
Int J Theor Phys (2014) 53:1710–1716
DOI 10.1007/s10773-013-1968-6

Hawking Radiation of Black Hole in Einstein-Proca
Theory

Shuzheng Yang · Kai Lin · Jin Li

Received: 6 October 2013 / Accepted: 17 December 2013 / Published online: 9 January 2014
© Springer Science+Business Media New York 2014

Abstract The Hawking radiation of black hole in Einstein-Proca theory is discussed in this
paper. The Einstein-Proca black hole is more general than Reissner-Nordström black hole,
because Proca field is massive vector field. We calculate several quantum perturbations in
this spacetime, and obtain the Hawking radiation at the horizon in Einstein-Proca theory.
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1 Introduction

General relativity predicted the black hole, which can capture any particle insider the event
horizon, so the observer at infinity is impossible to get any information and particle inside the
horizon of classical black hole. However, in 1976, Hawking introduced the quantum effect
into black hole physics, and proved the black hole could emit quantum thermal radiation
[1–3]. Basing on this theory, people constructed the black hole thermodynamic, which can
connect with gravity, quantum field theory and thermodynamic.

In 2000, Parikh and Wilczek et al. proposed that the Hawking radiation can be researched
by the quantum tunneling theory [4–7], and this work quickly attracted the interests of many
physicists [8–22]. Subsequently, Kernel and Mann studied the Dirac particle tunneling ra-
diation of black hole in 2008 [23, 24], and then Li, Chen, Jiang et al. used this method to
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research the Hawking tunneling radiation from Kerr black hole, 2 + 1 dimensional BTZ
black hole, and 4 + 1 dimensional black holes [25–35]. We propose a new method to derive
the semi-classical Hamilton-Jacobi Equation from Dirac equation in curved spacetime, and
finally get the Dirac Hawking tunneling radiation of black holes [36–39]. What’s more, we
also prove that other quantum equations, such as vector equation, spin 3/2 equation and
gravitational perturbation equation, could be simplified to Hamilton-Jacobi equation, so that
the Hamilton-Jacobi method can be used to uniformly calculate all kinds of tunneling radi-
ation from black hole. In this paper, we will use the Hamilton-Jacobi method to study the
Hawking radiation of black hole in Einstein-Proca theory.

2 Static Black Hole Solution in Einstein-Proca Theory

The Proca field is massive vector field, which action in curve spacetime can be given by [40]

S =
∫

d4x
√−g

(
R + 2Λ − 1

4
FαβF αβ + μ2

2
AνA

ν

)
, (1)

where Fαβ = ∂αAβ − ∂βAα is electromagnetic tensor, and μ is the mass of Proca particle.
The static spherical symmetrical spacetime metric is

ds2 = −N(r)2f (r)dt2 + dr2

f (r)
+ r2dθ2 + r2 sin2 θdϕ2. (2)

Substituting this metric into the action of Einstein-Proca theory, considering the four-
potential in static spacetime Aν = {A0(r),0,0,0}, we can get the differential equations

r2A′2
0 + 4N2

(
rf ′ + f − 1 − Λr2

) − μ2r2A2
0

f
= 0, (3)

μ2rA2
0

f 2
+ 4NN ′ = 0, (4)

μ2rA0 + f
(
rA′′

0 + 2A′
0

) − rf A′
0N

′

N
= 0. (5)

It is very difficult to get the analytic solution from above equations, but fortunately, the
research about Hawking radiation just needs to study the property near the horizon of black
hole.

The definition of the horizon r = r0 of static spacetime requires

f (r0) = 0. (6)

Therefore, at the event horizon of spacetime, we find A0(r0) = 0, which means that the
spacetime structure in Einstein-Proca spacetime cannot be reduced to Reissner-Nordström
spacetime as μ −→ 0. Now, let’s expand the f and A0 as follows

f = f ′(r0)(r − r0) + 1

2
f ′′(r0)(r − r0)

2 +O(r − r0)
3, (7)

A = A′
0(r0)(r − r0) + 1

2
A′′

0(r0)(r − r0)
2 +O(r − r0)

