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Abstract We study the Einstein-Maxwell equations for isotropic pressure distributions. We
postulate a relationship between the electric field intensity and one of the gravitational po-
tentials. An algorithm is developed that allows us to systematically generate new classes of
exact solutions for charged relativistic stars. The solutions are expressed in terms of simple
elementary functions; it is possible to parametrize the solutions so that different values of
a constant allows us to tabulate the models. For a particular class it is possible to generate
models without any integration. We study the qualitative features of a particular solution,
and show that it is physically reasonable in the region of a spherical shell surrounding the
centre.

Keywords Einstein-Maxwell equations · Charged fluids · Relativistic astrophysics

1 Introduction

The generalisation of the unique Schwarzschild exterior solution governing the behaviour
of the gravitational field outside a spherically symmetric perfect fluid to include the effects
of the electromagnetic field is given by the Reissner-Nordström spacetime. The standard
Einstein’s equations are supplemented by Maxwell’s equation, and through an appropriate
choice of gauge, only the electric contribution is significant. Interior spacetimes for charged
spheres are not unique as the associated field equations reduce to a system of six partial
differential equations in four unknowns. Theoretically there are 15 possible two element
subsets of the six member set of geometrical and dynamical quantities that could serve as
initial data for the problem. Ivanov [1] has compiled a comprehensive list of two member
choices that have been treated historically. Recently an exact family of charged models with
the Wyman-Adler metric was obtained by Fatema and Murad [2]; they provide a detailed
motivation for the study of such objects and relevant references in the literature. In this
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regard, we also mention the investigations of Murad and Fatema [3], Gupta and Maurya [4]
and Maurya and Gupta [5].

While the choice of the initial data appears ad hoc and guided largely by what functions
allow for the complete solution of the Einstein-Maxwell system, systematic efforts have
been followed by some researchers. For example, using a suitable change of coordinates
Hansraj and Maharaj [6], Thirukkannesh and Maharaj [7, 8] have reduced the problem to
a second order master differential equation in one of the space variables. The remaining
gravitational potential and the electric field intensity may then be nominated in order to
successfully integrate the master field equation. The method has proved useful in obtaining
a physically relevant solution in the case of a charged analogue of the Durgapal and Ban-
nerji star [9], and also the Finch and Skea star [10], which was been demonstrated to be
consistent with the astrophysical theory of Walecka [11]. A similar approach was employed
by Komathiraj and Maharaj [12] to produce a charged analogue of the Tikekar superdense
star [13] with spheroidal geometry.

It must be noted that this is not the only approach that may be followed. A completely
different attack is to impose ab initio some physical considerations on the system of equa-
tions. For example, an equation relating the (isotropic) pressure and energy density may be
utilised. However, only limited success has been reported in the simplest case of a barotropic
equation of state of the linear type where the pressure is proportional to the energy density.
Another physically interesting case is the polytropic equation of state; however only a few
exact solutions of this type have been discovered thus far. Numerical methods were applied
by Nilsson and Uggla [14] to uncharged matter with a linear equation of state, and later the
polytropic equation of state was considered by Nilsson and Uggla [15], when treating the
case of a neutral ball of perfect fluid. Clearly the neutral case is more challenging than the
charged version in view of the fact that there exists only one free variable to nominate at
the outset. A different approach is to postulate a functional relationship between two other
quantities, namely the electric field intensity and one of the metric potentials rather than an
equation of state. This is the avenue we pursue in this article and we are able to report some
new interesting solutions based on this approach.

Numerical methods have been utilised by Nduka [16] and Singh and Yadav [17] in or-
der to electrify the Kuchowicz [18] neutral solution. An approximately linear equation of
state is obtained. Ivanov [1] explained in detail the difficulty of imposing an equation of
state in isotropic static spherical models. The field equations turn out to be not readily solv-
able. If we relax the condition of pressure isotropy to allow for both tangential and radial
pressures, then the problem becomes simpler. Feroze and Siddiqui [19] and Maharaj and
Mafa Takisa [20] reported new anisotropic models with a quadratic equation of state. These
models contained particular isotropic models, and when the anisotropy parameter is set to
zero, the familiar isotropic models of de Sitter and Einstein were regained. Thirukkanesh
and Ragel [21] recently obtained a class of anisotropic solutions with a polytropic equation
of state. In this paper we consider the more difficult case of isotropic pressures.

