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Abstract We study the Einstein system of equations in static spherically symmetric space-
times. We obtained classes of exact solutions to the Einstein system by transforming the
condition for pressure isotropy to a hypergeometric equation choosing a rational form for
one of the gravitational potentials. The solutions are given in simple form that is a desirable
requisite to study the behavior of relativistic compact objects in detail. A physical analysis
indicate that our models satisfy all the fundamental requirements of realistic star and match
smoothly with the exterior Schwarzschild metric. The derived masses and densities are con-
sistent with the previously reported experimental and theoretical studies describing strange
stars. The models satisfy the standard energy conditions required by normal matter.

Keywords Einstein field equations · Exact solutions · Strange stars

1 Introduction

Static solutions of the Einstein’s field equations for spherically symmetric manifolds are
important in the description of relativistic spheres in astrophysics. First two exact solutions
for the Einstein’s field equations were obtained by Schwarzschild [1, 2] about a century
ago; one solution describing the geometry of the space-time exterior to a prefect relativistic
fluid sphere in hydrostatic equilibrium, and the other corresponding to the interior geome-
try of a fluid sphere of homogeneous energy-density. There have been considerable efforts
since then to find exact solutions to the Einstein’s field equations for the interior space-time
that smoothly match to the Schwarzschild exterior [1] and such generated models becomes
physically admissible to describe compact relativistic spheres with strong gravitational fields

S. Thirukkanesh (B)
Department of Mathematics, Eastern University, Chenkalady, Sri Lanka
e-mail: thirukkanesh@yahoo.co.uk

F.C. Ragel
Department of Physics, Eastern University, Chenkalady, Sri Lanka
e-mail: chalmusragel@gmail.com

mailto:thirukkanesh@yahoo.co.uk
mailto:chalmusragel@gmail.com


Int J Theor Phys (2014) 53:1188–1200 1189

such as in neutron stars for example. However, only a few of these solutions correspond to
non-singular metric functions with physically acceptable energy momentum tensor [3–9]. In
fact, the interior Schwarzschild solution provides two important features towards obtaining
configurations in hydrostatic equilibrium: (i) an absolute upper limit on compaction param-
eter (mass-to-radius ratio) for any static spherical solution (provided the density decreases
monotonically outwards from the centre) in hydrostatic equilibrium [10], and (ii) an as-
signed value of the compaction parameter, the minimum central pressure, corresponds to
the homogeneous density solution [11].

There have been significant experimental developments in recent years and a number of
attempts have been made on measuring the radii and masses of dense astrophysical objects;
e.g. observations on double neutron star [12], glitches in radio pulsars [13], thermal emission
[14, 15] from accreting neutron star and from millisecond X-ray pulsars, pressure on neutron
star matter at supranuclear density [16], etc. Mass-to-radius ratio of astrophysical objects
provides a vital clue to distinguish different stars such as white dwarf, neutron stars and
strange stars from one another [17]. Stellar objects such as SAX, Her.X-1 and other low-
mass X-ray binaries have been differently interpreted at times [18] and hence compaction
parameter is suggested to be a good measure in this study to differentiate compact stellar
objects.

The study of experimental data of highly dense stars have been reported in literature with
various theoretical approaches. Strange quark matter model [19–21] with linear equation of
state have been of particular interest, modelling such compact stars [22–28]. There have also
been interpretations with quadratic equation of states [29, 30], linear or nonlinear equation
of state [31] and polytrophic equation of states [32, 33].

In this work we seek new classes of solutions to the Einstein system in static spherically
symmetric spacetimes with isotropic matter distribution which satisfy the physical criteria
[34]:

(i) regularity of the gravitational potentials at the origin;
(ii) positive definiteness of the energy density and the radial pressure at the origin;

(iii) vanishing of the pressure at some finite radius;
(iv) monotonic degrease of the energy density and the radial pressure with increasing ra-

dius.
(v) casuality condition: speed of sound should be less than the speed of light.

In addition the generated models satisfy the junction condition: interior metric match
smoothly with the Schwarzschild exterior metric at the boundary.

