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Abstract We theoretically study the entanglement dynamics of two coupled spins in a spin
star environment, whose elements are coupled to local bosonic baths. It is shown that the
dynamics of the entanglement depends on the initial state of the system and the coupling
strength between the two coupled central spins, the interactions between the central system
and the environment, as well as interactions between the bath spin and the reservoir. We
also investigate the effect of non-Markovian dynamics in contrast with the Markovian case.
It is found that the non-Markovian dynamics has a significant effect on the disentanglement
between the two central spins.
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1 Introduction

Quantum entanglement [1] has been recognized as a powerful tool for quantum information
processing [2]. For example, it plays an important role in superdense coding [3] and quan-
tum teleportation [4], and is necessary for the exponential speedup of quantum algorithms
compared to classical algorithms [5, 6]. The entanglement can be produced either by direct
interactions or indirect interactions through a third party between two quantum systems.
In real situations, an entangled composite quantum system can never be isolated and will
inevitably interact with its environment, which usually causes unwanted disentanglement,
and brings obstacles to the practical implement of quantum information processing. In or-
der to maintain quantum entanglement for a longer time for many applications of interest,
much attention has been paid to understand of the decoherence mechanism [7–13] and find
suitable candidates for quantum computation and quantum information [14–16].
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Due to the long decoherence and relaxation time, the spin system becomes one of the
most promising candidates for quantum computation. Recently, the decoherent behavior of
a single spin or disentanglement behavior of several spins interacting with a spin bath has
attracted much attention [17–25]. The interaction between central spins and a bath of en-
vironmental spins often leads to strong non-Markovian behavior, which is characterized by
pronounced memory effects, finite revival times and non-exponential behavior of damp-
ing and decoherence. The dynamics of central spins systems in a spin bath has been an-
alyzed without making the Markovian approximation, but using a perturbative expansion
method [22], a mean-field approximation [23], a novel operator technique [24], and numer-
ical simulation [25].

However, in all of the previous works, the central spin was in the spin bath with differ-
ent coupling types, and the non-Markovian effect would be induced by the spin-bath strong
coupling. What will happen to the central spins if they are in a composite spin environ-
ment? Are there any new characteristics of non-Markovian evolutions to better understand
non-Markovianity [26–30]? To answer these questions, we consider a new model, which
is an extension of the above models, to study the non-Markovian effect on the dynamics
of entanglement in this paper. In our model, two coupled central spins interact with a spin
star environment, and each bath spins is further coupled to a local boson reservoir. And the
interaction between the central spins, and the interaction between the central spin and the
spin environment are all of the Heisenberg XY type and can all be taken into account si-
multaneously. The dynamics of the model could be distinguished between the Markovian
and non-Markovian regime by using the spectral width of the boson reservoir [31]. The
model is exactly solvable because of the symmetry of the structure under consideration.
Meanwhile, the model is a simple open quantum model that is relevant for the physics of
nitrogen-vacancy centers in diamonds [14] and molecular nanomagnets [15, 16]. Our model
is similar to model discussed in Ref. [32], which found that non-Markovian effect would
be buried by the forgetful mechanism induced not only by the spin-bath coupling, but also
by parameters such as the mismatch between the energy of the central spin and of the spin
environment.

The paper is organized as follows. In Sect. 2, the model Hamiltonian is introduced and the
time evolution of reduced density matrix for central spins is calculated. From the reduced
density matrix, the entanglement measure of concurrence of the coupled spin system is
calculated in Sect. 3. Conclusions are given in Sect. 4.

2 The Model and Its Solution

The model consists of a spin-star system and boson reservoirs. We consider two central
spin-qubits (labelled a and b) have Heisenberg XY interaction between each other and at
the same time they interact with N outer bath spins. The interactions between bath spins are
also of XY type, and each bath spins is further coupled to a local boson reservoir. The total
Hamiltonian of the spin-star system is

Ĥ=Ĥ0+ĤS+ĤSB. (1)

Here, H0 is the free energy of the whole system, Hs is the hamiltonian describing the inter-
action between all spins, and HSB is the interaction between outer spin and its own boson
bath. They can be written as

