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Abstract In this paper we study modified cosmic Chaplygin cosmology with non-zero cos-
mological constant in non-flat Universe. By using well-known forms of scale factor we
obtain time-dependent dark energy density by numerical analysis of non-linear differential
equation and fitting curves. We use observational data to fix solution and discuss about sta-
bility of our system. First of all we consider cosmological constant as a constant in Einstein
equation, and then study possibility of variable cosmological constant.

Keywords Cosmology · Modified cosmic Chaplygin gas · Dark energy · Non-linear
differential equation

1 Introduction

It is believed that the most part of Universe filled with dark matter and dark energy. There-
fore, dark energy and related topics are important subjects to study in theoretical physics
and cosmology. An important problem is determining nature of dark Universe. It is found
that the dark matter may be consists of neutrinos [1] axions [2] or WIMPs (weak interactive
massive particles) [3]. In that case there are several ways to specify the nature of the dark
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Universe. For example studying time-dependent density help to give information about dark
matter [4] and dark energy [5].

After that we need a model to describe dark Universe. In that case there are some phe-
nomenological and theoretical models which based on discovery of the accelerating expan-
sion of the Universe [6, 7]. Some of the famous phenomenological models for dark energy
briefly explained below.

The cosmological constant and its generalizations are the simplest way to modeling the
dark energy [8]. Another candidates for the dark energy are scalar-field dark energy models.
A quintessence field [9] is a scalar field with standard kinetic term, which minimally coupled
to gravity. In that case the action may has a wrong sign kinetic term (minus instead of
plus), which the scalar field is called phantom or ghost [10]. While there is a quantum
instability in the phantom models but this model to be consistent with CMB observations
[11]. Combination of the quintessence and the phantom is known as the quintom, which is
another model for dark energy [12].

Extension of kinetic term in Lagrangian yields to a more general frame work on field
theoretic dark energy, which is called k-essence [13, 14]. A singular limit of k-essence is
another model, named Cuscuton [15]. This model has an infinite propagating speed for linear
perturbations, however causality is still valid.

The most general form for a scalar field with second order equation of motion is the
Galileon field which could behave as dark energy [16]. Another extension of these mod-
els is called the ghost condensation, which also solved the quantum instability of phantom
dark energy [17]. There are also various studies in holographic dark energy models (see
Refs. [18–22]).

However, presence of a scalar field is not only requirement of the transition from a Uni-
verse filled with matter to an exponentially expanding Universe. The matter components in
cosmology are written in terms of fluids, so most of dark energy models have fluid descrip-
tion. Therefore, Chaplygin gas (CG) used as an exotic type of fluid, which is a model for
dark energy [23–25]. This model based on Chaplygin equation of state [26] to describe the
lifting force on a wing of an air plane in aerodynamics. The CG was not consistent with
observational data of SNIa, BAO, CMB, and so on [27–30]. Therefore, an extension of CG
model proposed [31–34], which is called generalized Chaplygin gas (GCG), and indeed
proposed unification of dark matter and dark energy. However, observational data ruled out
such a proposal. Then, GCG extend to the modified Chaplygin gas (MCG) [35]. There is
still more extension such as generalized cosmic Chaplygin gas (GCCG) [36]. In this paper
we continue recent study of the next extension which is modified cosmic Chaplygin gas
(MCCG) [37–39].

In all cases the time-dependent density calculated approximately for the vanishing cos-
mological constant, and also under some assumption for simplicity.

Now, in this paper we would like to study MCCG with arbitrary α and non-zero cos-
mological in presence of space curvature. Also we use methods of non-linear differential
equation to obtain more exact solutions.

2 Modified Cosmic Chaplygin Gas Model

One of the recent cosmological models which is based on the use of exotic type of perfect
fluid suggests that our Universe filled with the Chaplygin gas with the following equation of
state [40, 41],

p = −B

ρ
, (1)
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where B is a positive constant. The Chaplygin gas is also interesting subject of holography
[42], string theory [43], and supersymmetry [44]. It is also possible to study FRW cosmology
of a Universe filled with CG [23]. In order to have coincident with observational data the
CG equation of state (1) has been developed to the form,

p = − 1

ρα

[
C + (

ρ1+α − C
)−ω]