3, (8)

where setting a = f ′(r0), b = A′
0(r0) and c = A′′

0(r0). Because we discuss non-extreme
spacetime case in this paper, the condition a �= 0 is satisfied. Near the event horizon
r − r0 � 1, Eq. (4) can be expand, and then derived

N(r) =
√

1 − μ2b2

4a2
r2, (9)
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note that we choose the integral constant as 1, since N = 1 when μ is very small. Subse-
quently, combing the Eqs. (3), (5), (7) and (8) near the horizon, we obtain

b2r2
0 + 4

(
1 − μ2b2

4a2
r2

)(
ar0 − 1 − Λr2

0

) = 0, (10)

μ2br0

a
+ 2b + cr0 + b3μ2r2

0

4a2 − μ2b2r2
0

= 0, (11)

a and b can be solved by above two equations, where r0 and c are undetermined constants
which depend on the mass and charge of black hole. As c = 0, the solution is given by

a = 1 + Λr2
0

r0
, b = 0, (12)

as μ = 0, the solution is

a = 16 − c2r4
0 + 16Λr2

0

16r0
, b = − c

2
r0. (13)

However, it is difficult to get a general solution for Eqs. (10) and (11), so we have to use
diagrams to show the dynamical property of the Einstein-Proca black hole at horizon in this
paper.

3 Quantum Perturbation at Horizon and Hamilton-Jacobi Equation

Hawking radiation is quantum radiation, since the semi-classical Hamilton-Jacobi equation
will be derived in this section. First of all, in black hole spacetime, the scalar field equation
with mass μ called as Klein-Gordon equation, is given by

1√−g

(
∂

∂xα
− iq

�
Aα

)[√−ggαβ

(
∂

∂xβ
− iq

�
Aβ

)]
Φ − μ2

�2
Φ = 0. (14)

We set Φ = Ce
i
�

S , and consider the � is very small, so that we can keep the 0 order term by
expanding as �. Therefore, we can get the Hamilton-Jacobi equation

gαβ

(
∂S

∂xα
+ qAα

)(
∂S

∂xβ
+ qAβ

)
+ μ2 = 0. (15)

Because the Hamilton-Jacobi equation comes from Klein-Gordon equation, it depicts the
dynamical property of scalar particle in principle, but we will prove that this equation can
also be derived by other quantum field equations.

Dirac equation can depict the spin-1/2 particle field, such as neutrinos and electrons. The
Dirac equation in curved spacetime is

γ νDνΨ + μ

�
Ψ = 0, (16)

where

Dν = ∂ν + i

2
Γ αβ

ν Παβ, Παβ = i

4

[
γ α, γ β

]
, (17)

and the gamma matrixes satisfy the relationship {γ α, γ β} = 2gαβI . In semi-classical ap-
proximation, we can set [39]

Ψ = j
(
t, r, · · ·xη · · ·)e i

�
S(t,r,···xη ···) =

[
Am

2 ×1(t, r, · · ·xη · · ·)
Bm

2 ×1(t, r, · · ·xη · · ·)
]

e
i
�

S(t,r,···xη ···) (18)
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where j is a column matrix. Dividing by the exponential terms and multiplying by �, the
resulting equations to leading order in � are

iγ ν ∂S

∂xν
j + μj = 0. (19)

Multiplying both sides of above equation by the matrix −iγ ν ∂S
∂xν j , we obtain

γ μ ∂S

∂xμ
γ ν ∂S

∂xν
j − iγ ν ∂S

∂xν
μj = 0. (20)

Using the relationship −iγ ν ∂S
∂xν j = μj to simplify Eq. (20), we get

γ μ ∂S

∂xμ
γ ν ∂S

∂xν
j + μ2j = 0. (21)

Exchanging μ and ν in Eq. (21), it is

γ ν ∂S

∂xν
γ μ ∂S

∂xμ
j + μ2j = 0, (22)

(Eqs. (34) + Eq. (35))/2, it is given by

1

2

{
γ μ, γ ν

} ∂S

∂xν

∂S

∂xμ
j + μ2j = 0. (23)

Finally, considering the relationship {γ μ, γ ν} = 2gμνI , the matrix equation becomes(
gμν ∂S

∂xν

∂S

∂xμ
+ μ2

)
j = 0, (24)

so

det

(
gμν ∂S

∂xν

∂S

∂xμ
+ μ2

)
= 0. (25)

It is no other than the Hamilton-Jacobi equation (14). Therefore, it is proven that Hamilton-
Jacobi equation can depict the Dirac particle in black hole spacetime.