2 The Field Equations

The internal structure of a dense compact relativistic sphere in static spherically symmetric
spacetime can be described by the line element

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (1)

in Schwarzschild coordinates (xa) = (t, r, θ,φ). The Einstein field equations for a neutral
perfect fluid matter distribution can be written in the form

ρ = 1

r2

[
r
(
1 − e−2λ

)]′
, (2)
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p = − 1

r2

(
1 − e−2λ

) + 2ν ′

r
e−2λ, (3)

p = e−2λ

(
ν ′′ + ν ′2 + ν ′

r
− ν ′λ′ − λ′

r

)
, (4)

where primes denote differentiation with respect to the radial coordinate r . The energy den-
sity ρ and the pressure p are measured relative to the comoving fluid 4-velocity ua = e−νδa

0 ;
and we use the units for the coupling constant 8πG

c4 = 1 and the speed of light c = 1. The
system of (2)–(4) determines the behaviour of the gravitational field for a neutral perfect
fluid source. The mass contained within a radius r of the sphere is defined as

m(r) = 1

2

∫ r

0
ω2ρ(ω)dω. (5)

If we introduce the transformation

x = Cr2, Z(x) = e−2λ(r), A2y2(x) = e2ν(r), (6)

where A and C are arbitrary constants, the system (2)–(4) has the equivalent form

ρ

C
= 1 − Z

x
− 2Ż, (7)

p

C
= 4Z

ẏ

y
+ Z − 1

x
, (8)

0 = 4Zx2ÿ + 2Żx2ẏ + (Żx − Z + 1)y, (9)

where dots represent differentiation with respect to x. The mass function (5) becomes

m(x) = 1

4C3/2

∫ x

0

√
wρ(w)dw, (10)

in terms of the new variables in (6).

3 Choosing Potential

The Einstein system (7)–(9) comprises three equations in the four unknowns Z,y,ρ and p.
Therefore we have the freedom to choose one of the gravitational potential to integrate the
master equation (9), called the generalised condition of pressure isotropy. In this treatment
we specify the gravitational potential Z on physical ground, so that it is possible to integrate
(9). The explicit solution of the Einstein system (7)–(9) then follows. We choose a particular
form

Z = 1 + ax

1 + bx
, (11)

where a and b are real constants. This form of gravitational potential have been previously
used to model charged isotropic compact objects [35] and it contains physically acceptable
neutron star models as special case: for example, when a = − 1

2 and b = 1 we regain the
dense neutron star model of Durgapal and Bannerji [3]; and when a = −1 and b = 7 we
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regain Tikekar super dense star model [6]. These solutions can be used to model a relativis-
tic compact sphere with desirable physical properties. We attempt to find new classes of
solutions with the choice (11) to the Einstein system in closed form.

Substituting (11) into (9) we obtain

4(1 + ax)(1 + bx)ÿ + 2(a − b)ẏ + b(b − a)y = 0. (12)

The differential equation (12) is difficult to solve in the above form; we first introduce a
transformation to obtain a more convenient form. We let

X = a

(a − b)
(1 + bx), Y (X) = y(x), a �= b �= 0. (13)

With the help of (13), (12) becomes

X[X − 1] d2Y

dX2
+ 1

2

dY

dX
−

[
a − b

4a

]
Y = 0 (14)

in terms of the new dependent and independent variables Y and X respectively, which is a
Gaussian type hypergeometric equation.

4 Exact Solutions

The general solution of the hypergeometric equation (14) is given by

Y = C1F

(
α,−(α + 1),−1

2
;X

)
+ C2X

3/2F

(
3

2
+ α,

1

2
− α,

5

2
;X

)
(15)

in terms hypergeometric functions, where C1,C2 are constants of integration and α = [−1±√
(2a − b)/a]/2.
It is noted that in some special cases a hypergeometric function can be expressed in terms

of elementary functions [36]. We illustrate some of such cases below as examples.