2 Einstein-Maxwell Field Equations

The differential equations governing models of spherically symmetric charged stars com-
prise the coupled Einstein-Maxwell field equations. This system is given by

Gab = Mab + Eab (1)

Fab;c + Fbc;a + Fca;b = 0 (2)

Fab;b = J a (3)
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where Mab = (ρ + p)uaub + pgab is the matter tensor, ρ is the energy density, p is the
isotropic pressure, and ua is the timelike, unit four-velocity. The electromagnetic contribu-
tion to the total energy momentum tensor is given by

Eab = FacFb
c − 1

4
gabFcdF

cd (4)

where the electromagnetic field tensor is defined by Fab = Ab;a − Aa;b and Aa is the four-
potential. The four-current density can be written as

J a = σua (5)

where σ is the proper charge density. Note that the four-potential is not uniquely determined
by Maxwell’s equations but is constrained by gauge transformations.

In many physical situations it is reasonable to assume that the interior of the charged star
is described by the line element

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
(6)

where the functions ν(r) and λ(r) are gravitational potentials. The line element (6) is
the most general for static spherically symmetric spacetimes. The Einstein-Maxwell equa-
tions (1) may be expressed as the system

[
r
(
1 − e−2λ

)]′ = r2ρ + 1

2
r2E2 (7)

−(
1 − e−2λ

) + 2ν ′re−2λ = pr2 − 1

2
r2E2 (8)

e−2λ

[
ν ′

r
− λ′

r
+ ν ′′ − ν ′λ′ + ν ′2

]
= p + 1

2
E2 (9)

σ = 1

r2
e−λ

(
r2E

)′
(10)

for the static spherically symmetric spacetime (6). We have introduced the electric field
intensity E = e−(ν+λ)φ′(r) in the above. We have chosen the four-potential as Aa =
(φ(r),0,0,0) which gives the component F 01 = e−(ν+λ)E(r). The conservation laws
(Mab + Eab);b = 0 reduce to the equation

p′ + r(ρ + p)ν ′ = E

r2

[
r2E

]′
(11)

which can be used in the place of one of the field equations (7)–(10).
Introducing a new coordinate x and two metric functions y(x) and Z(x) defined by

x = Cr2, Z(x) = e−2λ(r), y2(x) = e2ν(r)

where C is constant, the Einstein-Maxwell field equations (7)–(10) assume the form

1 − Z

x
− 2Ż = ρ

C
+ E2

2C
(12)

Z − 1

x
+ 4Zẏ

y
= p

C
− E2

2C
(13)

4x2Zÿ + 2x2Żẏ +
(

Żx − Z + 1 − E2x

C

)
y = 0 (14)

σ 2

C
= 4Z

x
(xĖ + E)2 (15)
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where dots represent differentiation with respect to x. The transformed field equations are
useful in generating new exact solutions as demonstrated by Thirukkanesh and Maharaj [22]
for charged models with a linear equation of state and Mafa Takisa and Maharaj [23] with a
polytropic equation of state. We have not imposed an equation of state in this study so other
charged solutions are possible.

