Treibergs [29] has discussed about the
embedding diagrams of Schwarzschild space and Misner’s wormhole manifold to study the
evolution problem for Einstein’s equations.

In General Relativity, several authors [2, 11, 17, 22–24, 27] have considered the perfect
fluid distributions of class one. They all have concluded that the perfect fluid distributions
of class one could be divided into two categories. In the first category, conformally flat
(with vanishing conformal curvature tensor Petrov type O) and in the second category, non-
conformally flat which possesses non-vanishing Weyl conformal curvature tensor (Petrov
type D). Stephani [24] and Barnes [2] have found almost all the perfect fluids belonging
to the first category. Barnes [3] also found all those belonging to the second category with
vanishing acceleration. Gupta et al. [9] have found all the Zeldovich fluids of second cate-
gory. Gupta and Gupta [7] obtained a class of non-static analogue of Kohler-Chao solution
satisfying the class one conditions. Gupta and Sharma [8], Bhutani and Singh [4], Kumar
and Gupta [14], Gupta et al. [10] and S. Kumar et al. [15] derived a new class of solutions
satisfying reality conditions and belonging to the second category. Also Stephani [25] has
proved that the solutions with the equation of state ρ = f (p) are only those, which describes
Zeldovich fluids (ρ = p).
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In the present article, we have considered spherically symmetric metric of embedding
class one in 5-flat form and utilized it to obtain non-conformally flat perfect fluid distri-
butions. As a consequence we come across a non-linear partial differential equation. It is
substantially difficult to obtain exact solutions of such equation. Therefore a group theoretic
method, in particular, one parametric continuous Lie group of transformation (Similarity
transformations method) is used to solve the equation and obtained possible solutions, some
of which are new. The solutions are invariant under the Lie group of transformations. The
same problem for conformally flat was attempted by the other workers [28] using the sim-
ilar method but with the lesser number of symmetries. Later could not derive the solutions
except Einstein universe and flat solutions.

2 Basic Equations of the Problems

An embedding class one space-time can be expressed in 5-flat form as follows

ds2 = −(
dz1

)2 − (
dz2

)2 − (
dz3

)2 + (
dz4

)2 − (
dz5

)2
(1)

The spherical symmetry with ∂g22
∂r

�= 0 can be imposed on (1) by means of the transforma-
tions

z1 = r sin θ cosϕ, z2 = r sin θ sinϕ, z3 = r cos θ,

z4 = t, z5 = u(r, t)
(2)

and the embedding surface can be written as

z5 = u
(√(

z1
)2 + (

z2
)2(

z3
)2

, z4
)

(3)

Consequently, (1) reduces to

ds2 = −dr2 − r2
(
dθ2 + sin2 θdϕ2

) + dt2 − du2 (4)

The Einstein’s field equations for the perfect fluid distributions can be expressed as

8πT i
j = −Ri

j + 1

2
δi
jR = 8π

[
(p + ρ)vivj − δi

jp
]
, (5)

where vivi = 1 and ρ, p and vi are energy density, pressure and flow vector respectively.
The Einstein field equations (5) with reference to the metric (4) can be furnished as below

8πT 1
1 = u′2

r2P
− 2u′

rP 2

[(
1 + u′2)ü − u̇u′u̇′] = 8π(ρ + p)v1v1 − 8πp, (6)

8πT 2
2 = 8πT 3

3 = − 1

P 2

(
üu′′ − u̇′2) − u′

rP 2

[(
1 + u′2)ü − 2Du̇u′u̇′ − (

1 − u̇2
)
u′′]

= −8πp, (7)

8πT 4
4 = u′2

r2P
+ 2u′

rP 2

[(
1 − u̇2

)
u′′ + u̇u′u̇′] = 8π(ρ + p)v4v4 − 8πp, (8)