4.1 Case I: 2a + b = 0

In this case (15) becomes

Y = C1F

(
−3

2
,

1

2
,−1

2
;X

)
+ C2X

3/2F

(
0,2,

5

2
;X

)
, (16)

which can be expressed as

Y = C1(1 + 2X)
√

X − 1 + C2X
3
2 . (17)

Therefore the general solution for (12) becomes

y = d1(5 − 4ax)
√

1 + ax + d2(1 − 2ax)
3
2 , (18)

where d1 and d2 are new arbitrary constants. It is easy to see that this solution reduces to
the Durgapal and Bannerji [3] neutron stars model when a = − 1

2 that satisfies all physical
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requirements of realistic neutron stars. For the solution (18) the physical quantities takes the
form:

e2λ = 1 − 2ax

1 + ax
; (19)

e2ν = A2
[
d1(5 − 4ax)

√
1 + ax + d2(1 − 2ax)

3
2
]2; (20)

ρ = −3aC(3 − 2ax)

(1 − 2ax)2
; (21)

p = 9aC[d1(1 − 4ax)
√

1 + ax − d2(1 + 2ax)
√

1 − 2ax]
(1 − 2ax)[d1(5 − 4ax)

√
1 + ax + d2(1 − 2ax)

3
2 ]

; (22)

and the mass function (10) becomes

m(x) = −3ax
3
2

2
√

C(1 − 2ax)
. (23)

4.2 Case II: 2a − b = 0

Here (15) reduces to

Y = C1F

(
−1

2
,−1

2
,−1

2
;X

)
+ C2X

3/2F

(
1,1,

5

2
;X

)
, (24)

which can be expressed in terms of elementary function

Y = C1

√
1 − X + C2

√
1 − X

(
ln[√−X + √

1 − X] −
√−X√
1 − X

)
. (25)

Hence, the general solution for (12) becomes

y = g1

√
1 + ax + g2

(√
2(1 + ax) ln

[√
2(1 + ax) + √

1 + 2ax
] − √

1 + 2ax
)
, (26)

where g1 and g2 are new arbitrary constants. For the solution (26) the physical quantities
takes the form:

e2λ = 1 + 2ax

1 + ax
; (27)

e2ν = A2
[
g1

√
1 + ax + g2

(√
2(1 + ax) ln

[√
2(1 + ax) + √

1 + 2ax
] − √

1 + 2ax
)]2;

(28)

ρ = −8aC(3 − 7ax)

(1 − 7ax)2
; (29)

p = {
aC

[
g1(1 + ax)

(√
1 + 2ax + √

2(1 + ax)
) + g2

(
(1 + 2ax)

(√
1 + ax

+ √
2(1 + 2ax)

) + (1 + ax)
(
2
√

1 + ax + √
2(1 + 2ax)

))
sinh−1[√1 + 2ax]]}

/
{√

1 + ax(1 + 2ax)
(√

1 + 2ax + √
2(1 + ax)

)

× [
g1

√
1 + ax − g2

(√
1 + 2ax + √

2sinh−1[√1 + 2ax])]}; (30)
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and the mass function (10) takes the form

m(x) = ax
3
2

2
√

C(1 + 2ax)
. (31)

4.3 Case III: 7a − 4b = 0

In this case (15) reduces to

Y = C1F

(
−1

4
,−3

4
,−1

2
;X

)
+ C2X

3/2F

(
5

4
,

3

4
,

5

2
;X

)
, (32)

which has the particular form

Y = C1X
3
2 [1 + √

1 − X]− 3
2 + C2[1 + √

1 − X] 3
2 . (33)

Therefore the general solution for (12) becomes

y = D1(4 + 7ax)
3
2
(√

3 + √
7(1 + ax)

)− 3
2 + D2

(√
3 + √

7(1 + ax)
) 3

2 , (34)

where D1 and D2 are new arbitrary constants. In this case the physical quantities can be
written explicitly as:

e2λ = 4 + 7ax

4(1 + ax)
; (35)

e2ν = A2
[
D1(4 + 7ax)

3
2
(√

3 + √
7(1 + ax)

)− 3
2 + D2

(√
3 + √

7(1 + ax)
) 3

2
]2; (36)