3 Physical Conditions

The system (12)–(15) admits an infinite number of exact solutions as there are more vari-
ables than equations. Unfortunately many of the solutions reported in the literature corre-
spond to unrealistic distributions of charged matter (see the work of Delgaty and Lake [24]
where a large number of neutral solutions were tested for physical applicability). Delgaty
and lake [24] pointed out that only nine solutions so far are regular and well behaved. When
analysing solutions of the Einstein-Maxwell system the following conditions are often im-
posed in order to obtain models of stellar configurations that are physically plausible:

(a) Positivity and finiteness of pressure and energy density everywhere in the interior of the
star including the origin and boundary:

0 ≤ p < ∞, 0 < ρ < ∞
(b) The pressure and energy density should be monotonically decreasing functions of the

coordinate r . The pressure vanishes at the boundary r = R:

dp

dr
≤ 0,

dρ

dr
≤ 0, p(R) = 0

(c) Continuity of gravitational potentials across the boundary of the star. The interior line
element should be matched smoothly to the exterior Reissner-Nordström line element at
the boundary:

e2ν(R) = e−2λ(R) = 1 − 2M

R
+ Q2

R2

(d) The principle of causality must be satisfied, i.e., the speed of sound should be every-
where less than the speed of light in the interior:

0 ≤ dp

dρ
≤ 1

(e) Continuity of the electric field across the boundary:

E(R) = Q

R2

(f) The metric functions e2ν and e2λ and the electric field intensity E should be positive and
non-singular everywhere in the interior of the star.

(g) The energy conditions: (weak ρ > 0, ρ + p > 0; strong ρ > 0, ρ + 3p > 0; dominant
ρ > 0, ρ − p > 0) should be satisfied.

(h) The redshift value should be less that 2 to correspond to most observed stars.

The conditions (a)–(h) indicated above are not satisfied by all the solutions throughout the
interior of the star. For example the Tolman V and VI solutions suffer the defect of being
singular solutions, as they have infinite values of central density. Additionally, some of the
above conditions may be overly restrictive. For example, observational evidence suggests
that in particular stars the energy density ρ is not a strictly monotonically decreasing func-
tion (Shapiro and Teukolsky [25]).
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4 A Solution Generating Algorithm

We elect to specify a functional relationship between the electric field intensity E(x) and
the metric component Z(x). It is reasonable to expect that the strength of the electric field
inside a charged star is position dependent. We invoke the prescription

Żx − Z + 1 = E2

C
x (16)

The advantage of this choice is that it forces the second order differential equation in y to
degenerate into a first order equation. It is worth observing that (14) has often been utilised
for its value as a second order differential equation in y(x), however, it may also be rear-
ranged as a first order differential equation in Z of the Riccati type. Such equations possess
their own complications. With the choice (16), Eq. (14) becomes

2Zÿ + Żẏ = 0 (17)

which is essentially of first order in both Z or y. Solving for Z we get

Z = 1

K(ẏ)2
(18)

(K is an integration constant) which suggests that if we prescribe y then Z will follow
trivially. Alternatively (17) has the general solution

y =
∫

K√
Z

dx + L (19)

where L is another integration constant.
Now there are three distinct approaches in algorithmically constructing Einstein-

Maxwell solutions based on the ansatz (16):

– From (19) above we have obtained y in terms of Z. This means that if we pick suitable
forms for Z then after integration we should be able to establish the function y(x). Then
with the help of (16) we may obtain the form for the electric field intensity E. Thereafter
the energy density ρ, the pressure p and the proper charge density σ may be found using
(12), (13) and (15) respectively.

– Alternatively using (18) we may choose a form for y and then find Z. On substituting into
(16) we may obtain E. The remaining quantities may then be found as outlined above.
A distinct advantage of this approach is that no integrations are called for. Therefore an
infinite number of choices can be made for the metric potential y that will allow for the
complete solution of the Einstein field equations.

– A third approach is to specify the electric field intensity in (16). Then the metric function
Z must be obtained by solving this linear differential equation (16). Finally we may sub-
stitute the Z into (19) to establish y. This method has the obvious drawback that, firstly,
it may not be possible to find Z for a particular choice of E as the integration of Z may
not be possible to complete. Secondly, even if we are able to find Z then there is still no
guarantee that (19) can be integrated to yield y.

5 Specifying E

We explore the option of specifying the charge distribution and consider a variety of choices
for the electric field quantity E2

C
. Then the algorithm operates as follows: We begin by nomi-

nating a form for the electric field intensity E and then solve (16) for Z. Thereafter the form
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for Z is substituted into (19) to give the metric potential y. The choice of E should allow
for both Z and y to be obtained explicitly.