8πT 4
1 = 2u′

rP 2

[(
1 + u′2)u̇′ − u̇u′u′′] = 8π(ρ + p)v4v1, (9)
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8πT 1
4 = − 2u′

rP 2

[(
1 − u̇2

)
u̇′ + u̇u′ü

] = 8π(ρ + p)v1v4, (10)

v1v1 + v4v4 = 1, v2 = v2 = v3 = v3 = 0, (11)

where P = 1 − u̇2 + u′2, u′ = ∂u
∂r

, u̇ = ∂u
∂t

.
Eliminating ρ, p and vi among (6)–(11), we get an equation having the product of two

factors, i.e. w(w + R) = 0 [13], which can be expressed as

w

[
(
üu′′ − u̇′2) + u′

r

[(
1 + u′2)ü − 2u̇u′u̇′ − (

1 − u̇2
)
u′′] − u′2

r2

[
1 − u̇2 + u′2]

]
= 0 (12)

where

8πw = (
üu′′ − u̇′2) − u′

r

[(
1 + u′2)ü − 2u̇u′u̇′ − (

1 − u̇2
)
u′′]

− u′2

r2

[
1 − u̇2 + u′2] = 0 (13)

Here, the symbol w is used for the eigenvalue of the trace-free Weyl tensor. It has been
verified that the vanishing of the first factor w of (13) implies the vanishing of the conformal
curvature tensor and the corresponding fluid distribution will be conformally flat. However,
the vanishing of the second factor (w + R) corresponds to the non-conformally flat perfect
fluid distributions. In the later case, we come across a partial differential equation to be
satisfied by u(r, t) as

H ≡ (
üu′′ − u̇′2) + u′

r

[(
1 + u′2)ü − 2u̇u′u̇′ − (

1 − u̇2
)
u′′] − u′2

r2

[
1 − u̇2 + u′2] = 0 (14)

Associated expressions for pressure and density are given by

8πp = u′2

r2P
, 8πρ = 8πp + 2(üu′′ − u̇′)

P 2
(15)

3 Similarity Solutions to the Field Equations

As (14) is highly non-linear, we have chosen the similarity transformation method to solve
the same. Following the relevant procedure, which requires the invariance of (14) under the
transformations

u∗ = u + εη(r, t, u; ε) + O
(
ε2

)

r∗ = r + εξ(r, t, u; ε) + O
(
ε2

)

t∗ = t + ετ(r, t, u; ε) + O
(
ε2

)
(16)

and hence one need to satisfy the following equation

ηrr

∂H

∂urr

+ ηrt

∂H

∂urt

+ ηtt

∂H

∂utt

+ ηr

∂H

∂ur

+ ηt

∂H

∂ut

+ η
∂H

∂u
+ ξ

∂H

∂r
+ τ

∂H

∂t
= 0 (17)

to get the symmetry infinitesimals as

ξ = ar, η = kt + au + b, τ = ku + at + c, (18)
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where a, k, b, c are four arbitrary parameters. In this process, we have used (14) once more
to eliminate one the derivatives u′, u̇, u̇′, u′′, ü etc. in (17) and hence could obtain more
general symmetry infinitesimals (ξ, η, τ ). However, the said procedure was not followed by
Thakadiyil and Jasim [28] in their paper.

Forms of the solution of (14) can be obtained by solving the following with reference
to (18)

dr

ξ
= dt

τ
= du

η
. (19)

Now, we are going to find out all the similarity solutions and discuss the following particular
cases.

3.1 Case 1

For (a = 0, k �= 0), (19) are of the form

dr

0
= dt

ku + c
= du

kt + b
(20)

which immediately yields

u = [
(t + b)2 + f (r)

] 1
2 + α (21)

where α being constant of integration.
On inserting the value of u from (21) into (14), we get the second order ordinary differ-

ential equation in f (r) as
[

1

2
− 1

4r
f̄ (r)

][
f (r) ¯̄f (r) − 1

2
f̄ 2(r) + 1

4r
f̄ 3(r) + 1

r
f (r)f̄ (r)

]
= 0, (22)

where f̄ (r) = df

dr
.

The corresponding expressions for pressure and density read as

8πp = f̄ 2(r)

r2[4f (r) + f̄ 2(r)] ,

8πρ = 8πp + 8[2f (r) ¯̄f (r) − f̄ 2(r)]
[4f (r) + f̄ 2(r)]2

,

(23)

where f (r) is given by (22).