ρ = 3aC(12 + 7ax)

(4 + 7ax)2
; (37)

p = {
3aC

[
D1

√
4 + 7ax

(√
7(1 + ax)(36 + 21ax) + √

3(52 + 49ax)
)

+ D2

(
264 + 420ax + 147a2x2 + 56

√
21(1 + ax)

3
2
)]}

/
{
(4 + 7ax)

(√
3 + √

7(1 + ax)
)[

D1(4 + 7ax)
3
2

+ D2

(√
7(1 + ax)(16 + 7ax) + 3

√
3(8 + 7ax)

)]}; (38)

and the mass function (10) becomes

m(x) = 3ax
3
2

2
√

C(4 + 7ax)
. (39)

4.4 Case IV: 7a + b = 0

In this case (15) becomes

Y = C1F

(
1,−2,−1

2
;X

)
+ C2X

3/2F

(
5

2
,−1

2
,

5

2
;X

)
, (40)
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which has a particular form

Y = C1
[
1 + 4X − 8X2

] + C2X
3
2
√

1 − X. (41)

Therefore the general solution for (12) takes the form

y = k1

√
1 + ax(1 − 7ax)

3
2 + k2

[
1 + 1

2
(1 − 7ax) − 1

8
(1 − 7ax)2

]
, (42)

where k1 and k2 are new arbitrary constants. It can be shown that the class of solution (42)
reduces to the Tikekar super dense star model [6] when a = −1. The Tikekar super dense
models are shown to be useful to study the behaviour of relativistic stars having highly dense
matter, cold compact matter.

For the solution (42) the physical quantities takes the form:

e2λ = 1 − 7ax

1 + ax
; (43)

e2ν = A2

[
k1

√
1 + ax(1 − 7ax)

3
2 + k2

(
1 + 1

2
(1 − 7ax) − 1

8
(1 − 7ax)2

)]2

; (44)

ρ = −8aC(3 − 7ax)

(1 − 7ax)2
; (45)

p = 16aC[k2[2 − 7ax(5 + 7ax)] − 8k1
√

(1 + ax)(1 − 7ax)(2 + 7ax)]
(1 − 7ax)[8k1

√
1 + ax(1 − 7ax)

3
2 + k2[11 − 7ax(2 + 7ax)]]

; (46)

and the mass function (10) becomes

m(x) = −4ax
3
2√

C(1 − 7ax)
. (47)

We should pointed out that in all these cases the physical quantities are expressed in
simple elementary functions that is necessary for detailed study of physical properties with
ease. The mass functions we obtained are similar to mass functions used by Matese and
Whitman [37] to generate equilibrium configurations in general relativity, Finch and Skea
[5] to study the behaviour of neutron star and Mak and Harko [38] to analyze anisotropic
relativistic stars. It is noted that the solutions given in Case I and Case IV may be regained
as special cases of Thirukkanesh and Maharaj [35] charged model in the limit of vanishing
electric field intensity. However, the physical significance of these solutions was not shown
through a detailed analysis. Moreover, the classes of solutions obtained in Case II and Case
III cannot be regained from Thirukkanesh and Maharaj charged model [35] and we believe
that these classes are new solutions for the Einstein system of field equations.

5 Physical Analysis

In this section, we discuss the physical properties that has to be satisfied by realistic star for
the model generated in Case I in detail.

(i) Regularity of the gravitational potentials at the origin.
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It is easy to show that e2λ(0) = 1, e2ν(0) = A2(5d1 + d2) and [e2λ(r)]′ = [e2ν(r)]′ = 0 at the
centre r = 0. This shows that the gravitational potentials are regular at the centre of the
star.

(ii) Positive definiteness of the energy density and the radial pressure at the origin.

Since the energy density at the centre is ρ(0) = −9aC, to satisfy positive definiteness con-
dition we must take a < 0.

The matter pressure at the centre is p(0) = −9aC
(d2−d1)

(5d1+d2)
. Therefore to satisfy the posi-

tive definiteness property we have to choose the constants of integration d1 and d2 such that
d2 > d1 > − d2

5 or d2 < d1 < − d2
5 .