In Einstein-Proca spacetime background, the radiation could also be Proca particle, and
vector field equation in curved spacetime is given by [41, 42]

F̃
βα

;α − μ2

�2
= 0. (26)

Note that the μ is the mass of radiation of Proca particle. We can choose the gauge Ãα
;α = 0,

so equation becomes

Ã
;α
β;α − μ2

�2
Ãβ = 0. (27)

So we let Ãβ = aβe
i
�

S . After dividing by the exponential terms and multiplying by �, the
resulting equations to leading order in � are Hamilton-Jacobi equation.

Another famous perturbation field is gravitational perturbation which can be derived by
classical gravity field equation. Consider the metric can be rewritten as gαβ = ḡαβ + hαβ ,
where the ḡαβ and hαβ are spacetime background part and perturbation part respectively.
The gauge usually is ∇αhαβ = 0, and the gravitational wave equation in curved spacetime is
given by [43]

h
;ν
ab;ν − Radbch

ac = 0, (28)
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where, the Radbc is Riemann tensor of background spacetime. Next, we let hab = babe
i
�

S ,
and ignore all small terms with �, we can get a massless Hamilton-Jacobi equation

gαβ ∂S

∂xα

∂S

∂xβ
= 0, (29)

because graviton in general relativity is massless, and gravitational wave radiate at speed of
light. Recently, some works also show that the graviton could have mass in several modify
gravity.

4 Hawking Temperature and Tunneling Rate of Einstein-Proca Black Hole

In Sect. 3, we have proven that all kinds of quantum field equation can become as Hamilton-
Jacobi equation, so the semi-classical equation can depict Hawking radiation as any quantum
particle. Now let’s separate the variable for the action S as

S = −ωt + W(r) + Y (θ,ϕ), (30)

and substituting the black hole metric (1), we can get the radial Hamilton-Jacobi equation

− (ω − qA0)
2

N2f
+ f

(
dW

dr

)2

+ μ2 = λ

r2
, (31)

where the λ is constant, and W in above equation can be solved as

W±(r) =
∫

dr

√
(ω − qA0)2 + N2(r0)f ′(r0)(r − r0)(

λ

r2 − μ2)

N(r0)f ′(r0)(r − r0)
= ±iπ

ω − ω0

N(r0)f ′(r0)
, (32)

where ω0 = qA0(r0). Note the condition A0(r0) = 0 in Sect. 2, we get

W±(r) = ± iπω

N(r0)f ′(r0)
= ± iπω

N(r0)a
. (33)

Therefore, the tunneling rate at the event horizon of black hole is

Γ = e−2(�W+−�W−) = exp

(
−4π

ω

N(r0)a

)
, (34)

and the Hawking radiation is given by

Th = a

4π
N(r0). (35)

It is evident that charged particle in Einstein-Proca spacetime doesn’t depend on the poten-
tial Aν . According to Eq. (12), as c = 0, we have

Th = 1 + Λr2
0

4πr0

√
1 − μ2b2

4a2
r2

0 . (36)

If ignore the cosmology constant Λ, we find the temperature will be lower as black hole is
bigger. As μ = 0, we get

Th =
(

1 + Λr2
0

4πr0
− c2r4

0

64πr0

)√
1 − μ2b2

4a2
r2

0 . (37)