5.1 The Case E2

C
= α

We commence by examining the simplest case E2

C
= α where α is a real parameter. Note

that this implies a constant electric field. Equation (16) becomes

Żx − Z + (1 − αx) = 0 (20)

which has the solution

Z(x) = C1x + 1 + αx logx (21)

where C1 is a constant. Substituting this form of Z into (19) we obtain

y =
∫

K√
C1x + 1 + αx logx

dx + L (22)

which cannot be evaluated in closed form. We have commented on this case to indicate that
the simplest case of a constant electric field intensity is non-trivial in general.

5.2 The Case E2

C
= αx

With the above choice of E, (16) becomes

Żx − Z = αx2 − 1 (23)

where α is an arbitrary constant, and it is solved by

Z = 1 + C3x + αx2 (24)

where C3 is a constant of integration.
Substituting this form of Z into (19) we obtain

y =
∫

K
√

1 + C3x + αx2
dx + C2 (25)

and performing the integration yields

y = 1√
α

log
(
C3 + 2αx + 2

√
α
(
1 + C3x + αx2

)) + C2 (26)

which establishes the remaining geometric potential.
The energy density ρ is given by

ρ

C
= −3C3 − 11

2
αx (27)

and its rate of change has the form

dρ

Cdx
= −11

2
α (28)

which is constant. The density is a monotonically decreasing function outwards from the
centre. From (27) and (26) we note the conditions C3 < 0 and α > C2

3/4 for regularity at the
centre. Note that our prescription E2 = αCr2 then means that the model remains charged
and there is no uncharged limit in this case.
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The pressure p has the form

p

C
= C3 + 3αx

2

+ 4
√

αf 2
1 (x)

f1(x) log(C3 + 2αx + 2
√

α(1 + C3x) log(c3 + 2αx + 2
√

αf1(x)))
(29)

where we have introduced the function f1(x) = √
1 + C3x + αx2 to simplify the expres-

sions. The rate of change of pressure is given by

dp

dx
= 4α

log(C3 + 2αx + 2
√

α(f1(x))2)

+ 2
√

α

(
(C3 + 2αx)(1 + C3x) − α2(2 + C3x) log(C3 + 2αx2)

√
αf1(x)

(f1(x))3 log(C3 + 2αx + 2
√

αf1)

)

while the adiabatic sound speed index has the form

dp

dρ
= α[(8 + 3α)

√
αf1(x) + 4(C3 + 2αx) log[C3 + 2αx + 2

√
αf1(x)]]

44
√

αf1(x)

The following quantities

ρ − p

C
= −4C3 − 7αx

− 4

α

[√
αf1(x) log

(
C3 + 2αx + 2

√
α
(
1 + C3x + αx2

))]
(30)

ρ + p

C
= −2C3 − 4αx

+ 4

α

[√
αf1(x) log

(
C3 + 2αx + 2

√
α
(
1 + C3x + αx2

))]
(31)

ρ + 3p

C
= −αx

+ 12

α

[√
αf1(x) log

(
C3 + 2αx + 2

√
α
(
1 + C3x + αx2

))]
(32)

are useful when studying the energy conditions. These are all required to be positive within
the stellar interior.

6 Specifying Z

We next consider exact solutions that may be derived by nominating the metric potential Z

at the outset. Of course in view of the reciprocal of
√

Z in the integrand of (19), we expect
only a small number of choices will result in a complete resolution of y.