(iii) Vanishing of the radial pressure at some finite radius.

At the boundary of the star r = R the condition p(R) = 0 implies

d1
(
1 − 4aCR2

)√
1 + aCR2 − d2

(
1 + 2aCR2

)√
1 − 2aCR2 = 0. (48)

This shows that the radius of the star R depend on the parameters a,C and the arbitrary
constants d1, d2.

Junction condition: Interior metric match smoothly with the Schwarzschild exterior metric:

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)

across the boundary r = R, where M is the total mass of the sphere. This generate the
conditions:

(
1 − 2M

R

)−1

= 1 − 2aCR2

1 + aCR2
(49)

(
1 − 2M

R

)
= A2

[
d1

(
5 − 4aCR2

)√
1 + aCR2 + d2

(
1 − 2aCR2

) 3
2
]2

. (50)

Although condition (49) does not impose any restriction on the parameters, condition (50)
restricts the parameter A as

A2 = 1 + aCR2

(1 − 2aCR2)[d1(5 − 4aCR2)
√

1 + aCR2 + d2(1 − 2aCR2)
3
2 ]2

.

We shall show the other conditions such as monotonic degrease of the energy density and
the radial pressure with increasing radius, and casuality property by plotting figures for the
relevant parameters for a particular example.

In view of comparing our model with realistic stars, values of model parameters and the
relevant physical parameters calculated for various strange star candidates RXJ 1856-37,
SAX J1808.4-3658(SS2), Her. X-1, SAX J1808.4-3658(SS1) and 4U 1820-30 in respective
order are given in the Table 1. As stated a < 0 above, taking a = −1 as an example, we show
that this model satisfy the necessary physical requirements. In the calculation of numerical
values for the physical parameters in the Table 1, we fixed values for parameters a = −1
and d2 = 7 and used values for the parameters d1 and C as given in the Table 1 such that the
pressure at the boundary p(R) = 0 (i.e. equation (48) satisfied).



1196 Int J Theor Phys (2014) 53:1188–1200

Table 1 Pressure, density and mass for different stellar models

d1 C R

[km]
p(0)

[×1035dyne cm−2]
ρ(0)

[×1015gcm−3]
ρ(R)

[×1015gcm−3]
M

[M�]

2.95980 0.00583 6 9.7205 2.81275 1.59066 0.90044

1.44697 0.00860 6.35 30.1807 4.14917 1.78109 1.31998

3.05488 0.00451 6.7 7.1882 2.17537 1.25105 0.98001

1.56540 0.00670 7.07 22.0922 3.23250 1.41817 1.43951

0.95158 0.00398 10 18.4182 1.92020 0.75325 2.24968

Our calculated masses 1.44M� and 1.32M� for radii 7.07 km and 6.35 km respectively,
well corroborates with theoretical model [18] reported analysing pulsars SAX J1808.4-3658
(SS1 & SS2), which is also shown to be consistent with observational data and remarkable
accord with the strange star models [18]. Our calculated values for surface densities for SAX
J1808.4-3658 (SS1 & SS2) in Table 1 are more than five times of nuclear saturation density
ρn, suggesting the chargeless beta-stable (u,d,s) quarks may form the surface of the compact
star with central core density in the order of 10ρn, which substantiate the reported claim
for strange star. Moreover, Mass-radius relation studies using different theoretical models to
analyze the original experimental observations associated with cyclotron line data from the
X-ray pulsar Her X-1 [39, 40], and with the X-ray burst spectra of 4U 1820-1830 [41], have
shown that they are good strange star candidates. Our calculations of surface densities show
ρ(R) = 4.6ρn and ρ(0) = 8ρn for Her X-1, and ρ(R) = 2.8ρn and ρ(0) = 7.1ρn for 4U
1820-30. Moreover, our calculated masses for respective strange star candidates coincide
with the values of Tikekar and Jotania [17]. Therefore we compare the compaction parame-
ter (mass-to-radius ratio) in [17]: u > 0.3 for pulsars SAX J1808.4-3658 (SS1 & SS2) and
4U 1820-30 suggests they are strange stars of type I, and Her X-1 and RXJ 1856-37 are of
type II (0.2 < u < 0.3), and the u value for neutron star counterparts are considered to be
still lower.