The diagram (Fig. 1) shows the temperature property of Einstein-Proca black hole, where
r0 = 1. It’s evident that the c can result in the temperature decrease, but the mass of Proca
mass m can cause the temperature increase.
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Fig. 1 The Relationship of c, Th

and μ

5 Conclusion

We study the Hawking tunneling radiation of black hole in Einstein-Proca theory. Our results
show that the potential Aν at horizon is 0, so the temperature of black hole doesn’t depend
on the potential. Our work also shows that the massive black hole has low temperature but
the mass of Proca field could cause the temperature of black hole increase. Of course, the
effect of Proca field mass is very weak.
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In quantum field theory, the mass of field particle can be produced by the Higgs mecha-
nism, which comes from the U(1) symmetry breaking. Recently, LHC have gotten several
results to support the Higgs particle, so the research about Proca field could be intriguing.
On the other hand, the experiment of Luo et al. proved that the mass of photon should be
lower than (0.9 ± 1.5) × 10−52 g, but it still can not rule out the probability of massive pho-
ton [44, 45], and it should use Proca theory to depict the property of electromagnetic field if
photon has rest mass.

Acknowledgements This work is supported by National Natural Science Foundation of China
Nos. 11178018, 11075224 and 11205254, and the Natural Science Foundation Project of CQ CSTC,
2011BB0052.

References

1. Hawking, S.W.: Nature 248, 30 (1974)
2. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)
3. Damoar, T., Ruffini, R.: Phys. Rev. D 14, 332 (1976)
4. Kraus, P., Wilczek, F.: Nucl. Phys. B 433, 403 (1995). arXiv:gr-qc/9408003
5. Robinson, S.P., Wilczek, F.: Phys. Rev. Lett. 95, 011303 (2005). arXiv:gr-qc/0502074
6. Iso, S., Umetsu, H., Wilczek, F.: Phys. Rev. D 74, 044017 (2006). arXiv:hep-th/0606018
7. Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000). arXiv:hep-th/9907001
8. Zhang, J.Y., Zhao, Z.: Phys. Lett. B 638, 110 (2006). arXiv:gr-qc/0512153
9. Hemming, S., Keski-Vakkuri, E.: Phys. Rev. D 64, 044006 (2001). arXiv:gr-qc/0005115

10. Wu, S.Q., Jiang, Q.Q.: J. High Energy Phys. 0603, 079 (2006)
11. Vagenas, E.C.: Mod. Phys. Lett. A 17, 609 (2002). arXiv:hep-th/0108147
12. Medved, A.J.M.: Phys. Rev. D 66, 124009 (2002). arXiv:hep-th/0207247
13. Srinivasan, K., Padmanabhan, T.: Phys. Rev. D 60, 24007 (1999). arXiv:gr-qc/9812028
14. Akhmedov, E.T., Akhmedova, V., Singleton, D.: Phys. Lett. B 642, 124 (2006)
15. Angheben, M., Nadalini, M., Vanzo, L., Zerbini, S.: J. High Energy Phys. 0505, 014 (2005)
16. Shankaranarayanan, S., Padmanabhan, T., Srinivasan, K.: Class. Quantum Gravity 19, 2671 (2002)
17. Cai, R.G., Cao, L.M., Hu, Y.P.: J. High Energy Phys. 0808, 090 (2008). arXiv:0807.1232 [hep-th]
18. Banerijee, R., Majhi, B.R.: J. High Energy Phys. 0806, 095 (2008). arXiv:0805.2220
19. Majhi, B.R.: Phys. Rev. D 79, 044005 (2009). arXiv:0809.1508
20. Modak, S.K.: Phys. Lett. B 671, 167 (2009). arXiv:0807.0959
21. Lin, K., Yang, S.Z.: Europhys. Lett. 82, 20006 (2009)
22. Lin, K., Yang, S.Z.: Int. J. Theor. Phys. 48, 2920 (2009)
23. Kerner, R., Mann, R.B.: Class. Quantum Gravity 25, 095014 (2008). arXiv:0710.0612 [hep-th]
24. Kerner, R., Mann, R.B.: Phys. Lett. B 665, 277 (2008). arXiv:0803.2246 [hep-th]
25. Chen, D.Y., Jiang, Q.Q., Zu, X.T.: Class. Quantum Gravity 25, 205022 (2008). arXiv:0803.3248 [hep-th]
26. Chen, D.Y., Jiang, Q.Q., Zu, X.T.: Phys. Lett. B 665, 106 (2008). arXiv:0804.0131 [hep-th]
27. Li, R., Ren, J.R., Wei, S.W.: Class. Quantum Gravity 25, 125016 (2008). arXiv:0803.1410 [gr-qc]
28. Li, R., Ren, J.R.: Phys. Lett. B 661, 370 (2008). arXiv:0802.3954 [gr-qc]
29. Li, H.L., Yang, S.Z., Zhou, T.J., Lin, R.: Europhys. Lett. 84, 20003 (2008)
30. Criscienzo, R.D., Vanzo, L.: Europhys. Lett. 82, 60001 (2008). arXiv:0803.0435 [hep-th]
31. Yang, S.Z., Lin, K., Yang, J.: Mod. Phys. Lett. A 24, 2187 (2009)
32. Lin, K., Yang, S.Z.: Chin. Phys. B 18, 2154 (2009)
33. Lin, K., Yang, S.Z.: Chin. Phys. Lett. 26, 010401 (2009)
34. Jiang, Q.Q.: Phys. Rev. D 78, 044009 (2008)
35. Jiang, Q.Q.: Phys. Lett. B 666, 517 (2008)
36. Lin, K., Yang, S.Z.: Phys. Rev. D 79, 064035 (2009)
37. Lin, K., Yang, S.Z.: Phys. Lett. B 674, 127 (2009)
38. Yang, S.Z., Lin, K.: Sci. China 40, 507 (2010) (in Chinese)
39. Lin, K., Yang, S.Z.: Chin. Phys. B 20, 110403 (2011)
40. Torii, T., Maeda, K.-I., Tachizawa, T.: Phys. Rev. D 51, 1510 (1995). arXiv:gr-qc/9406013
41. Rosa, J.G., Dolan, S.R.: Phys. Rev. D 85, 044043 (2012). arXiv:1110.4494
42. Konopya, R.A.: Phys. Rev. D 73, 024009 (2009). arXiv:gr-qc/0509026
43. Flanagan, E.E., Hughes, S.A.: New J. Phys. 7, 204 (2005). arXiv:gr-qc/0501041
44. Tu, L.C., Shao, C.C., Luo, J.: Phys. Lett. A 352, 267 (2006)
45. Tu, L.C., Luo, J.: Physics 35, 779 (2006) (in Chinese)