3.1.1 Case 1A

Vanishing of first factor of (22) gives rise to

f (r) = r2 + k1 (24)

The expressions for pressure and density can be read as

8πp = 1

[2r2 + k1] ,

8πρ = 8πp + 2k1

[2r2 + k1]2

(25)
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which is well-known Kohler-Chao [12] solution, the only static solution of its class. This
solution is accelerating but shear free.

The embedding surface in this case reads as

(
z5 − α

)2 = (
z4 + b

)2 + (
z1

)2 + (
z2

)2 + (
z3

)2 + k1 (26)

3.1.2 Case 1B

Vanishing of second factor of (22) reads as

f (r) ¯̄f (r) − 1

2
f̄ 2(r) + 1

4r
f̄ 3(r) + 1

r
f (r)f̄ (r) = 0 (27)

which on integration yields

f (r) = e

[∫
1

√
(−e + Ar2)

dr + B

]2

, (28)

where A and B being constant of integration.
It has been observed that the u in (21) together with (28) does not represent perfect

fluid distributions as in the present case T 1
1 �= T 2

2 = T 3
3 = T 4

4 and T 1
4 = 0 (i.e. isotropic

conditions are not satisfied). However the u is capable of representing an anisotropic fluid
distributions. Various solutions of (28) depending upon (A = +m2,−m2,0 and e = ±1)
and the corresponding expressions for radial pressure pr , tangential pressure pθ and energy-
density ρ for various cases are displayed as below:

3.1.2.1. When A = +m2, e = −1 or A = −m2, e = 1 in (28), we get

f (r) = −
[

1

m
sinh−1(mr) + B

]2

(29)

The pressure and density are given by

8πpr = − 1

m2r4
, 8πpθ = −8πpr = 1

m2r4
,

8πρ = 8πpr − 2(1 + m2r2)
1
2

r3m[sinh−1(mr) + mB]

(30)

which is unphysical as pr < 0.

3.1.2.2. When A = −m2, e = −1 in (28), we get

f (r) = −
[

1

m
sin−1(mr) + B

]2

(31)

The corresponding pressures and density are given by

8πpr = 1

m2r4
, 8πpθ = −8πpr = − 1

m2r4
,

8πρ = 8πpr + 2(1 − m2r2)
1
2

r3m[sinh−1(mr) + mB]

(32)

Tangential pressure turns out to be negative and hence an anisotropic model is unphysical.
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3.1.2.3. When A = m2, e = 1 in (28), we get

f (r) =
[

1

m
cosh−1(mr) + B

]2

(33)

The expressions of pressures and density are given by

8πpr = 1

m2r4
, 8πpθ = −8πpr = − 1

m2r4
,

8πρ = 8πpr − 2(m2r2 − 1)
1
2

r3m[cosh−1(mr) + mB]

(34)

Tangential pressure turns out to be negative.

3.1.2.4. When A = 0, e = ±1 in (28), we get

f (r) = −[r + B]2 (35)

This case disturbs the metric conditions i.e. |gij | �= 0.

3.2 Case 2

For (a �= 0, k = 0), (19) are of the form

dr

ar
= dt

at + c
= du

au + b
(36)

Integrating (36), we get

u = −b

a
+ r

a
f (x) (37)

where x = ( at+c
r

) is the similarity variable.
On inserting the value of u from (37) into (14), we get the second order ordinary differ-

ential equation in f (x) which can assume the following factorized form

[
f (x) − xf̄ (x)

]
[

¯̄f (x)

(
x2

a2
− 1

)
− 1

a2
f 2(x) ¯̄f (x) + 1

a2
f (x) + 1

a4
f 3(x) − 1

a2
xf̄ (x)

− 3

a4
xf 2(x)f̄ (x) + 1

a4
f̄ 3(x)

(
a2x − x3

) + 1

a4
f (x)f̄ 2(x)

(
3x2 − a2

)] = 0 (38)

where f̄ (x) = df

dx
.