, (2)

where C is a constant. The speciality of this model is stability so the theory is free from
unphysical behaviors even when the vacuum fluid satisfies the phantom energy condition.
The next extension is also possible which is the MCCG with the following equation of state
[37–39],

p = γρ − 1

ρα

[
B

1 + ω
− 1 +

(
ρ1+α − B

1 + ω
+ 1

)−ω]
. (3)

3 FRW Cosmology

As we know the Friedmann-Robertson-Walker (FRW) Universe is described by the follow-
ing metric,

ds2 = −dt2 + a(t)2

(
dr2

1 − kr2
+ r2dΩ2

)
, (4)

where dΩ2 = dθ2 + sin2 θdφ2, and a(t) represents the scale factor. The θ and φ parameters
are the usual azimuthal and polar angles of spherical coordinates, with 0 ≤ θ ≤ π and 0 ≤
φ < 2π . The constant k defined space curvature so, k = 0,1, and −1 represents flat, closed
and open spaces respectively. In that case the Einstein equation is given by,

Rμν − 1

2
gμνR = Tμν + gμνΛ, (5)

where we assumed c = 1 and 8πG = 1. It is assumed that our Universe is filled with the
MCCG which plays role of dark energy with equation of state (3). Using the line element
(4) and the Einstein equation (5), the energy-momentum tensor corresponding to the fluid is
given by the following relation,

Tμν = (ρ + p)uμuν − pgμν, (6)

where ρ and p are the dark energy density and pressure respectively. Also uμ is the velocity
vector with normalization condition uμuν = −1. It is also assumed that the dark energy is
conserved with the following conservation equation,

ρ̇ + 3H(p + ρ) = 0. (7)

In the next section we write field equations of MCCG, and then try to solve them for dark
energy density.
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4 Field Equations

By using the relations of previous section one can obtain the following field equations,

ρ = 3H 2 + 3k

a2
− Λ,

p = −2
ä

a
− H 2 − k

a2
+ Λ,

(8)

where dot denotes derivative with respect to cosmic time t and Hubble expansion parameter
defined as H = ȧ/a. The energy-momentum conservation law (7) reduced to the following
equation,

ρ̇ + 3(ρ + p)

√
ρ

3
− k

a2
+ Λ

3
= 0, (9)

where ∂νT
μν = 0 is used.

Now, we would like to solve (9) to obtain time-dependent energy density. Using the
equation of state (3) in the energy-momentum conservation formula (9) gives the following
differential equation,

ρ̇ + 3

√
ρ

3
− k

a2
+ Λ

3

[
(1 + γ )ρ − B − ω − 1

(1 + ω)ρα
− (ρ1+α − B

1+ω
+ 1)−ω

ρα

]
= 0. (10)

In order to find time-dependent energy density we need to remove scale factor from (10). In
the next section we consider special forms of scale factor.

5 Scale Factor and Observational Data

There are some well-known relation for scale factor as ordinary phase [45, 46],

a(t) = tn, (11)

with n > 0. and the quasi-exponential phase,

a(t) = a(0)tneβt , (12)

with β > 0. In order to find appropriate value of n in the scale factors (11) and (12) we use
the following observational parameters [47]. Declaration parameter is given by the following
relation,

q = − a

ȧ2

d2a

dt2
, (13)

and jerk parameter is given by,

j = a2

ȧ3

d3a

dt3
. (14)

Current value of these parameters (q0 and j0) appear in the following Taylor expansion
around a0,

a

a0
= 1 + H0t − 1

2
q0H

2
0 t2 + 1

6
j0H

3
0 t3 + · · · . (15)
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Following we use results of the Refs. [47–51] to fix our parameters.
According to the SNeIa observational data the current value of the jerk parameter may

be j0 = 1. This situation obtained by choosing n = 2/3. Therefore, we have a = t2/3 as
ordinary phase of our Universe and a = a(0)t2/3eβt for the quasi-exponential phase of our
Universe.

According to the �CDM observational data the current value of the declaration parame-
ter may be q0 = −0.6. On the other hand the scale factors (11) and (12) give the following
relation,

q0 = −1 − n

n
, (16)

which suggests n = 0.625.
On the other hand, according to the best fitted parameters of the Ref. [47] we know

q0 = −0.64 and j0 = 1.02, which yield to n ∼ 0.6.
We see that all cases suggest n ∼ 0.6, so we choose this value and try yo obtain dark

energy density. Also we can see that the scale factor (12) at β = 0 limit yields to scale factor
(11), therefore we consider the quasi-exponential phase only.