http://arxiv.org/abs/arXiv:gr-qc/9408003
http://arxiv.org/abs/arXiv:gr-qc/0502074
http://arxiv.org/abs/arXiv:hep-th/0606018
http://arxiv.org/abs/arXiv:hep-th/9907001
http://arxiv.org/abs/arXiv:gr-qc/0512153
http://arxiv.org/abs/arXiv:gr-qc/0005115
http://arxiv.org/abs/arXiv:hep-th/0108147
http://arxiv.org/abs/arXiv:hep-th/0207247
http://arxiv.org/abs/arXiv:gr-qc/9812028
http://arxiv.org/abs/arXiv:0807.1232
http://arxiv.org/abs/arXiv:0805.2220
http://arxiv.org/abs/arXiv:0809.1508
http://arxiv.org/abs/arXiv:0807.0959
http://arxiv.org/abs/arXiv:0710.0612
http://arxiv.org/abs/arXiv:0803.2246
http://arxiv.org/abs/arXiv:0803.3248
http://arxiv.org/abs/arXiv:0804.0131
http://arxiv.org/abs/arXiv:0803.1410
http://arxiv.org/abs/arXiv:0802.3954
http://arxiv.org/abs/arXiv:0803.0435
http://arxiv.org/abs/arXiv:gr-qc/9406013
http://arxiv.org/abs/arXiv:1110.4494
http://arxiv.org/abs/arXiv:gr-qc/0509026
http://arxiv.org/abs/arXiv:gr-qc/0501041

	Hawking Radiation of Black Hole in Einstein-Proca Theory
	Abstract
	Introduction
	Static Black Hole Solution in Einstein-Proca Theory
	Quantum Perturbation at Horizon and Hamilton-Jacobi Equation
	Hawking Temperature and Tunneling Rate of Einstein-Proca Black Hole
	Conclusion
	Acknowledgements
	References