6.1 Z = (1 + x)n

This choice will lead to a Schwarzschild sphere in the absence of charge for the case n = 1
as was demonstrated by Hansraj [26]. In other words this prescription will produce charged
analogues of the Schwarzschild interior solution. This form also has the property of yielding
solutions that are regular at the stellar centre. We obtain the electric field intensity in the form

E2

C
= 1 + nx(1 + x)n−1 − (1 + x)n

x
. (33)
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With the choice of Z = (1 + x)n, we obtain

y = 2

2 − n
(1 + x)1− n

2 + C4 (34)

after integration using (19). Then the system of Einstein-Maxwell field equations is com-
pletely solvable. The density ρ and pressure p are given by

ρ

C
= 1

2

(
1 − (1 + x)n − 5nx(1 + x)n−1

x

)
(35)

p

C
= 2x(2 − n + nx)(1 + x)n−1 + (1 + x)n − 1

2x
(36)

respectively. The rate of change of the energy density ρ and pressure p have the forms

dρ

Cdx
= −5(−1 + n)nx(1 + x)−2+n − 6n(1 + x)−1+n

2x

− 1 − 5nx(1 + x)−1+n − (1 + x)n

2x2
(37)

dp

Cdx
= 1

2x2(1 + x)2

(
1 − (1 + x)n + 2n2x3(1 + x)n + x

(
2 − 2(1 + x)n

+ n(1 + x)n
) + x2

(
1 − (

5 − 9n + 2n2
)
(1 + x)n

))
(38)

which allows us to compute the sound speed parameter dp

dρ
. This is given by

dp

dρ
= x2

[
1

2
− 2n2 − 2(2 + nx) + (1 + x)n

+
(

7

2
x − 3

2
nx − nx2 − 3n2x3

)
(1 + x)n−2

]

/[−5nx2(n − 1)(1 + x)n−2 − nx(1 + x)n−1 + (1 + x)n − 1
]

(39)

Finally the quantities ρ+p

C
, ρ−p

C
, and ρ+3p

C
are useful to study the energy conditions; these ex-

pressions follow immediately from (35) and (36). Since the above solution does not readily
lend itself to an analytical treatment, we opt to generate plots of the dynamical and geomet-
ric quantities, with the help of Mathematica (Wolfram [27]) to obtain a qualitative view on
the acceptability of these solutions to represent physical matter.

A consideration of the behaviour of our model at the stellar centre x = r = 0 will assist in
obtaining bounds for the various constants appearing in the solution. As x tends to zero we
observe that both ρ and p have well defined limits. The positivity of central energy density
and pressure require that

ρ0 = −3nC > 0, p0 = C

(
2 − n

2

)
> 0

where the subscript indicates central quantities. The adiabatic sound speed parameter at the
centre is constrained by

0 <

(
dp

dρ

)

0

= 3n2 − 15n + 8

11n(n − 1)
< 1

and is satisfied in the intervals n < −1−√
17

4 or 0 < n < −1+√
17

4 or n > 1. Further if we take
C > 0 then the condition of positive central pressure and density as well as subluminal
sound speed are satisfied for n < −1−√

17
4 ≈ −1,28. However, if we take C < 0 (which is
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Fig. 1 Plot of energy density
versus radial coordinate

Fig. 2 Plot of pressure versus
radial coordinate

the case for the Schwarzschild interior metric), then all the physical constraints are satisfied
for n > 4. In view of the foregoing we consider the case n = −2 together with the choice
of constants C = 100 and C4 = 2. These are compatible with a regular centre. Plots of the
energy density, the pressure, the sound speed parameter as well as the energy conditions are
generated, with the use of these values for the constants, in Figs. 1–4.

From an investigation of Fig. 1, it is evident that the energy density is a positive, smooth
and monotonically decreasing function. Additionally, the pressure profile in Fig. 2 is also
positive and smooth, and importantly the pressure vanishes for a finite radius corresponding
approximately at x = 2 in geometric units. This hypersurface of zero pressure identifies
the boundary of the star. This is an important requirement, the absence of which would
indicate that our solution could only be used to model a cosmological fluid. The sound
speed parameter in Fig. 3 is found to be less than unity everywhere in the interior so that
our charged star model displays causal behaviour throughout the interior. Finally, it may
be observed from Fig. 4 that all the energy requirements are satisfied everywhere within
the star. Accordingly, our model may have merit in representing a realistic charged shell
distribution of finite inner and outer radius.
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Fig. 3 Plot of sound speed
versus radial coordinate