6 Time-Dependent Energy Density

we find that the scale factor may have the following form coincide with observational data,

a(t) = t0.6eβt , (17)

with a(0) = 1. Therefore we obtain the following non-linear differential equation,

ρ̇ + 3

√
ρ + Λ

3
− k

t1.2e2βt

[
(1 + γ )ρ − B − ω − 1

(1 + ω)ρα
− (ρ1+α − B

1+ω
+ 1)−ω

ρα

]
= 0. (18)

One can solve above equation numerically and draw behavior of density as a function of
time (Fig. 1). Figure 1 suggests that the energy density may has a unified form for all Λ = 0
and Λ = ±1,

ρ = at2 + bt + c

dt2 + et + f
, (19)

where a, b, c, d, e and f are constants which will be fixed by using observational data and
stability condition. First of all, by using equation of state parameter of total universe, p =
Ωρ, (where 0 > Ω > −1 show phantom-like universe) we can obtain constraints that c = 2
and f = 1. These yield to Ω ≈ −0.95 which is agree with observational data.

7 Stability

There are several ways to investigate stability of a theory. In this paper we use reality of
sound speed,

C2
s = dp

dρ
≥ 0. (20)

We can choose appropriate constants in the energy density (19) to have stable model. A pos-
sible case may be plotted as the Fig. 2. It shows that our model may be stable at the late
time.
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Fig. 1 Time-dependent energy
density. B = 3.4, α = 0.5, β = 1,
γ = 0.3, ω = −0.05. k = −1
(solid line), k = 0 (dashed line)

Fig. 2 Squared sound speed as a
function of time. a = −5,
b = −0.5, d = −0.5 and
e = −3.5

8 Variable Cosmological Constant

Now we assume that cosmological constant varies with t , ρ, a, or H .

8.1 Λ ∝ tn

This case with some values of n illustrated in the Fig. 3 which show expected behavior. We
can see that increasing n increase dark energy density.

8.2 Λ ∝ ρn

In that case we can obtain solid line of the Fig. 3, which shows that variation of n is not
important in final solution.

8.3 Λ ∝ a(t)n

Dark energy density corresponding to this case plotted in the Fig. 4 for n = 1,−2,−4 which
shows similar behavior as previous cases.
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Fig. 3 Time-dependent energy
density for Λ ∝ tn. B = 3.4,
α = 0.5, β = 1, γ = 0.3,
ω = −0.05, and k = −1. n = 1
(solid line), n = −1 (dashed
line), n = −2 (dotted line)

Fig. 4 Time-dependent energy
density for Λ ∝ a(t)n . B = 3.4,
α = 0.5, β = 1, γ = 0.3,
ω = −0.05, and k = −1. n = 1
(solid line), n = −4 (dashed
line), n = −2 (dotted line)

8.4 Λ ∝ Hn

In this case we have plot of the Fig. 5 which show opposite behavior with previous cases.
It means that for cosmological constant proportional to Hubble parameter, the dark energy
density decreased by increasing n.

9 Conclusion

In this paper we constructed modified cosmic Chaplygin gas in presence of the variable
cosmological constant and space curvature. First of all we added cosmological constant to
the Einstein equation as a constant parameter. Our main goal is calculating time-dependent
density which determines distribution of dark energy in the Universe. By using numerical
analysis we found special polynomial form for density and fixed constant parameter by using
observational data and stability condition. We then found that our model may be stable at
the late time.

In the previous section we consider some cases of variable cosmological constant depend
on time, density, scale factor, or Hubble parameter. We found that the last case (Λ ∝ Hn)
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Fig. 5 Time-dependent energy
density for Λ ∝ Hn. B = 3.4,
α = 0.5, β = 1, γ = 0.3,
ω = −0.05, and k = −1. n = 1
(solid line), n = −1 (dashed
line), n = 2 (dotted line)

has opposite behavior with another cases. However all cases behave as expected for dark
energy density.

In that case it is interesting to consider effect of viscosity on cosmological parameters
[34]. Also it is possible to consider various interaction terms similar to the [52–54]. Finally
it may be interesting to consider varying MCG [55] and extend our model.
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