Expressions for pressure and density are given as

8πp = 8πρ = (xf̄ − f )2

r2[a2 − a2f̄ 2 + (xf̄ − f )2] , (39)

where f (x) is given by (38).
Vanishing of the first factor of (38) gives rise the flat space since the Riemannian curva-

ture tensor vanishes identically in the space time, it is said to be flat space and it is devoid of
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any gravitational significance. While the vanishing of second factor is further solved by the
similarity transformation method, we obtain infinitesimals ξ and η as [5]

ξ = Kf, η = Kx, (40)

Form of the solution can be obtained by solving the following with reference to (40)

dx

Kf
= df

Kx
= df̄

−K(−1 + f̄ 2)
(41)

Integration of first two gives

w2 = x2 − f 2. (42)

While the integration of second and third gives

v(x,f, f̄ ) = xf̄ − f

x − f f̄
(43)

A first order differential equation for v(w) can be found directly as follows

a2
(
w2 − a2

)
w

dv

dw
− (

w4 − a4
)
v3 − a4v = 0. (44)

On making use of (42) and (43) into (44), we get

xf̄ − f

x − f f̄
=

[
a2[−a2 + (x2 − f 2)]

−(x2 − f 2)2 − a4 + k1a2(x2 − f 2)

] 1
2

, (45)

k1 being a constant.
Equation (45) can easily be sent to the variable separable form by means of the trans-

formation x = R coshΦ , f = R sinhΦ and the equation yields the following solution in
quadrature form

Φ = 1

R

∫ (
a2(−a2 + R2)

−R4 − a4 + k1a2R2

) 1
2

dR (46)

where R2 = x2 − f 2, f

x
= tanhΦ .

The expressions for pressure and density are given as

8πp = 8πρ = (xf̄ − f )2

r2[a2 − a2f̄ 2 + (xf̄ − f )2] (47)

Hence, (47) represent a Zeldovich fluid (Stiff fluid). The solution is already available in
non-comoving system [9].

3.3 Case 3

For (a = 0, k = 0), (19) are of the form

dr

0
= dt

c
= du

b
(48)
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which immediately suggests the form of u as

u = αt + f (r) where α = b

c
. (49)

On inserting the value of u from (49) into (14), we have

r
(
1 − α2

)
f ′′ = −f ′(1 − α2 + f ′2) (50)

The general solution of (50) yields

f ′2 =
[

β(1 − α2)

(r2 − β)

]
(51)

where β being arbitrary constant of integration.
It is observed that (49) with (51) do not satisfy the isotropic conditions T 1

1 = T 2
2 = T 3

3 �=
T 4

4 . Instead we get the relation T 1
1 �= T 2

2 = T 3
3 = T 4

4 satisfied. Consequently, the present case
represents an anisotropic fluid with radial pressure pr , tangential pressure pθ and energy-
density ρ are given below

8πpr = β

r4
, 8πpθ = −8πpr = − β

r4
, 8πρ = β

r4
(52)

3.4 Case 4

For (a �= 0, k �= 0), (19) are of the form

dr

ar
= dt

ku + at + c
= du

kt + au + b
(53)

This case is extremely difficult to solved and unable to provide the similarity variable ex-
plicitly. Therefore the fluid solutions could not be derived.

4 Conclusion and Summary of the Results

We have obtained seven invariant solutions for non-conformally flat fluid distributions of
embedding class one. Some of the solutions in this paper are found for the first time. Physical
implications of the solutions are furnished as below one by one:

Case 1A is famous static solution due to Kohler-Chao [12] which is accelerating but
shear free. Case 1B consists one of these is flat space and the remaining three solutions are
anisotropic (i.e. T 1

1 �= T 2
2 = T 3

3 = T 4
4 and T 1

4 = 0) but unphysical as tangential and normal
pressures are not positive. Therefore, all these anisotropic models are unphysical.

Case 2 gives Zeldovich fluid which is accelerating and already available in non-comoving
system [9].

Case 3 gives anisotropic fluid distributions but unphysical due to the negative tangential
or normal pressures.

Case 4 could not be solved due to the unavailability of similarity variable.
A new class of solutions of Einstein field equations is investigated for nonconformally

flat fluid spherically symmetric space-time under the Lie group of transformations. Thus,
the plus points of the solutions so obtained are all expressible in 5-flat form and may be
used in the various theories named in the introduction.
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