Fig. 4 Plot of
ρ − p,ρ + p,ρ + 3p versus
radial coordinate

6.2 The Choice Z = (1 + x2)n

We substitute Z = (1 + x2)n in (19). This gives

y = x2F1

[
1

2
,
n

2
,

3

2
,−x2

]
+ L (40)

where 2F1 is the hypergeometric series. The hypergeometric function is an infinite series
in general and converges only in the range |x| < 1. This means that the stellar model is
only well behaved in an interval close to the centre. However for certain values of n, simple
closed form solutions result; for these special cases the model is well behaved throughout
the interior of the star. We tabulate some particular exact solutions in Table 1.

From Table 1 we conjecture that the form for y, when n is an odd integer, involves a
polynomial of order (n − 2) in the numerator and a term (1 + x2)

n−2
2 in the denominator.

The solutions appear to follow a pattern for certain values of n. It is remarkable that these
solutions are simple rational polynomial type functions. They have ostensibly not been pre-
viously found using other approaches in the literature.

We now consider briefly the particular case where n = −2. From the table, when n = −2,
we have y = x + x3

3 + C5 and the electric field intensity is given by

E2

C
= 6x + 3x3 + x5

(1 + x2)3
. (41)
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Table 1 Exact solutions
Z = (1 + x2)n y

n = 1 sinh−1 x + C

n = 2
√

1 + x arctanx + C

n = 3 x√
1+x2

+ C

n = 4 x+arctanx+x2 arctanx

2(1+x2)
+ C

n = 5 x(3+2x2)

3(1+x2)
3
2

+ C

n = 6 x(5+3x2)+3
8(1+x2)

+ C

n = 7 x(15+20x2+8x4)

15(1+x2)5 + C

n = 9 x(35+70x2+56x4+16x6)

35(1+x)
7
2

+ C

n = 11 x(315+840x2+1008x4+576x6+128x8)

315(1+x2)
9
2

+ C

n = −1 1
2 (x

√
1 + x2 + arcsinx) + C

n = −2 x + x3

3 + C

n = −3 1
8 [

√
1 + x2(5 + 2x2) + 3 arcsinx] + C

The density and pressure are given by

ρ

C
= 14x + 3x3 + x5

2(1 + x2)3
(42)

p

C
= 12 + 39x2 − 6x3 + 17x4 + 3x5 + 2x6 + x7

x(3 + x)(1 + x2)3
(43)

respectively.
The rate of change of the energy density ρ and pressure p have the form

1

C

dρ

dx
= 14 − 16x2 − 4x4 − x6

2(1 + x2)4
(44)

1

C

dp

dx
= [

36 + 24x + 135x2 + 132x3 + 438x4 + 92x5 + 84x6

+ 60x7 + 10x8 + 4x9 + x10
]/[

x2(3 + x)2
(
1 + x2

)4]
(45)

which will allow us to compute the sound speed parameter which is given by

dp

dρ
= [

2
(
36 + 24x + 135x2 + 132x3 + 438x4 + 92x5 + 84x6 + 60x7

+ 10x8 + 4x9 + x10
)]/[

x2(3 + x)
(−14 + 61x2 + 4x4 + x6

)]
(46)

Finally the following expressions are useful when considering the energy conditions:

ρ + p

C
= 24 + 120x2x3 + 43x4 + 9x5 − 7x6 + 3x7

2x(3 + x)(1 + x2)3
(47)

ρ − p

C
= 24 + +36x2 − 26x3 + 25x4 + 3x5 + x6 + x7

2x(3 + x)(1 + x2)3
(48)
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Table 2 Exact solutions
Z = (1 + xn) y

n = −1 y = √
x(x + 1) − sinh−1 √

x

n = −2 y =
√

x2 + 1

n = 1
2 y = 4

3 (2 − 2
√

1 + √
x) + √

x(1 + √
x)

n = 1
3

2
3

√

1 + x
1
3 (8 + 4x

1
2 + 3x

2
3 )

n = 1
4 y = 8

35

√

1 + x
1
4 (−16 + 8x

1
4 − 6

√
x + 5x

3
4 )