Ĥ0 =
∑

i=a,b

μi σ̂
z
i +

N∑

j=1

μj σ̂
z
j +

N∑

j=1

∑

k

ωk,j b̂
†
k,j b̂k,j (2a)
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ĤS = J
(
σ+

a σ−
b + σ−

a σ+
b

) + J ′ ∑

ij

∑

(j �=i or a,b)

(
σ+

i σ−
j + σ−

i σ+
j

)
(2b)

ĤB =
N∑

j=1

∑

k

(
gk,j σ̂

+
j b̂k,j + g∗

k,j σ̂
−
j b̂

†
k,j

)
(2c)

where the parameters σ̂ s
i (i = a, b,1, . . . ,N ) are the Pauli matrices for the spin i (s =

x, y, z), μi is the transition frequency between spin states |0〉j and |1〉j , which are the eigen-
states of σ i

z . σ̂±
j = (σ̂ x

j ± iσ̂
y

j )/2 are the spin-flip operators of the spin i. J represents the
coupling constant between central spins, and J ′ represents the coupling constant between
central-spin and bath spins. The index k labels the different field modes of the reservoir with
frequencies ωk,j , the creation annihilation operators b̂

†
k,j , b̂k,j , and coupling constants gk,j .

In the interaction picture the state |Ψ (t)〉 of the whole system obeys to the Schrödinger
equation

∂

∂t

∣∣Ψ (t)
〉 = −iĤI (t)

∣∣Ψ (t)
〉
, (3)

where the hamiltonian in interaction picture is given by

HI(t) = J
(
σ+

a σ−
b + σ−

a σ+
b

) + J ′ ∑

ij

∑

(j �=i or a,b)

(
σ+

i σ−
j + σ−

i σ+
j

)

+
N∑

j=1

∑

k

(
gkσ

j
+bke

i(μj −ωk,j )t + h.c.
)
. (4)

here we assume there is no energy mismatch between the central and bath spins for sim-
plicity. It is easy to check that the ‘particle number’ operator N = ∑

i σ
z
i + ∑

j (σ
z
j +

(
∑

k b
†
kbk)j ) commutes with the total Hamiltonian Ĥ , and any initial state of the form

∣∣Ψ (0)
〉 = (

c0|00〉ab + α(0)|01〉ab + β(0)|10〉ab
)|0〉S |0〉B

+
N∑

j=1

cj (0)|00〉ab|j〉S |0〉B +
N∑

j=1

∑

k

ckj (0)|00〉ab|0〉S |k〉B
j

evolves after time t into the state

∣∣Ψ (t)
〉 = (

c0|00〉ab + α(t)|01〉ab + β(t)|10〉ab
)|0〉S |0〉B

+
N∑

j=1

cj (t)|00〉ab|j〉S |0〉B +
N∑

j=1

∑

k

ckj (t)|00〉ab|0〉S |k〉B
j , (5)

where the state |0〉S denotes the product state
⊗N

j=1 |0〉j and |j〉S = σ+
j |0〉S for the sites on

the spin bath; |0〉B is the vacuum state of all the reservoirs, and |k〉Bj = b
†
k,j |0〉j the state with

one particle in mode k in the j th reservoir.
The amplitude c0 is constant in time because of HI(t)|00〉ab|0〉S |0〉B = 0. The time devel-

opment of time dependent amplitudes α(t), β(t), cj (t), and ckj (t) are governed by a system
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of differential equations which is derived from the Schrödinger equation (3),

d

dt
α(t) = −iJβ(t) − iJ ′

N∑

j=1

cj (t),

d

dt
β(t) = −iJα(t) − iJ ′

N∑

j=1

cj (t),

d

dt
cj (t) = −iJ ′[α(t) + β(t)

] − i
∑

k

ckj (t)gkj e
i(μj −ωkj )t ,

d

dt
ckj (t) = −ig∗

kj cj (t)e
−i(μj −ωkj )t .