To illustrate the radial dependence of physical quantities of the model, Figs. 1–6 were
plotted for the same parameter values utilised in Table 1 corresponding for SAX J1808.4-
3658 (SS1) with radius R = 7.07 km. Figures 1 and 2 shows that the gravitational potential
is finite and continuous at the interior and increases radially. Figure 3 illustrates that the
energy density of the star decreases continuously from a value ρ(0) = 12ρn at the centre
to ρ(7.07) = 5.25ρn at the surface where the isotropic interior matter pressure vanishes
as illustrated in Fig. 4. The isotropic pressure increases continuously towards the origin
from zero at the surface and reaches a maximum value p(0) = 22.09 × 1035 dyne cm−2 at
the centre. Figure 5 shows that 0 <

dp

dρ
< 1 throughout the interior of the star and hence

satisfy the casuality condition: the speed of sound is less than the speed of light through
out the interior of star. The combinations dp

dρ
and p

ρ
are related to speed of sound vs as

v2
s = dp

dρ
= γ

p

ρ
, and the bulk modulus κ = γp (where γ is the adiabatic index) gives a

measure of the stiffness of the substance. Hence, the marginal increase and decrease of
v2

s (8 %) shown in Fig. 5 suggests adiabatic perturbations in the properties of the interior
substance of the star. The observed decrease in ρ in Fig. 3 should increase vs towards the
surface, but the v2

s behaviour observed in Fig. 5 (i.e. a marginal increase of about 2.3 %
and decrease) shows the fluctuation in the decreasing trend of the stiffness κ in the interior
material as r increases.

Note that Figs. 3 and 4 respectively show ρ > 0 and p ≥ 0 throughout the interior of
the star, and from the physical analysis it is observed that the models satisfy the null energy



Int J Theor Phys (2014) 53:1188–1200 1197

Fig. 1 Gravitational potential
e2ν

Fig. 2 Gravitational potential
e2λ

Fig. 3 Energy density

condition (ρ + p ≥ 0), weak energy condition (ρ ≥ 0 and ρ + p ≥ 0) and strong energy
condition (ρ + 3p ≥ 0 and ρ + p ≥ 0). Moreover, Fig. 6 shows ρ − p > 0 throughout the
interior of the star, implying the model also satisfy the dominant energy condition (ρ ≥ 0
and ρ ± p ≥ 0), and hence collectively satisfying the standard point-wise energy condition
[42] of normal matter. The above detailed study is for a particular example from Case I.
Given the simplicity of the models generated in subsequent cases, similar analysis can be
performed without much difficulty.

6 Conclusion

We have obtained four classes of solutions to the Einstein system in static spherically sym-
metric spacetimes by transforming the pressure isotropic condition into a hypergeometric
equation by choosing a generalised rational form for one of the gravitational potentials. In
general the solution is obtained in terms of hypergeometric functions and we extract four
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Fig. 4 Matter pressure

Fig. 5 The derivative dp/dρ

Fig. 6 The difference ρ − p

classes of solutions in terms of simple elementary functions as examples which would be
desirable to study the physical behavior of relativistic compact objects in detail. A physical
analysis show that our models satisfy all the fundamental requirements of a realistic star
and match smoothly with the exterior Schwarzschild metric. We have demonstrated that our
models yield stellar structures with masses and densities consistent with the previously re-
ported experimental and theoretical studies in the description of strange stars. The models
satisfy the standard point-wise energy condition that is required by normal matter. Therefore
it is likely that our solutions may be helpful in the gravitational description of dense and ul-
tradense stellar bodies such as SAX J1808.4-3658, 4U 1820-30, RXJ 1856-37, Her. X-1, etc.
We believe that the classes of exact solutions found in this paper may assist in more detailed
studies of relativistic compact stellar bodies and allow for varied matter distributions.
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