ρ + 3p

C
= 72 + 276x2 − 22x3 + 111x4 + 21x5 + 15x6 + 7x7

2x(3 + x)(1 + x2)3
(49)

6.3 The Choice Z = 1 + xn

We substitute Z = 1 + xn in (19). Then the general solution for y is given by

y = x2F1

[
1

2
,

1

n
,
n + 1

n
,−x2

]
+ L (50)

in terms of the hypergeometric function 2F1. Observe that the case n = 1 in the present
function Z corresponds to n = 1 for the previously treated Z = (1 + x)n case. In the case
n = 2 the present function Z is equivalent to the choice n = 1 in the case Z = (1 + x2)n also
considered elsewhere in this article. Hence we do not consider these again. Empirical testing
for exact models with n = 3,4,5, . . . suggests that closed form solutions do not emerge. The
forms for y turn out to involve elliptic functions. Accordingly we confine our attention to
those cases which produce elementary forms for y on integration. In addition, fractional
values of n appear to yield closed form solutions as do negative integral values of n. We
tabulate some exact solutions that we have generated in Table 2.

It is not surprising that these solutions all appear to be novel. They follow essentially
because of our prescription of linking the electric field intensity to the gravitational poten-
tial Z. This approach has not previously been attempted. Therefore we find that the solutions
reported in the previous two sections are new.

7 Specifying y(x)

Using Z = γ

ẏ2 we can nominate any form for y and then obtain Z via (18) and finally E2

C
with

the help of (16). The major advantage here is that the are no integrations to be performed.
This means that any analytic function y will allow the complete integration of the Einstein
field equations for this scheme. Recall the algorithm works subject to E2

C
x = Żx − Z + 1

which we prescribed. We give a simple example to illustrate this simple method of finding
new exact solutions.

If we take y = 1 + x for example then we obtain Z = γ a constant using (18). Finally we
get E2

C
= 1−γ

x
with the aid of (16). The density ρ and pressure p are given by

ρ

C
= 1 − γ

2x
(51)

p

C
= 9γ x + γ − x − 1

2x(1 + x)
(52)
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respectively. The rates of change of these dynamical quantities are given by

dρ

Cdx
= −(1 − γ )

2x2

dp

Cdx
= x2(9γ − 1) − (γ − 1)(x + 2)

4x2(1 + x)2

which in turn allows us to obtain the expression

dp

dρ
= (1 + x)2 − γ (1 + 2x + 9x2)

(γ − 1)(1 + x)2

which represents the adiabatic sound speed index. The expressions for the energy conditions
are represented by the following equations:

ρ − p = 1 − 5γ x − γ

x(1 + x)

ρ + p = 4γ − 1

x + 1

ρ + 3p = −(1 + x − γ − 13γ x)

x(x + 1)

We do not pursue any physical study of these quantities. We present them merely to illustrate
the ease of finding new exact solutions using the method we have proposed. It is patently
obvious that all the expressions above are singular at the stellar centre; for this model to
correspond to realistic matter there will have to exist another core fluid which has finite
density and pressure.

8 Conclusion

We have proposed an algorithmic method of generating models of static charged spherically
symmetric distributions with perfect fluid. The construction involves specifying a functional
dependence of the potential Z on the electric field intensity E. This is similar to specify-
ing an equation of state relating the fluid pressure functionally with the density in either a
barotropic or polytropic form. Our algorithm then requires the selection of certain source
functions which will allow for a complete integration of the field equations. While some
choices of the source functions are clearly restrictive—such as the algorithm involving in-
tegration of functions with square roots, at least one algorithm involves no integration at
all. That is arbitrary potentials y may be selected and a complete solution of the Einstein-
Maxwell system of partial differential equations may be achieved. We examine our solutions
for physical palatability to see if they conform to observational evidence. We demonstrate a
solution which does indeed display the qualitative features associated with realistic stars. In
other cases, we list in tabular form new charged solutions not previously reported.
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