(6)

Integrating the fourth differential equation and inserting the solution into the third one, we
can get the equation for cj (t),

d

dt
cj (t) = −iJ ′[α(t) + β(t)

] −
∫ t

0
cj (t1)fj (t − t1)dt1, (7)

where we define the kernel

fj (t − t1) =
∫

J (ωkj )e
−i(μj −ωkj )(t−t1)dωkj , (8)

is the environmental correlation function with the spectral density defined as J (ωkj ) =∑
k |gkj |2δ(μj − ωkj ).
In the following of this paper, we assume the initial state of the system is

∣∣Ψ (0)
〉 = (

c0|00〉ab + α(0)|01〉ab + β(0)|10〉ab
)|0〉S |0〉B, (9)

here all bath spins are in the |0〉 state and all boson reservoirs are in the vacuum state ini-
tially, i.e. cj (0) = ckj (0) = 0. With this initial condition, the differential equations for the
probability amplitude α(t), β(t), and cj (t) can be solved conveniently by passing in the
Laplace domain:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sα̃[s] = α(0) − iJ β̃[s] − iJ ′
N∑

j=1

c̃j [s],

sβ̃[s] = β(0) − iJ α̃[s] − iJ ′
N∑

j=1

c̃j [s],

sc̃j [s] = −iJ ′[α̃[s] + β̃[s]] − c̃j [s]f̃j [s].

(10)
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By assuming that all the reservoirs are the same (fj (t) = f (t) ∀j ) for simplicity, we can get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̃[s] = 1

(f̃ [s] + s)(J 2 + s2) + 2J ′2N(s − iJ )

× {
α(0)

[
J ′2N + s(f̃ [s] + s)

] − β(0)
[
J ′2N + iJ

(
f̃ [s] + s

)]}

β̃[s] = 1

(f̃ [s] + s)(J 2 + s2) + 2J ′2N(s − iJ )

× {
β(0)

[
J ′2N + s

(
f̃ [s] + s

)] − α(0)
[
J ′2N + iJ

(
f̃ [s] + s

)]}

(11)

The memory effect registered in the kernel function f (t − t1) is determined by the spec-
tral density J (ω). We consider the spectral density for each bath has a Lorentzian form

J (ω) = 1

2π

γλ2

(μ − ω)2 + λ2
, (12)

where γ is the coupling constant between the bath spin and the reservoir, λ defines the
spectral width of the coupling at the resonance point, and in this case one can verify that the
correlation function decays exponentially

f (t) = 1

2
γ λ exp

(−λ|t |), (13)

which means that the parameter λ characterizes the spectral width of the reservoir, and it is
associated with the reservoir correlation time by the relation τB = λ−1 and the parameter γ is
related to the relaxation time scale τR by the relation τR = γ −1. If γ > λ

2 , the memory effect
of the reservoir should not be neglected and the decoherence dynamics in this situation
is non-Markovian. While γ < λ

2 , the memory effect of the reservoir is negligible and the
decoherence dynamics is Markovian.

Finally, one can obtain the analytical form of α(t) and β(t) by substituting the Laplace
transforming of exponentially decaying f (t) into Eq. (11) and anti-transforming as

α(t) = 1

2
eiJ t

[
α(0) − β(0)

] + [
α(0) + β(0)

]

×
∑3

i=1(−1)i−1esi t (sj−sk)(2s2
i + 2λs + γ + λ)

(s1 − s2)(s2 − s3)(s1 − s3)
, (14)

β(t) = 1

2
eiJ t

[
β(0) − α(0)

] + [
α(0) + β(0)

]

×
∑3

i=1(−1)i−1esi t (sj−sk)(2s2
i + 2λs + γ + λ)

(s1 − s2)(s2 − s3)(s1 − s3)
, (15)

where si are the roots of equation

2s3 + 2(λ + iJ )s2 + (
4J ′2N + λγ + 2iJ

)
s + 4J ′2Nλ + iJ γ λ = 0. (16)

For any N>1, α(t) and β(t) are obtained from the expression valid for N = 1 with the
re-definition J ′ → J ′/

√
N by a simple scaling law [19]. Then, the time-dependent reduced
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density matrix of the central qubits under the initial condition can be obtained straightfor-
wardly from the exact dynamical map

ρ(t) = TrS+B

{∣∣Ψ (t)
〉〈
Ψ (t)

∣∣} =

⎛

⎜⎜⎜⎝

1 − |α(t)|2 − |β(t)|2 c∗
0α(t) c∗

0β(t) 0

c0α
∗(t) |α(t)|2 α(t)∗β(t) 0

c0β
∗(t) α(t)β(t)∗ |β(t)|2 0

0 0 0 0

⎞

⎟⎟⎟⎠ ,

(17)

3 Concurrence and Entanglement Dynamics

We use the concurrence [33, 34] to measure the entanglement between the two central spins.
It is defined as

Cab = max{λ1 − λ2 − λ3 − λ4,0}, (18)

where the quantities λ1 ≥ λ2 ≥ λ3 ≥ λ4 are the square roots of the eigenvalues of the operator
Rab = ρs(σ

y
a ⊗ σ

y

b )ρ∗
s (σ

y
a ⊗ σ

y

b ).
Figures 1 and 2 show several interesting features of entanglement evolution for different

values of the coupling constant J between central spins. Clearly in Fig. 1, we see that the
entanglement oscillates and decays with time evolution, and the entanglement decays to
zero in finite time. The increasing value of J results in the decrease of the decay rate of
entanglement. The increasing of J also results in the decrease of the oscillating frequency.

In Fig. 2, there is no initial entanglement between the two spins. It is interesting to notice
that the entanglement between the two spins is present and oscillating into a certain value
as shown in Fig. 2, even though there is no coupling between the two spins, i.e. J = 0. This
confirms that the environment which usually makes the decoherence of the system happen
can also entangle qubits that are initially prepared in a separable state. The reason to cause
what happens is by the fact that the two central spins are coupled to the same environment
which then in turn generates some effective interactions between the two spins even if they
were originally decoupled.

We can see the time evolution of entanglement for different values of the coupling con-
stant J ′ between central spin and bath spins from Fig. 3. For J ′ = 0, the system of the two

Fig. 1 Quantum entanglement
versus scaled time J ′t for
different values of the coupling
constant J between central spins,
and the central spins are in Bell
state with α = β = √

2/2
initially. Values of the other
parameters are λ = 1 and γ = 1
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Fig. 2 Quantum entanglement
versus scaled time J ′t for
different values of the coupling
constant J between central spins,
and the central spins are in the
product state with α = 1, and
β = 0 initially. Values of the
other parameters are λ = 1 and
γ = 1

Fig. 3 Quantum entanglement
versus scaled time J t for
different values of the coupling
constant J between central spins,
and the central spins are in Bell
state with α = β = √

2/2
initially. Values of the other
parameters are λ = 1 and γ = 1

central spins is closed, and the entanglement dose not evolute with time. While for J ′ �= 0,
the entanglement of central spins is affected by the environment and disentanglement occurs.
When the coupling strength between central spins and bath spins is weak, we see that the
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Fig. 4 Quantum entanglement
versus scaled time J t for
different values of the coupling
constant J between central spins,
and the central spins are in Bell
state with α = β = √

2/2
initially. Values of the other
parameters are λ = 1 and J ′ = J

concurrence decreases faster as the coupling strength is increasing. As the coupling strength
is further increases, the decay rate and the oscillating frequency of entanglement decrease.

In Fig. 4, we plot the dynamics behavior of the concurrence for different values of the
parameter γ . The increasing of γ results in the decrease of the oscillating frequency, and
the decoherence dynamics becoming non-Markovian from Markovian. Different from other
non-Markovian effects, which influence the entanglement dynamics for lasting longer life
and give rise to a revival of entanglement even after complete disentanglement for finite
time periods [35], the memory effect of the reservoir in our model causes the increase of
the decay rate of entanglement. This interesting phenomenon is triggered by the indirect
influence of the non-Markovian reservoir on the central spin.

4 Summary and Discussion

In this paper, we have studied the exact entanglement evolution of two coupled central spins
in a model of a quantum spin star configuration, and each bath spin is further coupled to a
local boson reservoir. The dynamics of the reduced density matrix of the two coupled central
spins is analytically obtained for only one excitation in the whole system. The time evolu-
tions of the concurrence of the two coupled central spins for different initial conditions are
evaluated exactly. The results show that the dynamics of the entanglement strongly depends
on the initial state of the central system, the coupling between the two central spins, the
interaction between the central system and the environment, as well as interactions between
the bath spin and the reservoir. We have also found that finite entanglement will be created,
no matter how strong the coupling between the two central spins is. The numerical results
further shows that the entanglement decreases rapidly in non-Markovian case.

We believe that the presented analysis can be useful for a more complete knowledge
about Non-Markovian dynamics and entanglement dynamical properties.
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